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Abstract 
The paper describes an algorithm for image segmentation using fuzzy entropy 
measure. The relation between the fuzzy entropy of an image domain and the fuzzy 
entropy of its subdomains is explored as a uniformity predicate. With the aim of 
implementing the model, we have introduced a well known technique of Problem 
Solving. The most important roles of our model are played by the Evaluation Function 
(EF) and the Control Strategy. So the EF  is related to the ratio between the fuzzy 
entropy of one region or zone of the picture and the fuzzy entropy of the entire picture. 
The Control Strategy determines the optimal path in the search tree (quadtree) so that 
the nodes of the optimal path have minimal fuzzy entropy. The paper shows some 
comparisons between the proposed algorithm and classical edge detection techniques. 

I. INTRODUCTION 

Segmentation is a significant issue in the field of image processing and image 
understanding. The segmentation is the process, both human and automatic, that 
isolates in a pictorial scene zones or regions, edges or contours and angles with respect 
to a certain uniformity predicate. 
In the last years several approaches have been proposed in the literature and may be 
classified as follows: 
• Local (or atomistic) approach: 
Such a method takes advantages of grey level discontinuities that are considered 
relevant features of image. In order to extract these features several local operators 
have been introduced and the most important are Sobel [1, 2], Marr-Hildreth [3]. In 
this case the discontinuities assume the shape of monodimensional step function. In [1] 
Gonzales and Wintz propose an effective algorithm that looks at regions in image with 
non-unimodal histogram, using local thresholds. 
To the aim of resolving the strong simplification that associates edges with a 
monodimensional step function, a lot of corrections have been introduced. In this 
manner local operators can process image with smoothing and shading effects [2, 4, 5]. 
In [6, 7] any angle of a region in a digital image is approximated by means of a series 
of segments or half edges, where a half edge can be characterised by its position and 
orientation angle. So the angle is a poim at which two (or more) half edges cross [7-9]. 
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Recently some techniques based on image iterated smoothing have been proposed. 
Such a method eliminates higher frequencies of image by" iterated sampling, preserving 
-as much as possible- the shape and the edge positions [10, 11]. This approach presents 
some obvious limits such as an high computing time, and the strictly depending on 
threshold and on smoothing parameters. For this reason usually local operators are not 
utilised to process medical images. 
In [12] Higgins presents and compares three different methods to detect grey level 
discontinuities by. utilising structural local in.formations. 
• Global (or structural) approach: 
For its simplicity the global threshold is the oldest technique for image segmentation. 
In this approach it is customary to utilise one threshold for the whole image (global 
information) or one threshold for each image region (contextual method) [13-16]. The 
threshold is based on the following rules: each region in image may be associated with 
a peak histogram [17-20]. Of course such a rule is very restrictive. 
In order to extract the objects that make up an image, entropy -high order entropy or 
conditional entropy- is often adopted as uniformity predicate [21,22]. 
The Gestalt theory and Neurophysiotogic theory" affirm that in the human perceptive 
process the eve aims to minimise objects and background variations -homogenise- 
enhancing transitions regions, i.e. edges. 
The goal of tiffs paper is to propose a new algorithm for image segmentation using the 
fuzzy entro~, namely FISZ, exploiting the ratio between each image region and the 
whole image [23, 24, 32]. In other words such a ratio is minimum on the regions and 
maximum on the edges. 

