
Region Growing Euclidean Distance Transforms

Olivier Cuisenaire

Telecommunication and Remote Sensing Laboratory
Universitd Catholique de Louvain, Belgium

Abstract

By propagating a vector for each pixel, we show that nearly Euclidean distance
maps can be produced quickly by a region growing algorithm using hierarchical
queues. Properties of the propagation scheme are used to detect potentially errone-
ous pixels and correct them by using larger neighbourhoods, without significantly
affecting the computation time. Thus, Euclidean distance maps are produced in a
time comparable to its commonly used chamfer approximations.

1. Introduction

Distance maps are images where the value of each pixel of the foreground is the dis-
tance to the nearest pixel of the background. Generating such maps using a Euclidean
distance metric is a complex problem since a direct application of this definition usu-
ally requires an excessive computation time.

The development of fast algorithms for producing Distance Transforms (DT), as ap-
proximations of the Euclidean distance maps, has allowed their applications in vari-
ous fields such as chamfer matching, registration of medical images [6], generation of
morphological skeletons or active contour models.

Numerous DT algorithms have been proposed, offering various trade-offs between
computation time and quality of the approximation of the Euclidean metric. The DT
in the literature belong to two categories: the Chamfer DT originally proposed by
Borgerfors in [2] and the Vector DT proposed by Danielsson in [1]. These algorithms
rely on a number of raster scans over the image, although some parallel implementa-
tions have also been proposed [4]. In this paper, we present a region-growing Vector
DT where pixels are scanned by increasing value of the distance.

In section 2 we present the principles of existing DT. In section 3, the region growing
new algorithm is described. In section 4, the quality of the approximation is increased
by using larger neighbourhoods for a subset of potentially erroneous points. In sec-
tion 5, we analyse the types and values of errors made by our algorithm and compare
it with CDT. In section 6 the complexity of the algorithm is considered.

2. A review of Distance Transforms

Chamfer Distance Transforms (CDT) are commonly used to approximate the Euclid-
ean metric. They are based on the assumption that the value of the distance for each
pixel can be computed from of the values of its neighbours plus a mask constant.

CDT are usually produced in 2 raster scans over the image, using half of the neigh-
bour pixels as a mask for each scan. The simplest CDT are the chessboard and city-

264

block DT using masks a and b of fig 1. G. Borgerfors introduced better approxima-
tions with mask c in [2] and mask d in [3].

There are two sources of errors in CDT. First, lines are approximated by segments
following the main directions available in the mask, i.e. every 45 ° for the CDT 3-4
and every 22.5 ° for CDT 5-7-11. Secondly, the values of the mask constants are ap-
proximated by integers which leads to errors even in the main directions of mask.

b.

1 \ , i

4 3 4 f" 1,1 0,1

1,o\ [' ~
d. !11 11 ",,, s

1~"- 7 5 7 11 11 7 5 7 11~ ,, ~ ~

\ . . i,.-, o.-,t-,,-

Fig. 1. Masks of the various DT: a) chessboard - b) City-block - c) Chamfer 3-4 - d) Chamfer
5-7-11 - e) 4SSED - f) 8SSED.

To produce better approximations of the Euclidean metric, one should transmit more
information from pixels to their neighbours. In [1], Danielsson proposes to propagate
a vector localising the nearest background pixel or NBP.

This requires the use four scans. Masks e of fig 1.corresponds to 4SED (4 neighbours
Sequential Euclidean Distance) and masks f to 8SED. In 3 dimensions, 6 scans are
needed. The increased number of scans and the higher complexity of vector compari-
sons makes the Vector Distance Transform (VDT) significantly slower than CDT.

Using VDT, most pixels are error-free, but some errors occur for particular back-
ground pixel configurations, when the basic assumption - that the closest background
point to a pixel is also the closest point to one of its neighbours - is not satisfied.

3. R e g i o n G r o w i n g A l g o r i t h m

Our method uses the 4SED mask, but instead of using the raster scans, pixels are con-
sidered by increasing value of the distance. This is implemented with a data structure
called hierarchical queues (HQ), illustrated at fig 3. The queue labelled i in the HQ
contains the pixels for which i is the square of the distance to their NBP. With a
Euclidean metric, this value is an integer. For each pixel in the HQ, its location and
its NBP are stored. An image called map is also created, containing the square of the
distance at each pixel. In what follows, our aim is to compute this map.

