
Eff ic i ent M u l t i s p l i t t i n g o n N u m e r i c a l D a t a

Tapio Elomaa I and Juho Rousu ~

1 Institute for Systems, Informatics and Safety, Joint Research Centre
European Commission, TP 270, 1-21020 Ispra (VA), Italy

tapio.elomaa@jrc.it
2 VTT Biotechnology and Food Research

Tietotie 2, P. O. Box 1501, FIN-02044 VTT, Finland
juho.rousu@vtt.fi

A b s t r a c t . Numerical data poses a problem to symbolic learning meth-
ods, since numerical value ranges inherently need to be partitioned into
intervals for representation and handling. An evaluation function is used
to approximate the goodness of different partition candidates. Most ex-
isting methods for multisplitting on numerical attributes axe based on
heuristics, because of the apparent efficiency advantages. We characterize
a class of well-behaved cumulative evaluation functions for which efficient
discovery of the optimal multisplit is possible by dynamic programming.
A single pass through the data suffices to evaluate multisplits of all ax-
ities. This class contains many important attribute evaluation functions
familiar from symbolic machine learning research. Our empirical experi-
ments convey that there is no significant differences in efficiency between
the method that produces optimM partitions and those that are based on
heuristics. Moreover~ we demonstrate that optimal multisplitting can be
beneficial in decision tree learning in contrast to using the much applied
binarization of numerical attributes or heuristical multisplitting.

1 Introduction

When presenting symbolic information about numerical data, the underlying
value range needs to be parti t ioned into two or more intervals. Numerical domain
is either discrete (integer) or continuous (real) and typically very large, even
infinite. Therefore, it has been the general misconception tha t formally founded
multiway partit ioning of numerical da ta is inherently inefficient. Hence, many
existing machine learning and da ta mining ~ystems simply use ad hoc heuristics
in handling numerical value ranges. Efficient, well-founded methods for induction
are part icularly vMuable in da ta mining where massive collections of da ta are
processed.

In this paper we show that efficient, well-founded multisplitt ing of numerical
da ta is feasible. We characterize the class of well-behaved evaluation functions
for which efficient discovery for the optimal multisplit is possible by dynamic
programming. The work reported in this paper builds upon the tradit ion of
supervised machine learning, decision tree learning in particular. We consider
the most basic setting where a single a t t r ibute 's value is the basis of sample

179

partitioning: the data is greedily divided into subsets according to the value of
that attribute, which evaluates as the best. The correlation of an instance's class
and the values of its attributes is approximated by an evaluation function, or a
goodness criterion.

When discretizing a numerical value range we inherently meet the problem
of choosing the right arity for the partitioning; i.e., into how many intervals
should we split the range. This is often evaded in practical learners by using
binarization (Breiman et al. 1984, Quinlan 1993), in which the value range is
split into only two intervals at a time. Further partitioning of the domain is
generated by subsequently continuing the binarization of previously induced in-
tervals. This approach easily produces decision trees that are unnecessarily large
and complicated~ thus, hard to interpret and understand.

An alternative approach uses greedy multisplitting (Catlett 1991, Fayyad and
Irani 1993), where the value range is similarly partitioned by recursive binariza-
tion, but at once; the resulting multisplit is assigned as a single proposition to
the evolving rule or decision tree.

Neither of the above-mentioned methods can guarantee the quality (as mea-
sured by the evaluation function) of the resulting partition. Elomaa and Rousu
(1996) devised a general and efficient algorithm for finding optimal multisplits.
The evaluation functions that can be handled by this general scheme need to
be well-behaved and cumulative. An earlier attempt to develop a general algo-
rithm for optimal multisplits was made by Fulton, Kasif, and Salzberg (1995),
but their method fails to guarantee that the optimality of the resulting partition
with respect to the evaluation function (Elomaa and Rousu 1996).

This paper recapitulates the basic definitions and results that are known
about numerical value range discretization. We explore the extent of the class
of well-behaved evaluation functions. Finally, we experiment empirically with
different multisplitting strategies and evaluation functions. These experiments
underline that the optimal multisplitting algorithm can handle numerical data
without compromising on the efficiency of processing or the intelligibility and
the quality of the resulting description. Thus, the method is particularly well
suited for data mining applications.

