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A b s t r a c t .  A fully 3D active surface model is presented with self-infla- 
tion and self-deflation forces. The model makes full use of 3D image 
information, deforms locally and allowes strong deformation. The self- 
inflation and self-deflation forces enable the active surface to travel a 
long distance without the help from any external forces. We introduce 
a method of adapting model parameters, which enables our model to 
bypass some noise and irrelevant edge points. The model is tested with 
synthetic and real images. Accurate segmentation results are obtained in 
the presence of image noise and imperfect image data. Importantly, the 
model is capable of converging to the correct boundary even if the initial 
estimate is not close. Computational efficiency of segmentation with our 
model is addressed. 

1 Introduction 

Increasing availability of 3D image data, e.g. clinical CT and MR, has spurred 
growing interest in 3D image segmentation. By making full use of 3D image 
data, a segmentation algorithm is more accurate and more robust to noise and 
imperfect da ta  than a 2D slice-by-slice approach. 

Active surfaces [11] are a 3D generalization of the 2D active contour models 
(snakes) [8]. They are generalized splines with piecewise smoothness and have 
a diverse coverage of region shapes. They  segment a 3D image by fitting the 
surface to desired image features, e.g. edge points. Once initialized in the vicinity 
of the desired image features, the surface evolves under the influence of internal 
and external forces until the balance of all forces is reached. The process of 
segmentation is formulated as the minimization of the energy cost functional of 
the active surface [1I, 3] 

E = / /  [WlEint(S(U,V)) + w2Eext(S(U,V))]dudv, (1) 

where s(u, v) = (x(u, v), y(u, v), z(u, v)) defines the ~ surface parameterized by 
u and v; Eint and Eext are the internal and external energy, respectively; wl 
and w2 are the corresponding weights. The internal energy enables the active 
surface to bridge gaps in edge data and to bypass image noise. The external 
energy serves to at t ract  the active surface to the desired image features. 

Polygonal closed meshes are commonly used to represent an active surface. 
Triangular and simplex [4] meshes can deform locally and thus are able to fit 
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various shapes accurately. A surface can also be represented by nodes (vertices of 
mesh elements). The number of surface nodes can be constant or variable. With 
a constant number of nodes, the inter-nodal distance (or the size of the mesh), 
and thus the surface resolution will generally change during surface deformation. 
To maintain adequate surface resolution, it is generally necessmw to vary the 
number of nodes as the surface deforms. Surface nodes are typically restricted 
to move within a plane. In fully 3D detbrmable models, surface nodes are free 
to move in any direction, which enables full use of 3D image data. 

Of the several active surface models proposed [12, 3, 6, 4, 1, 13], most are not 
fully 3D. For example, Cohen & Cohen's model [3] allowes surface node to move 
only within a plane. Whitaker et al [13] use 2D active contours but introduce 
interslice energy generated by extrapolating slice contours across slices. Some 3D 
models are excessively rigid due to the fixed number of surface nodes [12, 3, 41 . 
Huang et al [6] and Bulpitt & Efford [1] propose fully 3D surface models with 
triangular meshes and a variable number of surface nodes. Huang's model is 
designed specifically for the reconstruction of the left ventricle motion. Bulpitt 
& Efford's model aims at maintaining constant computational cost while setting 
adequate surface resolution by allocating more nodes to the high curvature parts 
of the surface. 

Current models lack appropriate long distance attraction forces [9]. In par- 
ticular, gradient forces operate over a short range. Some models overcome the 
problem by introducing spring forces [8, 4, 6, 1] which attract surface nodes 
to desired image features, e.g. edges. However, finding a node's corresponding 
edges is difficult and computationaily expensive [6]. In the balloon model [2], a 
force normal to the surface inflates or deflates the surface to help drive it to- 
wards desired image features. It is an artificially added external force which, as 
implemented, is not adaptive. 

Another limitation, crucial to successful implementation, is the shortage of 
practical methods for adapting model parameters to image data [9]. It is often 
desired to vary the values of model parameters from one image to another, from 
one iteration to another, and from one surface node to another. Among other 
major limitations, active surface models tend to shrink under the influence of 
internal force. They are also prone to becoming trapped by noise and irrelevant 
edge points. Though computationally efficient compared with region-based seg- 
mentation methods, computational cost for 3D image segmentation is significant 
due to the large data set. 

2 S u r f a c e  r e p r e s e n t a t i o n  

Closed triangular meshes are used to represent the surface in our model (Fig- 
ure 1). Each edge of a triangle is shared by exactly two triangles. This is the 
so called conforming triangular mesh [10]. Non-conforming triangular mesh will 
complicate the calculations of continuity and smoothness energies. The mesh 
elements m:e planar. The surface can also be described by surface nodes. Each 
node is directly connected to its (first order) neighbour nodes, and is shared by 
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its (first order) neighbour triangles. The number of the neighbour nodes equals 
the number of the neighbour triangles. This number can vary from node to node, 
enabling the model to deform locally, thus permitting a diverse range of surface 
shapes. 