265

, /

l I 0
i . , . 3 2

d2~

1 o

Fig. 2. Hierarchical Queues are made of a collection of FIFO queues. In-going elements enter
any of the queues, outgoing elements are taken from the smaller numbered non-empty queue.

The HQ is initialised with queue 0 containing the background pixels and all other
queues empty. The map is initialised with zero for background pixels and the maxi-
mum integer value everywhere else.

Pixels are then treated in the HQ order. For each pixel, we consider that its neigh-
hours have the same NBP. I f this leads to a smaller value of the distance than stored
in the map, the map is updated with this value and the neighbour is inserted in the
HQ. In the HQ, pixels are treated by increasing value, which on the map corresponds
to the border of a growing region centred on the background pixels.

More formally, the algorithm is written

Initialisation: HQ(O) is the list of background pixels
HQ(i) empty for all i ~ 0
map[p] is maxint for all pixet p
map[p] is O for background pixels

Main." while HQ not empty
{ getpfrom HQ

for each neighbour n of p
{ d=dist2(n, NBP(p))

if d<map[n]
{ map[n] =d

add n to HQ(d) with NBP(n)=NBP(p)
} } }

Note that this algorithm allows pixels to be first mislabelled with a wrong NBP and
later corrected as closer to another. Nonetheless, the HQ scan processes the correction
before the initial error since the distance is smaller hence the correction is in a queue
of smaller label. Errors are therefore not propagated.

Also, with the HQ scan there is no need of propagating the information back to pixels
of a smaller value. Therefore, we only consider the part of the neighbourhood which
decreases none of the components of the relative position of the NBP. In most cases,
only one quadrant of the mask will need to be considered, which reduces the search to
2 pixels our of 4 for 4SED, 3 out of 8 for 8SED

266

4. Use of Larger neighbourhoods

As we will see in next section, VDT produces errors only for few pixels, with specific
background pixel configurations. With 4SED for instance, the largest relative error is
illustrated at fig 7.a, where the information "closer to pixel B" cannot be propagated
to pixel x. This could be solved by using the mask of 8SED allowing the information
to be transmitted diagonally so that x could be reached from the pixel labelled 2, as
suggested by the arrow.

In general, two main strategies can be envisaged to reduce the errors of a DT. First,
one can use larger neighbourhoods for the masks. This leads to a significant increase
of the computation time, which is proportional to the product of the size of the mask
by the number of pixels. The second method, proposed in [5], consists of increasing
the amount of information transmitted from pixel to pixel, eVDT(0) stores the list of
all NBP instead of only one of them. sVDT(1) also includes nearly NBP in the list. It
produces an error-free map, but is orders of magnitude slower than 4SED or 8SED.

We propose to use the first approach and to quicken it significantly. The distance map
is first computed quickly but roughly with the smallest possible mask (4SED). Then,
larger neighbourhoods are used to correct errors made with this first scan. Fortu-
nately, these corrections only need to be made for a small subset of pixels. Indeed,
after using 4SED, most pixels are error-free. And the erroneous pixels share some
properties we can use to restrict the set of points to treat with larger masks.

Fig. 3. a sequel of increasing size neighbourhoods: from left to right: 4SED mask, 8SED or
3x3 mask, 5x5 mask, 7x7 mask. Light grey pixels are those added to the smaller mask to create
the larger one.

First, we consider neighbourhoods No, N1 Ni ... of increasing size, such as illus-
trated at figure 6. We define an err i pixel for N~ a pixel in the map for which the val-
ues computed using N~ and Ni+l are different. An endi pixel is one that was not propa-
gated while using the algorithm described in section 3 with N i. end i pixels can easily
be detected while running the algorithm.