2. Fuzzy ENTROPY MEASURE FOR EDGE DETECTION 

The task of the segmentation is to enhance the different regions of the image. In order 
to segment the image into regions each of them has to satisfy the uniformity predicate. 
Now it is necessary to analyse some aspects of the uniformity predicate before we 
introduce it. 
In our opinion the uniformity predicate couldn't be determined without considering the 
features of the whole image. In other words the measures calculated to determine the 
uniformity predicate have to be related to the same measures calculated on the whole 
image. In this paper the fuzzy entropy has been chosen as the uniformit3" predicate. In 
particular the fuzzy entropy of a region (or a background) -that is a region too- is 
always lower than the entropy of whole image or, in other words, the fuzzy entropy of a 
region is alx~ays greater or equal than the entropy of its subdomains. 
The rise adopts a strategy to segment the image similar to that introduced in [25]: the 
merge and the split are applied in cascade on the image using a region growing 
algorithm. 
A search tree of any hierarchical structure, as for example t-ari trees, can be utilised. In 
our work we have chosen the quadtree. 
The strate~" we'U propose segments into regions whose fuzzy entropy is nearly zero. 
More precisely, the zones extracted as regions are those whose evaluation function is 
gradually goes to zero. 
We have defined the evaluation function as a measure of the fuzzy entropy of a region 
according to the theorem of fuzzy entropy" [33]. 
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The theorem of fuzzy entropy defines the entropy of a fuzzy set A as a measure of the 
subset A and notA (A and A ~ )in relation to the subset A or notA ( A or A ~ ) as showed 
in Figure 1. 
Let a~ be an internal node of quadtree whose grey tones are g l ,  g2,  ..., g, (gi < gj, 
i < j ,  i, j = 1 .... , n)  and frequencies f l ,  f : , . . . ,  f , ,  respectively. 
Let a4,+t, t ~ [1,4], a child node of a i, whose greytones are g~i ,g ' : , --- ,g ' , ,  
(g~i < g ' j ,  i < j ,  i, j = 1,..., m) and frequencies f ' l ,  f ' : , . . ' ,  f 'm,  respectively. 

For each grey tone g~, i = 1,..., n ,  of the node a~ we define 

Afi = If~ - f ' i  
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Figure 1 - The entropy fuzzy theorem. 

where f ,  is the frequency of the grey tone g~ while f ' j  is the frequency of the grey 

tone of the node a4i+t, with gi = g~y" 

Then we evaluate 

A'ooZ =40oo- .) +1oo: 
and finally we define the fuzzy, entropy of the greytone gi as: 

e i - Aloof  • 

So, the fuzz) similarity of the node a i respect to its child node a4i+t is: 
1 K 

E(a,,a4,+, ) = - : ; ~ e ~  (1) 

where K = max(n,m). 
Now we can define the fuzzy homogenei b' of the node a4i+t, t E [1,4 as the average 
fuzzy similarity of a4,+t and its four children nodes: 

1 -,- 

We can observe that ff EM(a4i+t ) is nearly zero then the node a4i+t is "totally 
homogeneous". 
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So, the evaluation fimction of the node a4i+t is given by: 
EM(a,,.,) 

F(a4'*t) = E(a , ,  a4, < )" 

F(a4i.t ) evaluates the fuzzy homogeneity, of the node a4~.t respect to the fuzzy 
similarib to its father node a~, asulming minimal value inside a region and maximal 
value along the contour of a region. 
So, if a is an internal node of a quadtree and the evaluation functions of its four 

children nodes are F(a4i+l), F(a4i+2 ), F(a4,_ 3), F(a4,+,~), the control strategy 
expands the child node a s, wSth s = 4i  + 1 .... ,4i + 4, whose F ( a , )  is minimal: 

F(a,)=min{F(a4, .~  ), F ( a 4 , . :  ),F(a4i÷3),F(a4,÷,)}. 

According this rule, along the search path of the quadtree, F(a,)- E(a~, a,) is 

different from zero, in particular EM(a~  ) ;~ 0 and E(aj ,  a~ ) ~ O, 
Applying this rule at each level of the search tree, we'll individuate a node aj  whose 

E M ( a j  ) _= 0 and so F(aj  ) =_ O. Then we can state that the subdomain relative to 

the node aj  belongs to a region (or an object) R. 

