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Abstract. In this paper we propose a methodology to measure the op- 
timality of edge detection algorithms for range images. Our optimality 
analysis is based on the potential of an edge detection algorithm to re- 
cover intrinsic surface information. We also propose an algorithm for ac- 
tually performing the recovery. An optimality analysis on four selected 
edge detection algorithms demonstrate the usefulness of our approach. 

1 I n t r o d u c t i o n  

In the past years there has been an increasing interest in both theoretical and 
experimental evaluation of vision algorithms. In the field of range image analysis, 
the accuracy of curvature estimates has been studied by some researchers [1, 4, 6]. 
In [7, 9] techniques for experimental comparison of edge- and region-based range 
image segmentation algorithms have been proposed. 

In the present paper we consider the optimality of edge detection algorithms 
for range images. An edge detector usually provides edge strengths that are 
strongly related to the local surface configuration of edge points. Thus, an edge 
detector generally possesses the ability of recovering intrinsic surface informa- 
tion (to be defined in Section 2) of edge points besides their detection. So far 
this surface information recovery aspect of edge detection algorithms has been 
entirely ignored in the literature. We define an optimal edge detector as one that 
allows a perfect recovery of intrinsic surface information. Measures are suggested 
to characterize the potential of surface information recovery of edge detection 
algorithms. Moreover, we propose an algorithm for actually performing this re- 
covery. 

An optimality analysis is carried out on four selected edge detection algo- 
rithms to demonstrate the usefulness of our approach by analyzing their relative 
performance. Such an optimality analysis can help us deepen our understanding 
of known algorithms. In addition, it can potentially be used to guide the design 
of improved edge detection algorithms. We believe that both aspects are useful 
to solving the important edge-based range image segmentation problem. 

2 O p t i m a l  e d g e  d e t e c t i o n  in  r a n g e  i m a g e s  

In range images we can distinguish between jump, crease, and smooth edges. 
Jump edges are relatively easy to detect. The detection of smooth edges is still 
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an unsolved problem. In this paper we only consider crease edges. 
The general approach to the detection of crease edges can be stated as follows. 

An edge detector assigns an edge strength to each pixel. Then, a thresholding 
operation is performed such that  pixels with an edge strength higher than a 
specified threshold T are considered as edge points. 

We model the local environment of a crease edge point by two planar surfaces 
z = a l x  + bly + cl and z = a2x + b~y + c2. Notice that  since a small local 
environment can always be reasonably well approximated by a planar surface 
patch, this model is useful for curved surfaces as well. Then, the angle between 
the normals of the two surfaces (shortly angle of normals or AON): 

cos_l ( - a l ,  - h i ,  1). ( - a s ,  -b2, 1) (1) 
I I ( - a l , - b l ,  1)l I " I I(-a2,-b2,  1)1] 

can be regarded as an ideal edge strength. It is independent of the position and 
orientation of the scene relative to the range scanner. In addition, it is invariant 
to changes of the coordinate system. Therefore, the AON represents an intrinsic 
property of edges. If it is provided by some edge detector as edge strength, the 
threshold T needed by the thresholding operation is theoretically simply zero. 
In practice, however, we have to select a small angle value as threshold in order 
to tolerate low responses caused by noise. In [10] this discussion has motivated 
the definition of an optimal edge detector for range images as one that  supplies 
the AON or a monotonic function of the AON as edge strength. 

The usefulness of this definition, however, is very limited. The reason is that  
the majority of edge detection algorithms provides edge strengths that  are not 
directly comparable to the AON. Moreover, the same AON can be generated by 
many possibilities of two intersecting planes, resulting usually in different edge 
strengths. In the general case, thus, an edge detector can actually be considered 
as a function f ( a )  that maps a value a of AON as defined in (1) to an interval 
[min~, max~]. The definition of optimal edge detectors given in [10] must be 
extended to treat this general case. For this purpose we require that  an optimal 
edge detector fulfill the following two conditions: 

- max~ < min~ for a < fl, i.e., the edge strength response increases with the 
angle of normals; 

- O~,Z = [min~, max~] N [min~, maxz] = Q} for a ¢ fl, i.e., the intervals corre- 
sponding to two different values of AON don't  overlap. 