Once we have a map created using N~, we want to correct some errors to make it as
good as if it had been created with Ni+~. For this, we only need to correct the err i pix-
els. We use the following property: Any err i pixel is a Ni+~ neighbour of either an-
other erri pixel or of an endi pixel. This can easily be proved ab absurdum. Therefore,
the Ni+~ mask only needs to be propagated from end i pixels and from corrected err i
pixels. This leads to the following algorithm for 2 neighbourhoods, which can be ex-

267

tended immediately for any number of neighbourhoods

while HQ1 not empty
{ getpfrom HQ1

for each N1 neighbour n of p
{ d=dist2(n, NBP(p))

if d<map[n]
{ map[n] =d

add n to HQI (d) with NBP(n) =NBP(p)
} }
i f no neighbour n was put in HQ1 (p is' endi)

add p to HQ2(map[p])
}
while HQ2 not empty
{ getpfrom HQ2

for each N2 neighbour n of p
{ d=dist2(n, NBP(p))

if d<map[n]
{ map[n] =d

add n to HQ2(d) with NBP(n)=NBP(p)
} } }

This can further be improved by noticing that each neighbourhood provides a perfect
map up to a certain value. There is no need to use larger neighbourhoods for smaller
distances. For instance, the smallest possible error with 4SED is illustrated at figure
7.a. The pixel labelled 2 is end4soa. It should used to reach pixel x with the 8SED
mask. Hence end4~,d pixels labelled 0 or 1 should not be considered while using 8SED
to improve a map created with 4SED. The smaller value for which 8SED shall be
used is 2.

The thresholds for some masks in 2 and 3 dimensions can be found in tables 1 and 2.
In 3D, the background pixels should be included in the HQ2 to take into account the
fact that the direct neighbourhood can produce errors even with d2=0.

5. Error Analysis

The error analysis for our DT compared to the Euclidean metric is similar to the
analysis made in [1]. In this paper, we consider, for each mask, the smallest values for
which a pixel can be mislabelled. It also corresponds to the largest relative error. The
configurations of NBP leading to those errors for 4SED and 8SED are illustrated in
fig 7 and numerical results found by extensive search are listed in tables 1 and 2.

They should be compared with the relative errors obtained with CDT: 8% for CDT 3-
4 and 2% for CDT 5-7-11. This ranks the 4SED mask between the two chamfer
methods and 8SED or any larger mask as better than any published CDT.

Furthermore, VDT finds the correct value for most pixels. The number of erroneous
pixels is image dependant. In the case of figure 9, less than 300 out of 65500 points,

268

or 0.5% are erroneous when using the 4SED mask. Typically, errors are located in
areas where the "propagation front" is shrinking while expansion areas are error-free
since no information loss occurs there. In particular, for a single background pixel
(fig. 8), the 4SED mask provides a perfect Euclidean map.

: c.
x

! 1 2 4 ~

1
i i ; i

b.
12,5

i

i;
Fig. 4. a) 4SED error: pixel x is assigned a squared distance value of 9 rather than 8 as A or C
are mistaken as closer to x than B. b) New type of error: pixel x is assigned a value of 4 instead
of 2 if pixels are scanned in a specific order A,B, C c) using 8SED, pixel x is wrongly as-
signed 170=72+112=132+12 instead of 169=122+52

Mask
4SED
8SED
5x5
7x7

d2 correct

169
964

2404

d2 assigned d correct
9 2.89

170 13
965 31.05

2405 49.03

relative e~or d 2
6,1% 2
0,3% 116

0.05% 778
0.02% 2089

Table 1: Smallest errors for each mask size. The last column (d 2) gives the value from which
the non-propagating pixels should be propagated with a larger mask.

Mask d2 cor- d2 assigned
rect

d 2

3 4 0
49 50 24
228 229 146

6SED
3x3x3
5x5x5
7x7x7

d correct relative error

1,73 15,5%
7 1,0%

15,1 0,2%
25,02 0,08% 626 627 441

Table 2. Same as table 1 for 3D distance maps.

Other differences between VDT and CDT are illustrated at fig 8. First, the shape o f
iso-distmace curbs: CDT gives polygons o f 8 or 16 sides, VDT a perfect circle. This
influences applications such as the generation o f skeletons [1], Secondly, CDT only
allow 8 or 16 directions for the gradient, VDT a continuous range o f directions. This
influences convergence domains and speed in gradient-based minimisation as in [6].