If, inside the region R the evaluation function F(a~, ) of an expanded node a i, is 
nearly zero and the evaluation function F ( a f  ) of its child node a i, to expand is 

different from zero then we can state that the subdomain relative to the node a~, is the 
smallest subdomain including the partition element of the region. In other words, if the 
dimension of the subdomain relative to the node ai, is k~, × k~, and its initial 
coordinates in the entire image domain are (x;,, y~,), then the dimension of the 
partition element P of the region R will be d r  x dy ,  with ki,/2< dr  < ki, , 

k~./z < dy < k,. and dx = min{x},  ki, n < x < k~. and dy  = min{y} ,  k,,~ <_ y < k~, 
such that the evaluation function computed on the subdomain with dimension x x y ,  
included in the domain of the node a c, and initial coordinates (x~., y,. ) is nearly zero. 
So, the region R of the image will be the union of the elements (or subdomalus) 
/]1 ,P2,-..,Pu fuzzy similar to the partition element P: 

N 

R=U  
where P~ has coordinates (px~,py,) and dimension dx~ × dyi, with dri  = d r  and 
ay, =ay. 

3. EXPERIMENTAL RESULTS AND DISCUSSIONS 

In order to evaluate the performance of the proposed edge detection algorithm we have 
tested it on several theoretical and real 512x512x8 bits images. For the sake of brevity in 
this Section objective results obtained on theoretical images are presented. Moreover, 
FISE has been widely compared with the segmentation algorithm based on entropy 
(namely IsE) proposed by Vitulano et alt. in [32] and some of the most useful local 
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operators, i.e. Sobel, DOG zero-crossing, Hamlick [1, 2], Anisotropic diffusion and three 
methods proposed by Higgins [12]. 
We describe briefly ISE segmentation method. 
Let G be a node at level z of quadtree and a4s.,z, t ~ [1,4] a child node of a s. Let 
 (as) with k [1,n] be the frequencies of the histogram of the image area 

relative to the node a,  and f (a4~,  t ) with l ~ [1,m] be the maxima frequencies of the 

histogram of the image area relative to the node a4~ t. 

For simpliciD' we denote the set of these frequencies with {~} and {f} .  With each 

maximum frequency f in {~} (or in { f  t}) we associate a gaussian function whose 
standard deviation is defined as: 

1 
eL - (2) 

So, with each frequency f /  in {~} (or in { f } ) w e  can associate an interval of 

graytones of the histogram of as (or of:a4s+t): 
[g,  - o'•, g, + cr,] 

where g,  is the greytone with frequency £ and standard deviation O.i defined as in (2). 

If gi is the gra.vtone with frequency f E { j~ } and g j  is the graytone with frequency 

E {f/} then the following relations could be satisfied: 

[g,-gjl<-la-bl<2o'* (3) 

where a and b are the extrema of the intersection interval [ g x - o ' , g i + o ' i ] [ 3  

[g j -o . j ,  gj +crj]  and o'* = min(cr , ,o . j ) ,  

otherwise 

We consider now the sets {j~} ~ {j~} sorted according increasing gra31ones and we 

state that ff/7 = m and lg , - ~ J l  < 20" *, where g,  is the greytone with frequency 

f E {j~} and standard deviation cO', and g j  is the greytone with frequent" f j  E {f}  

and standard deviation o-j, and er* = mirl(o-i, or j ) ,  then the histograms of a s and 

aas+t, t E [1,4], have the maxima frequencies in correspondence to the same 
graytones. In terms of multivariate analysis the histograms have the same variables. 
Moreover, ff 

V i = j E [ 1 , / / ] ,  f = f  and lg i - g j l  = 0  (4) 

then the histograms of a s and a4s+t have the same graytones distribution. 
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If (3) and (4) are satisfied we define the domain relative to a s "totally homogeneous" to 

the domain relative to a4~+t. 
Obviously, the relations (3) and (4) are valid for theoric images and for a limited number 
of nodes of the qnadtree. Instead for real images it's necessary the introduction of an 
evaluation function to determine the homogeneiB degree of two different domains. 
The control strategy prefers the nodes with minimum E.F. along the search tree as in 
FISE method. 