2 P a r t i t i o n i n g n u m e r i c a l v a l u e r a n g e s

The basic setting that we consider is the following. At our disposal we have pre-
classified data acquired from the application domain. The intent is to find a good
predictor for classifying, on the basis of the given attributes, further instances
from the same application domain. For that end a machine learning algorithm
needs to approximate how well an attribute's values correlate with the classi-
fication of examples. The attributes respective correlations are then compared
and the one that appears best is chosen to the evolving concept description. For
correlation comparison a fixed evaluation function is applied.

In numerical attribute discretization the underlying assumption is that we
have sorted our n examples into (ascending) order according to the value of a

180

numerical at tr ibute A. With this sorted sequence of examples in hand we t ry to
elicit the best possible (in class prediction) binary or multiway parti t ion along
the dimension determined by at tr ibute A.

Let valA (s) denote the value of the at tr ibute A in the example s. A partition
k ~Ji=l S~ of sample S into k intervals consists of non-empty, disjoint subsets tha t

k cover the whole domain. If partit ion Ui=l si has been induced on the basis of
at tr ibute A, then for all i < j , if s~ E S~ and sj C Sj, then valA(si) < valA(sj).
When splitting a set S of examples on the basis of the value of an at t r ibute A,
then there is a set of thresholds {T~, . . . , Tk-1 } C Dom(A) that defines a parti t ion

k U~=l Si for the sample in an obvious manner: $1 = {s E S [ValA(s) < T1},
S~ = {s E S] T~-I < ValA(S) < T~}, when 1 < i < k, and Sk = {s E S] Tk_l <
valA (s) }.

A partit ion is a function from the domain of the numerical at tr ibute into
the intervals. Hence, a parti t ion cannot be realized so that two examples with
an equal value for that attr ibute would belong to different intervals. Therefore,
we can, as well, consider a categorized version of the data: we can throw all
examples, that have the same value for the at tr ibute in question, into a common
bin and consider only thresholds in between bins as potential cut points. This is
the standard technique of numerical value range discretization, used e.g., in the
C4.5 decision tree learner (Quinlan 1993). In practice, usually V ~ n, where V
denotes the number of different values (bins) in an attr ibute 's domain.

Fayyad and Irani's (1992) analysis of the binarization technique proved that
substantial reductions in time consumption can be obtained for the information
gain function (Quinlan 1986), since only boundary points need to be considered
as potential cut points, because optimal splits always fall on boundary points.
Let us recapitulate the exact definition of a boundary point.

D e f i n i t i o n 1 (F a y y a d a n d I r an i 1992) . A value T in the range of the at-
t r ibute A is a boundary point iff in the sequence of examples sorted by the value
of A, there exist two examples sl, s2 E S, having different classes, such that
ValA(Sl) < T < ValA(S2); and there exists no other example s E S such that
valA(sl) < valA(s) < vale(s2).

In between any two values there are infinitely many real numbers tha t would
all qualify as boundary points according to the above definition. For all that
follows, it is immaterial which of them is chosen as long as one is fixed. A
part i t ion with the same intervals would result even if one or the other of the
inequalities in the last equation of Definition 1 was allowed to be non-strict. For
instance, C4.5 takes a threshold defining a partit ion to be the largest appearing
value from the domain of the at tr ibute in question such that it is less or equal
to the boundary point value conforming to Definition 1.

We call the intervals separated by boundary points as blocks. Let B be the
number of blocks in the domain. For any relevant at tr ibute B << n, since oth-
erwise there clearly is no correlation between the value of the at tr ibute and
the examples' classification (Fayyad and Irani 1992). Since boundary points are
taken from among the potential cut points, it is clear that B < V always holds.

181

As to avoid unnecessary complications in the exceptional example sets tha t
have only one or do not have any boundary points, we take the low and high
extremes of the value range always to be additional boundary points. We refer to
this extended set of boundary points as the augmented set of boundary points.
Thus all example sets have at least two boundary points with respect to every
numerical attribute.

The goodness criteria that are used to evaluate candidate partitions are many
(see e.g., Kononenko 1995). Fayyad and Irani (1992) focused on a particular

k impurity measure, the average class entropy. Let Ui=l s~ be a parti t ion of S,

then by ACE(Uk~=I S~) we denote the average class entropy of the partition:

A C E (U S~) = ~ H(Si) = [S, IH(Si),
i = I i=- i

where H is the entropy function, H(S) = -~i~=1 P(Ci, S)log 2 P(C~,S), in
which m denotes the number of classes and P(C, S) stands for the proportion
of examples in S that have class C. Impurity measures tend to be cumulative;
i.e., the impurity of a parti t ion is obtained by (weighted) summation over the
impurities of its intervals.