269

hll
Fig. 5. From left to right: CDT 3-4 / CDT 5-7-11 / EDT. Up: distance from a central pixel.
Colours are mod. 30 for better visibility. Down: direction of the gradient of those maps.

6. Complexity Analysis

The usual method for assessing the complexity of a DT is to consider the number of
comparisons per pixel required by the algorithm. Unfortunately, in order to compare
our algorithm to a CDT, this is not a valid method since the type of comparison is
different (scalars for CDT, vectors for VDT) and their number is image dependant.

Furthermore, hierarchical queues are dynamic data structures. Hence, a significant
part of the time is used for dynamic memory allocation. This makes the comparison
of CDT and our algorithm dependant on the relative efficiency of each type of opera-
tion, and thus machine-dependant.

We therefore choose a heuristic approach, using CDT and our method on test images
several types of workstations. In average, our DT with the 4SED mask is 1,5 slower
than CDT 3-4 and similar to CDT 5-7-11. In three dimensions, it is between 1.05 and
3 times slower than CDT 3-4-5, depending on the workstation.

These good results - despite the complexity of the basic operation -are explained by
the small amount of comparisons required. On the test images, our method requires
an average of 2,1 and 3,35 comparisons per pixel in 2 and 3 dimensions respectively,
compared with 8 and 26 for CDT. In d dimensions, CDT requires o(d ~) comparisons
while our method requires o(d) comparisons whose complexity grow like o(d). Hence
the global complexity growth like o(d2). Furthermore, the algorithm can be stopped at
any step and provide a partial map where all pixels within a certain distance have
been computed. This is of interest for the last steps of minimisation methods where
all points of interest are close to their targets.

Let us now consider the multi-mask algorithm of section 4. The additional cost for
using the larger mask can be estimated from the number of end4~,d pixels. This num-
ber is image related. For instance, with the 256x256 image of fig. 9, out of the 65536
pixels treated with the 4SED mask, 8894 are considered for the 8SED mask, 3765 for
the 5x5 mask and 2282 for the 7x7 mask. This leads to 65536"2,1 + 8894"1 +

270

3765" 2 + 2282"4 = 163177 comparisons if, for the larger masks, only one quadrant of
the pixels highlighted at fig 3 are used. The additional cost of using the 7x7 mask
instead of 4SED is less then 20%, while using this 7x7 mask with the single-mask
algorithm of section 3 represents an additional cost of around 400%.

D m u

Fig.6. Up: a typical image (left), its edges (centre) and the Euclidean map (right) to these
edges. Colours are displayed modulo 25 for better visibility. Down: set of err4SED pixels used
for 8SED (left, threshold at d2=2), 5x5 (threshold at 116) and 7x7 masks (threshold at 778).

7. Conclusion

We have developed an algorithm computing Euclidean distance maps in a time simi-
lar to the chamfer DT approximations. It is progresswe since it can be stopped at any
time and provide a sensible result, either by computing only within a certain distance,
or improving the map by progressively using larger masks.

Finally, the method seems easily adaptable to other metrics and in particular to non-
isotropic grids or higher dimensions. This and the use of the distance maps to gener-
ate skeletons of binary objects is the subject of future research.

Acknowledgement

Olivier Cuisenaire's work is funded by Belgium's F.R.I.A

References

1. P.E. Danielsson, Euclidean Distance Mapping, CGIP 14, 1980, 227-248.
2. Borgerfors, Distance Transformations in Arbitrary Dimensions, CVGIP 27, 1984, 321-345
3. G. Borgerfors, Distance Transformations in Digital Images, CVGIP 34, 1986, 344-371
4. H. Embrechts and D. Roose, A parallel Euclidean Distance Transformation Algorithm,

CVIU63, 1996, 15-26
5. J. Mullikin, The vector distance transform in two and three dimensions, CVGIP

54(6), 1992, 526-535
6. O. Cuisenaire, J.Ph. Thiran, B.Macq, Ch. Michel, A. De Volder and F. Marques, Auto-

matic Registration of 3D MR Images with a Computerised Brain Atlas, SPIE Medical 1m-
aging 1996, SPIE vol. 1710, 438-449.