So, for each f E {j~} and f j  E {f/} satisfying the relation (3), we define the entropy 

e~ relative to the frequencies f and ~ as: 

ta-bt 
e , -  ta'-b'l 

where a and b are the extrema of the intersection interval 

gi  - o'~, g~ + or, ( '~ g j  - o ' j ,  g / +  o ' j  are the extrema of the union 

defined as in (3). So, we define the E.F of a s in relation to a4s+t as: 

E(as, a 4 s + t ) = l [ ~ ( 1 - e i ) + ~ z ]  (5) 

where a is the number of frequencies of {j~} and "--{f} not satisfying the relation (3) 

n+ m-~z 
and p= 2 

For the test cases we assume the imagefis  made up of disjoint constant intensity region 
corrupted by additive Gaussian noise (AWGN); i.e. ff point (x,y)e region Rk, than 
flx,y)=/~+ rl k (x y), where ~ is the constant intensity value for points in Rk and ~ (x,y) is 
a sample of AWGN having statistics N(O, cr ~:). 
In order to determine an objective parameter to test the quality of processed images, as 
proposed by Haralick [31], we use two performance metrics to compare the various 
methods: P(AETE) and P(TEAE). The first metric is the conditionally probability of a 
point being assigned as an edge point, given that the point is a true edge point, while the 
second one the conditional probability of a point being a true edge point, given that the 
point is assigned as an edge point. Assigned edge points are those points that a particular 
edge detection method assigns. True edge points are defined to be the points within the 
two-point ,~Sde region in which each point is adjacent to some point ha~-ing a value 
different from it on the uncorrupted checkerboard. For each method, except for our 
algorithm, a threshold is adjusted until P(AETE).~P(TEAE). This equalisation in 

practice represents an even better trade-off between detecting true edge points and 
rejecting non-edge points. 
The numerical comparison results proposed by Higgins [12], IsE and rise are illustrated 
in Table 1. 
Table 2 presents the numerical results obtained by applying IsE and riSE on a 
checkerboard image corrupted by AWGN, mean=0 and standard deviation=60, 
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Sobel gradient 
DOG 

Haralick operator 
Anisotropie Diffusion 

Higgins-Method 1 
Hig~ins-Method 2 
Higgins-Method 3 

HSE Method 
ISE Method 

P(TEAE) 
0.660 
0.865 
0.760 

[ P(AETE) 
0.656 
0.833 
0.759 

Average 
0.658 
0.849 
0.759 

0.889 0.898 0.894 
0.948 0.920 0.934 
0.828 0.823 0.825 

0.847 0.866 
0.457 
0.974 

0.598 
1.000 

0.857 
0.528 
0.987 

Table 1 - Results for noisy checkerboard using local structure operators, IsE and rasw. 

P(TEAE) 
HSE Method 0.579 
ISE Method 0.669 

P(AETE) 
0.518 
0.956 

Average 
0.549 
0.812 

Table 2 - Results for noisy checkerboard using xsE and F1sv, methods. 

4. CONCLUDING REMARKS 

The HSE method seems that it should be helpful both for edge detection and 
segmentation of regions. 
The most important features of such method could be summarised as follows: 

high noise tolerance both for real and theoretic image; 
threshold independence; 
low computing time (nlogn) where n is the size of the image; 
the edges detected don't present steps usually introduced by local operators. 

We underline that the method doesn't need the choice of thresholds or operators 
dimensions and requires short consuming time. The control strategy makes totally 
automatic the entire process. 
The checkerboard image represents the most significant test image. Infact, since it is a 
theoric image we know all its edge points and the regions contained in it. The theoretic 
image has been corrupted by additive Gaussian noise (AWGN) in order to test the 
goodness of different algorithms. Local operators require high computing time ([12]) 
and the choice both of thresholds and of operators dimensions (i.e. DOG 21x21, DOG 
69x69) doesn't correspond to deterministic criteria. Through a visual analysis we have 
observed that the contours are irregular and present many breakings. Many points that 
are not true edge points are assigned as edge points. In general the edge image is smaller 
than the input image: this decreasing depends on the dimensions of the local operator. 
The numerical results confirm the limits of the local operators and the goodness of the 
global ~SE and Isv. methods. We have observed that ~SE method works better as the 
complexity of the image increases. So, in the next future we are going to improve the 
experimentation of the method on complex real test images. 
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