The earlier definition of optimal edge detectors given in [10] is a special case of 
this general definition. The edge strength function f ( a )  = a = [a, a] obviously 
fulfills the two conditions above. 

The following rationale lies behind the general definition of optimal edge 
detectors above. Although an optimal edge detector maps a value a of AON not 
to a single edge strength but to an interval, we can still distinguish edge points 
originating from different angles of normals. As a direct application of this fact, 
we can simply select min~ as the threshold T for generating a binary edge map if 
we want to tolerate responses caused by noise that is below the response of some 
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small angle of normals a. Moreover, we can uniquely map the edge strength of 
edge points back to AON and therefore recover the intrinsic surface information. 

3 O p t i m a l i t y  m e a s u r e s  

Given an edge detection algorithm that maps a value a of AON to the interval 
[mina, maxa], we define now measures to express its optimality according to the 
definition of optimal edge detectors given in the last section. Without loss of gen- 
erality we consider only a discrete set of AON values, say G = {0 °, 1 °, 2o, .. .}. For 
an optimal edge detector, we have O~,~ = 0 for a ~ 3. To which extent this con- 
dition is fulfilled can be measured by the quantity [[mina, max,] N [min~, max~][ 
where [[a, b][ = b - a means the length of the interval [a, b]. Generally, edge 
detection algorithms provide different value domains of edge strengths. In or- 
der to make them directly comparable we actually use the relative measure 
[[rnina,max~] n [min~,max~][/[[mina,max~][. Considering the combination of 
all possible values of a and fl, we receive the optimality measure 

M1 = Z ][min~, max,] N [min~, max~][ 
c ~ a , ~ a , ~  [[min~, max~][ 

In case of optimal edge detectors this measure takes the value zero. 
The optimality measure M1 has the unwanted effect that the same amount of 

relative overlap contributes equally to the measure, independent of the difference 
between a and fl that produce the overlap. In general, however, we prefer small 
differences since otherwise it becomes difficult to distinguish between edge points 
caused by very different angles of norma]s. To take this aspect into account we 
add a penalty term [a - fl[ and receive the second optimality measure 

M2 = Z [[min~, max,] N [minE, max~][. [a - fl[. 
~ e c , ~ e c , ~  [[min~, max~][ 

The optimality measures M1 and M2 are related to the recovery of intrinsic 
surface information, i.e., the angle of normals of edge points. In case of optimal 
edge detectors with both M1 and M2 being zero, the function f(a) is invertible 
and thus a perfect recovery is possible. The recovery accuracy decreases with 
increasing values of M1 and M2. 

Besides surface information recovery there is another aspect that is relevant 
to the characterization of edge detection algorithms. Let's consider a non-optimal 
edge detector, and a small a and large fl with O~z ¢ 9. In this case we should 
choose the threshold T smaller than the lower bound of O ~  in order to detect 
all edge points caused by the significant angle of normals/3. This way we regard 
all edge candidates with edge strength in the range O~Z as true edge points. 
These points, however, partly correspond to the weak angle of normals a likely 
produced by noise, thus generating spurious edge points. If we set T to be larger 
than the upper bound of O ~ ,  on the other hand, we reduce the detection of 
spurious edge points at the risk of missing edge points produced by the significant 
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angle of normals/3. Generally, an overlap Oar ~ 0 between a small c~ and a 
large /3 indicates difficulties in the balance of reducing spurious and missing 
edge points. In some sense the ease of this balance is expressed in the optimality 
measure M1. In order to emphasize that only situations are relevant where small 
values of AON are involved, we add a penalty term (180 - min(a, 3)) to M1 and 
receive the third optimality measure 

M3 = ~ I[mina,maxa] N [min3,max3]l. (180 - min(~,/~)). 
,eo,Zee,a#~ I[min,, max,]] 

Here 180 corresponds to the maximal possible value (in degrees) of (~ and ti- 
The monotony requirement of optimal edge detectors can be roughly mea- 

sured as follows. For each ~ • G we consider the center c ,  of the interval 
[mina,max,] ,  i.e., ca -- (maxa+mina ) /2 .  We count for pairs (c~,/~),(~ < 3, 
with ca > cz. This way a fourth optimality measure 

O, Ca < c b, L 
1, ca > c 3 

a6G,36G,a<~ < 

is defined. A high value of L indicates difficulties in distinguishing between edge 
points caused by different angles of normals. 