D e f i n i t i o n 2. Let U~=I s~ be a partit ion of the example set S. An evaluation
k function F is cumulative if there exists a function f such that F(U~=I S~) =

k cs . ~ = 1 f(S~), where cs is an arbitrary constant coefficient (whose value may
depend on S, but not on its partitions).

For most evaluation functions the aim is to find their least value. In the sequel
we normally assume that evaluation is a task involving minimization (of the
impurity). However, there are also goodness functions for which the maximum is
to be sought for. The results in this paper have their natural counterparts tha t
apply for maximization.

Fayyad and Irani (1992) proved that average class entropy is a teleologically
well-behaved evaluation function in the sense that it will never favor an obviously
bad cut, one that needlessly disperses examples of one class into different sides
of a cut. They proved that when searching for the best binary split by choosing
a single cut point, we can restrict our attention to boundary points. Their main
result can be restated as follows:

T h e o r e m 3 (Fayyad and Irani 1992). If value T defines a partition So U $1
of S such that it minimizes the impurity ACE(So W $1), then T is a boundary
point. []

There is one exception to this result, viz., in the degenerate case that the
sample S contains only members of one class, then ACE(So tA $1) --- O, inde-
pendent of whether the value defining the parti t ion is a boundary point or not.
Recall tha t in this case the only boundary points are at the far ends of the value
range. We can surmount this complication easily by focusing on such minimum
impurity partitions that do not contain superfluous thresholds.

182

3 T h e w e l l - b e h a v e d n e s s of funct ions

Fayyad and Irani (1992) base the proof of Theorem 3 on the fact that average
class entropy is convex (downwards) in between any two boundary points. Thus,
average class entropy's minimum values for binary partitions can only occur
at boundary points. Convexity of a given function is a property that can be
easily detected by observing its (first and second) derivatives. However, it is a
needlessly restrictive requirement to pose to an evaluation function. Independent
of the shape of the function curve, for teleologically good behavior, as regards
binary partitions, it suffices that the function receives its minimum value at a
boundary point.

By shorthand notation F(T) we denote the value of the evaluation function
F for the (binary) partition that is defined by the cut point T.

Defini t ion 4 (Elomaa and Rousu 1996). Let S be an arbitrary example set
and let T = (To, . . . ,TB+I} be the augmented set of boundary points in S in
the dimension determined by an arbitrary numerical attribute A. An evaluation
function is well-behaved if there exists a value T in T such that F(T) < F (W)
for all W e Dom(A).

Through the use of the augmented set of boundary points this definition also
covers the degenerate case, where there are no natural boundary points in the
example set. According to this definition also ACE is well-behaved. In fact, the
requirements of this definition are so weak that well-behaved evaluation functions
is, clearly, the largest class of teleologically useful functions that can be defined.

Definition 4 constraints search of the optimal binary partition to boundary
points. Moreover, if a well-behaved evaluation function is also cumulative, then
it has the same desirable property with respect to multiway partitions. In order
to minimize the goodness score of a partition, with respect to any well-behaved
and cumulative evaluation function, it suffices to examine only boundary points.

T h e o r e m 5 (Elomaa and Rousu 1996). For any cumulative and well-behav-
ed evaluation function F there exists a partition of an arbitrary example set such
that it minimizes the value of F and the corresponding cut points are boundary
points. []

Theorem 5 tells us that we are can focus on the boundary points in search-
ing for the optimal partition if using a well-behaved and cumulative evaluation
function. Since the best k-partition of a subsample S I C S does not depend on
the splitting of its complement set S \ S ~, the required search strategy can be
implemented easily by using dynamic programming (Fulton, Kasif and Salzberg
1995). The impurities of cut point candidates can very conveniently be calculated
from the impurities of shorter intervals and smaller-arity partitions (Elomaa and
Rousu 1996). The computation entails obtaining impurities for lower arity par-
titions during the process. Hence, the time requirement of finding the optimal
partitioning into at most k intervals is O(kB2), where B is the number of blocks
in the range. Since in practice B _< V << n, the method is efficient enough as

183

to recover (in a single pass) the best partition from among all partitions (arities
2 , . . . , B).