Fig. 1. Triangular meshes. A node j (solid square) is surrounded by its first 
order neighbour nodes (solid circles). Triangles with node j as a vertex are the 
first order neighbour triangles. 

Our model allowes surface nodes to move in all directions during surface 
deformation to make full use of the available image information. As a result 
of node movement, the inter-nodal distances will change. A large inter-nodal 
distance may lead to important image features being ignored. On the other hand, 
a small inter-nodal distance requires more surface nodes to represent a surface, 
thus increasing computational cost. To maintain adequate surface resolution 
and high computational efficiency, node-insertion and node-removal [5, 7, 1] are 
introduced. A new node is inserted somewhere between two directly connected 
nodes if their inter-nodal distance is larger than a threshold. A node is removed 
if the inter-nodal distance is smaller than another threshold (see [15] for details). 

The thresholds for both node-insertion and node-removal are application de- 
pendent. Also, they can be made dependent on surface smoothness and time 
(iteration). Surface smoothness dependency is effected by raising the thresholds 
where the surface is smooth. This will make dense distribution of nodes on parts 
of the surface with high curvature and sparse distribution on parts with low 
curvature. The time dependency is implemented by starting with and maintain - 
ing a small number of surface nodes during surface evolution, and adding more 
nodes in the final stages of the evolution. This control over node density can 
help speed up the evolution while providing the final segmentation result with 
adequate surface resolution (see section 5 for more discussion). 

3 E n e r g i e s  

In this section, we describe the internal and external energies of our model as 
well as the self-inflation/deflation forces. 
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3.1 Surface energy 

In our model, only smoothness energy is used for the internal energy, and the 
external energy simply consists of the edge energy. Kass' continuity energy [8] is 
redundant because our model maintains inter-nodal distance by node insertion 
and removal. Furthermore, continuity energy tends to pull surface nodes closer, 
leading to undesirable surface shrinking. The discrete form of our energy function 
is expressed as a sum over M surface nodes, 

M 

E = ~ (w~ E~ + w~ JE~), where E~ = -[VIII2 ; (2) 
j=l 

at each node j ,  E~ is the smoothness energy, E~ the edge energy; w~ and w~ 
the corresponding weights, and VIi denotes the gradient at node j of image 
intensity I. Since the method for calculation of the smoothness energy of a 3D 
active surface cannot be readily generalized from that of the 2D active contour, 
we designed our smoothness measures based on the angles formed by the surface 
normal at a node and the edges connecting the node to its neighbour nodes 
(see [15] for details). 

3.2 Self-inflation and self-deflation forces 

The self-inflation/deflation forces arise from the manipulation of the smoothness 
energy. The inflation/deflation switch and the adjustment of the force strength 
can be done merely by tuning a model parameter. The self-inflation/deflation 
forces enable the active surface to travel a long distance without any help from 
external forces (see [15] for details). 

3.3 Energy minimization 

Energy minimization is performed iteratively by the greedy algorithm [14]. A 
search neighbourhood consists of six closest voxels in 3D. A surface node is free 
to move to one of its neighbour voxel positions, or stay at its current position, 
depending on the location of the energy minimum. The size of the neighbourhood 
affects the number of iterations needed for surface evolution. Also, it affects the 
computational cost for each iteration. The larger the size of the neighbourhood, 
the higher the computational cost for each iteration. 

4 A d a p t a t i o n  o f  m o d e l  p a r a m e t e r s  

Noise and irrelevant edge points give rise to difficulties in image segmentation. 
Active surface nodes often stick to such points and fail to reach true edges. To re- 
duce these effects, edge maps are commonly thresholded. However, thresholding 
eliminates only some noise and irrelevant edge points. We propose an adaptation 
of the edge energy weight w~ (Eq. 2) during surface evolution to help the model 
bypass noise and isolated irrelevant edge points. 
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The algorithm for adaptation of the edge energy weight is based on the 
assumption that noise and irrelevant edge points are isolated compared with 
true edge points. During surface evolution, once a surface node attaches to a 
true edge point, most of its neighbour nodes are expected to adhere to other 
true edge points in the next few iterations. If a surface node has stuck on a high 
gradient point and, after a few iterations, few of its neighbour nodes also stick 
to some other high gradient points, the point is regarded as an isolated noise or 
irrelevant edge point. By relaxing w~ (Eq. 2) at that surface node, active surface 
can bypass the noise or isolated irrelevant edge point under the action of the 
smoothness force. The procedure is as follows: 

1. test if the edge strength at a surface node is larger than a certain threshold; 
if not, test the next surface node; 

2. count the neighbour nodes whose edge strength also exceeds the threshold; 
3. if the counter is less than, say 30%, in several consecutive iterations, say 5, 

relax the weight of edge energy at that surface node. 

In generally, this algorithm is less effective for 2D active contour models because 
each contour node has only two neighbour nodes. This manifests one of the 
advantages of full 3D segmentation over 2D. 