In summary we have defined four optimality measures for edge detection 
algorithms. While M1 and M2 are related to the recovery of intrinsic surface 
information, M3 is concerned with the balance of spurious and missing edge 
points. The monotony requirement of optimal edge detectors is measured by 
L. All the optimality measures have the property that  an edge detector with 
the mapping function f ' ( a )  = af(c~) + b is characterized by the same measures 
as one with the mapping function f ( a ) .  Our optimality measures are therefore 
invariant to linear transformations of the mapping function. 

4 C o m p u t a t i o n  o f  o p t i m a l i t y  m e a s u r e s  

For the computation of the optimality measures of an edge detection algorithm 
the mapping function f(c~) is assumed to be known. This function can be de- 
termined by simulation as follows. All possibilities of two intersecting planar 
surfaces at an edge point are considered. Theoretically, each of the intersecting 
planes can take an arbitrary orientation as long as both are visible, i.e., their 
slant angle (with the z-axis) is in the range [0 °, 90°). For practical reasons the 
plane orientation is limited such that  its slant angle is smaller than 70 °, since 
other orientations are rarely observed in range images. 

A plane orientation corresponds to a point on the unit Gaussian sphere. In 
order to discretely enumerate all possible plane orientations we need a uniform 
tessellation of the unit sphere. In our simulation we apply a tessellation method 
based on the well-known geodesic dome constructions [8]. Starting with a regular 
icosahedron, each of its edges is divided into f equal sections, where f is called 
the frequency of the geodesic division. This results in f2 triangles for each face 
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and totally 20f 2 triangles. Then, this divided icosahedron is projected onto the 
unit sphere and the centers of all cells define an approximate uniform tessellation 
of the unit sphere. We have used a division of frequency 8. Those orientations 
with a slant angle larger than 70 ° are excluded from further consideration. 

We consider all combinations of two plane orientations and compute for each 
such combination the (discrete) angle of normals a E G and the edge strength 
supplied by the edge detection algorithm under study. This way we obtain for 
each value a E G a set SLc~ of possible edge strengths. 

Let Aa and Sa be the average and standard deviation of the set SLc~. We 
model the edge strengths resulting from edges of AON a by a normal distribu- 
tion. Then, more than 95% of the responses caused by these edges lies in the 
range Am + 2S~. Therefore, we define f ( a )  = [Ac~ - 2Sa, Ac, + 2S~]. 

5 R e c o v e r y  o f  i n t r i n s i c  s u r f a c e  i n f o r m a t i o n  

As discussed in Section 2, the angle of normals is an intrinsic property of the 
surfaces around an edge point. Our optimality measures are mainly concerned 
with the potential of an edge detection algorithm to recover this intrinsic surface 
information. In this section we give an algorithm for actually doing the recovery. 

If an edge detector is not optimal, there is no unique answer to the question 
which angle of normals produces a particular edge strength value. In the following 
we try to find out the most likely answer in a probabilistic sense. 

Each AON value a E G is associated with a normal distribution that is deter- 
mined by simulation described in the last section and represents the probability 
of edge strength values being caused by edges of AON a. For a particular edge 
strength value we compute its probabilities with regard to the normal distribu- 
tions of all AON values out of G. The AON value that produces the maximal 
probability is considered as the most likely recovery solution. 

Given the recovery algorithm above we are naturally interested in the re- 
covery accuracy of an edge detection algorithm. For this purpose we perform a 
simulation, considering again all possibilities ~of two intersecting planar surfaces 
at an edge point. For each the edge strength provided by the edge detection 
algorithm is computed. Then, the recovered AON value is determined and the 
absolute difference to the ground truth is recorded. Assuming that the absolute 
differences obey a positive normal distribution (the negative side is meaning- 
less in this context), the standard deviation of this distribution gives an overall 
characterization of the recovery accuracy. 

6 E d g e  d e t e c t i o n  a l g o r i t h m s  u n d e r  s t u d y  

The optimality measures and the recovery algorithm described in the previous 
sections are useful for all edge detection algorithms that provide quantitative 
edge strengths. In this work we have performed a concrete optimality analy- 
sis on four selected edge detection algorithms. A popular class of edge detec- 
tion algorithms applies step edge detection operators developed in the intensity 
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image domain independently to the three components of the normals of the 
imaged surfaces and then combine the three results. Typical examples of this 
class are described, for instance, in [3, 9] based on a morphological edge de- 
tection method and the Canny operator. Let (a~, b~', c~) and (a~, b~, c~) be the 
unit surface normals of the two intersecting planes of an edge point. The edge 
strength provided by this class of edge detection algorithms is proportional to 
max(a~ - a~, b~ - b~, c~ - c~) that is used in our evaluation. 

In [10] an edge detection method based on scan line approximation is pro- 
posed. Four directional curves (horizontal, vertical, and two diagonals) centered 
at a pixel on the imaged surfaces are considered. For each direction the angle 
between the normals of the two sides on the curve is computed. The maximal 
angle of the four directions gives the final edge strength. 

The approach of A1-Hujazi and Sood [2] is based on residual analysis. Again, 
four directional curves are investigated. Both sides on a directional curve cen- 
tered at a pixel are represented by a straight line and the difference between 
their slopes indicates the edgeness for that direction. The overall edge strength 
is given by the maximal slope difference of the four directions. 

In [5] Zernike-moments are used to compute an edge strength that  is roughly 
the difference between the slopes of the two intersecting planes around an edge 
point. 

7 S i m u l a t i o n  r e s u l t s  

In the following the four algorithms used in our study will be called algorithm 
A-D in the order as described in the last section. For these algorithms we have 
computed the optimality measures and the recovery accuracy, see Table 1. In 
addition, Figure 1 shows the mapping functions f(a). The x-axis represents 
the angle of normals a. For each a, the interval [mina, max,] is drawn as a 
vertical line with the center (average) point marked as well. In order to make 
a direct comparison possible, the mapping functions have been normalized to 
an overall edge strength range [0, 1]. In all algorithms the measure L is very 
small, indicating the general monotonic trend of the edge strength. This can be 
easily verified by the average curves drawn in Figure t.  The measures M1, Ms 
and M3 suggest an optimality ranking Alg. B > Alg. A > Alg. C > Alg. D. But 
the recovery accuracy reveals that  algorithm B is slightly worse than algorithm 
A, while the other two algorithms demonstrated a high inaccuracy. It seems 
that  the recovery accuracy is dependent on the shape of the average curve. In 
generM, a linear average curve indicates the potential of an accurate recovery, 
as exemplified by the first two algorithms in Figure 1. The mapping function 
of algorithm D is particularly interesting. The average curve is very ttat in the 
first half of AON values. The response intervals overlap even for significantly 
different AON values, say 10 ° and 70 °. This reveals the general difficulty of this 
edge detection approach in balancing spurious and missing edges. Overall, our 
measures are able to characterize the optimality of edge detection algorithms. 
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Alg. A 
Alg. B 
Alg. C 0.28 
Alg. DI 0.33 

M1 M2 M3 L Recovery accuracy 
0.22 2.92 21.73 91 8.3 ° 
0.18 1.82 20.79 ....... 5 8.9 ° 

4.30 34.41 19 14.6 ° 
6.04 26 17.4 ° 41.84 

Table 1. Optimality measures and recovery accuracy. 

Fig. 1. From left to right the mapping functions of algorithms A-D are drawn. 

Now we look at the recovery accuracy in more detail. Figure 2(a) shows the 
recovery accuracy as a function of AON. The behavior of algorithms C and D 
are quite similar. For algorithm A the recovery accuracy decreases with AON so 
that  in the area of large AON values (about >_ 80°), algorithm B becomes better. 
The  overall recovery accuracy is certainly affected by the occurrence frequency 
of AON that  is drawn in Figure 2(b). 