5 C o m p u t a t i o n a l  e f f i c i e n c y  

Though active surface models are computationally efficient relative to region- 
based segmentation methods, computational cost for 3D image segmentation is 
significant due to the large image matrix. Computational cost of our model with 
greedy algorithm is proportional to the number of iterations needed for the active 
surface to converge to region boundaries. For each iteration, the computational 
cost is proportional to the number of surface nodes and tile size of the search 
neighbourhood for each node. 

A large surface mesh size suggests a small number of surface nodes needed 
for surface representation, reducing the computational cost for surface evolution. 
It also suggests low surface resolution. To minimize computational cost while 
obtaining adequate surface resolution, a large surface mesh size is applied at early 
stages of surface evolution, whereas a small size of surface mesh is applied at 
final stages. The size of the surface mesh is controlled by the inter-nodal distance 
thresholds for surface node insertion and removal. Therefore, by manipulating 
the inter-nodal distance thresholds, computational cost can be reduced. 

The active surface model, with the greedy algorithm, lends itself well to a 
parallel implementation because the measures of both smoothness and edge ener- 
gies are local. We implement the parallelisation by splitting the linked list, which 
connects surface nodes, into sections and assigning each section to a different pro- 
cessor. The algorithm runs on a multi-processor architecture (Sun Ultra-2 with 
two processors). We are investigating the computational gain of this and other 
possible approaches to parallelisation. 
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6 E x p e r i m e n t s  a n d  r e s u l t s  

Two 3D synthetic images and a 3D CT image were used. The synthetic images 
were of size 128 × 128 × 128 with added Gaussian noise of signal to noise ratio 
of 1. A simple image contains a single ellipsoid and a compound image contains 
two partly merged ellipsoids. The CT image, from the Visible Human Set at the 
National Library of Medicine, Bethesda, MD, USA, was interpolated to 1ram 
interslice spacing. A Sun SPARC-10 workstation was used in our experiments. 

E x p e r i m e n t  1: To demonstrate the deformability of the active surface model 
with the self-inflation/deflation forces, the compound image was segmented with 
an initial spherical surface placed within the object (Figure 2). The segmentation 
was successful even though the object splits into disjoint regions in some slices. 

Expe r imen t  2: To demonstrate the ability to bypass isolated irrelevant edge 
points by parameter adaptation, a bar and a cluster of high gradient points were 
added to the edge map of the simple image (Figure 3). Normally, the active 
surface sticks to the high gradient points (Figure 3c). With the adaptation of 
edge energy weight w~ (Eq. 2), the active surface bypassed the high gradient 
points (Figure 3d). 

E x p e r i m e n t  3: To investigate the computational efficiency, the simple syn- 
thetic image was segmented with and without manipulating the number of nodes 
during surface evolution. An initial spherical surface was placed within the ob- 
ject. Controlling the number of surface nodes resulted in about 40% reduction 
of computational time (from 5m 35s to 3m 15s). 

Expe r imen t  4: To test the model incorporating the self-inflation/deflation 
forces and the adaptation of model parameters, a kidney in the 3D CT image was 
segmented (Figure 4). The initial surface was a sphere totally contained within 
the kidney. Examination of each cross section of the segmentation result by eye 
revealed that the segmentation was accurate. 

7 C o n c l u s i o n  

We present a fully 3D active surface model with the self-inflation and self- 
deflation forces. Our surface model has the following features: surface nodes are 
free to move in all directions, thus enabling the model to make full use of 3D 
image information; the model is deformable locally, thus providing coverage for 
a diverse range of surfaces; the model is capable of strong deformations, thus 
reducing its sensitivity to initial shape and position. The self-inflation/deflation 
forces permit the surface to travel a long distance without the aid of external 
forces. They are simple and easy to control. We introduce an adaptation of 
model parameters. By adapting the weight of edge energy at each surface node, 
the model is capable of bypassing some noise and isolated irrelevant edge points. 
By adapting the inter-nodal distance thresholds for node insertion and node 
removal, the model is capable of adjusting the number of surface nodes during 
surface evolution so that the computational cost is minimum compatible with 
adequate surface resolution of segmentation. 
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Fig. 2. The representative parallel cross sections of the compound synthetic 
image showing the initial (top row) and the final surface (bottom row). 

(a) (b) (c) (d) 

Fig. 3. A central cross section of the simple synthetic image showing the initial 
surface (a), edge map with added high gradient points (b), and the final surface 
segmented without (c), and with (d), parameter adaptation. 

(a) 

~ .... . .  ~ _ ~  

• . ~ . .  

(b) (c) 

Fig. 4. A central cross section of the CT image with the initial (a) and final (b) 
surface. A perspective view of the final surface mesh is shown in (c). 
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The model is tested with two synthetic images and a 3D CT image. Accurate 
segmentation results were obtained. The full 3D active surface model produced 
correct segmentat ion where an object splits into disjoint regions in some slices. 
By combining the self-inflation/deflation forces and the adapta t ion  of model 
parameters ,  our model is computat ionally efficient, capable of converging to the 
correct boundary  even if the initial est imate is not close, and appears  to be 
robust  to noise and imperfect image data.  
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