There is another way to look at the recovery accuracy. The plane containing 
the surface normals of the two intersecting planes of an edge point makes an 
angle 0 with the z-axis. Even for the same angle of normals many edge detectors 
produce quite different edge strengths dependent on the angle 0. It is thus inter- 
esting to see the recovery accuracy as a function of 0. This relationship is shown 
in Figure 2, together with the occurrence frequency of 8. Again, algorithms C 
and D demonstrated a similar behavior. Interestingly, algorithm B is superior to 
algorithm A for 0 smaller than about 35 °. But afterwards the accuracy decreases 
steeply while the recovery accuracy of algorithm A increases slightly. 

8 D i s c u s s i o n s  a n d  c o n c l u s i o n  

In the present paper we have proposed a methodology to measure the optimal- 
ity of edge detection algorithms for range images. Our optimality analysis is 
based on the potential of an edge detection algorithm to recover intrinsic surface 
information. We have also proposed an algorithm for actually performing the 
recovery. 

The proposed optimality analysis is useful in two ways. It can help us deepen 
our understanding of known algorithms. The optimality measures and the de- 
tailed analysis of the simulation results enable us to study the performance of 
recovering intrinsic surface information of edge detection algorithms from differ- 
ent views, as exemplified in this work for four selected edge detection algorithms. 



189 

' ° r  ~°F 
I . . . . .  I 

/ \ f "-X?':, I ,," ..t~ 

(a) (b) (c) (d) 

Fig. 2. Recovery accuracy as a function of AON (a) and the occurrence frequency of 
AON (b). Recovery accuracy as a function of 0 (c) and the occurrence frequency of 0 
(d). 

Our optimali ty analysis can be potentially used to design new algorithms 
with bet ter  performance. As an example, let 's consider the algorithm B. In the 
original work [10] the maximal angle resulting from the four directions has been 
suggested. However, it turned out that  we get an improved recovery accuracy 
of 6.3 ° by using the second largest angle. We believe that  both aspects are 
useful to solving the important  edge-based range image segmentation problem, 
making the proposed approach in the present paper  a valuable contribution to 
the increasing efforts in the characterization of vision algorithms. 

R e f e r e n c e s  

1. N.N. Abdelmalek, Algebraic error analysis for surface curvature segmentation of 
3-D range images, Pattern Recognition, 23(8): 807-817, 1990. 

2. E. A1-Hujazi and A. Sood, Range image segmentation with applications to robot 
bin-picking using vacuum gripper, IEEE Trans. on SMC, 20(6):1313-1325, 1990. 

3. P. Boulanger et at., Detection of depth and orientation discontinuities in range im- 
ages using mathematical morphology, Proc. of 10th Int. Conf. on Pattern Recog- 
nition, Atlantic City, 729-732, 1990. 

4. P.J. Flynn and A.K. Jain, On reliable curvature estimation, Proc. of Computer 
Vision and Pattern Recognition, 110-116, 1989. 

5. S. Ghosal and R. Mehrotra, Detection of composite edges, IEEE Trans. on Image 
Processing, 3(1): 14-25, 1994. 

6. A. Hilton et al., Statistics of surface curvature estimates, Pattern Recognition, 
28(8): 1202-1221, 1995. 

7. A. Hoover et al., An experimental comparison of range image segmentation algo- 
rithms, IEEE Transactions on PAMI, 18(7): 673-689, 1996. 

8. B.K.P. Horn, Robot Vision, The MIT Press~ 1987. 
9. X.Y. Jiang et al., A methodology for evaluating edge detection techniques for range 

images, Proc. of 2nd Asian Conf. on Computer Vision, Singapore, Vol.II, 415-419, 
1995. 

10. X.Y. Jiang and H. Bunke, Robust and fast edge detection and description in range 
images, Proc. of IAPR Workshop on Machine Vision Applications, Tokyo, 538-541, 
1996. 