In summary, the well-behavedness of an evaluation function suffices to guar-
antee efficient optimal binarization of the numerical value range and, thus, also
efficient greedy multisplitting of the data using, e.g., the method of Fayyad and
Irani (1993). Moreover, Theorem 5 shows that we can efficiently find good-quality
multisplits, if only the evaluation function at hand is also cumulative. Hence, a
well-behaved and cumulative evaluation function combined with the evaluation
scheme outlined above constitutes a good candidate data mining applications.

4 T h e c l a s s o f w e l l - b e h a v e d e v a l u a t i o n f u n c t i o n s

According to Definition 4 an evaluation function must satisfy only very weak re-
quirements for it to be well-behaved. It suffices that (one of) the lowest-impurity-
partitions into two intervals falls on a boundary point. Clearly, convex evaluation
functions fulfill this requirement. Thus, the well-behavedness of some important
attr ibute evaluation functions is already known.

Breiman et al. (1984) and Breiman (1996) have studied learning regression
trees using two evaluation functions: the gini index of diversity, or the quadratic
entropy, and the twoing criterion. They proved that both these impurity mea-
sures are convex. Thus, they are well-behaved as well.

T h e o r e m 6. The impurity measures gini index and twoing criterion are well-
behaved. []

Fayyad and Irani (1992) defined the profound concept of a boundary point in
examining how to speed up ID3's (Quinlan 1986) numerical attribute handling.
They proved that the evaluation function ACE is convex (downwards) in between
any two boundary points. From that result it follows that also ID3's attr ibute
evaluation function, information gain, is convex (upwards). Using our earlier
notation it can be expressed as IG(S, A) = H(S) - ACE([.J~I Si), where H(S)
is the class entropy of the sample S prior to partitioning. The value of H(S)
is the same for all attributes and partitions. Hence, IG obtains its maximum
value when ACE receives its minimum value. Thus, the welt-behavedness of
information gain is also clear.

T h e o r e m 7. The evaluation functions average class entropy and information
gain are well-behaved. []

As to examine the extent and generality of well-behaved attribute evalua-
tion functions, Elomaa and Rousu (1996) took two non-standard functions and
proved their well-behavedness: The incremental MDL exception coding scheme
of Wallace and Patrick (1993), denoted as WP, and the straightforward evalua-
tion scheme of minimizing the training set error, TSE, of a decision tree, which
is applied, e.g., in the T2 algorithm (Auer, Holte and Maass 1995). Both of these
were shown to be well-behaved.

184

Moreover, in their empirical experiments Elomaa and Rousu (1996, 1997)
have examined two variants of information gain function, balanced gain, which
can be expressed as BG(S, A) = IG(S, A)/k, where k is the arity of the parti-
tion. The second variant is an enhanced, logarithmic version of balanced gain:
BGIog(S,A) = IG(S,A)/log2 k. Both of these are clearly well-behaved by the
well-behavedness of IG. The logarithmic version of balanced gain never exhibits
performance that is significantly worse than that of BG.

T h e o r e m 8. The evaluation functions WP, TSE, BG, and BGlog are well-
behaved. []

Information gain function does not place any penalty to the increase of the ar-
ity of a partition. Therefore, it favors excessively multi-valued nominal attributes
and multisplitting numerical attribute value ranges. As a rectification attempt to
this deficiency Quinlan (1986) suggested dividing the IG score of a partition by
the term ~ = -~-~/k=l (ISil/ISI)log2(IS~l/ISt). The resulting evaluation function
is known as the gain ratio: GR(S, A) = IG(S, A)/n.

However, Quinlan (1986, 1993) places an additional constraint to the parti-
tion that is determined as the best one: its IG score has to be at least as good
as the average score among candidate partitions. Notice that gain ratio is not
cumulative, since the coefficient 1/~ to its cumulative component IG cannot be

k evaluated incrementally as it refers to the partition U~=l s~ of the sample S.
Therefore, gain ratio evaluation cannot be implemented in the efficient dynamic
programming fashion and it really only suits binarization tasks.

To see that the logarithmic version of balanced gain is closely related to the
gain ratio function, observe that the denominator ~ in the formula of GR is the
entropy function H applied to the intervals, not to the class distribution. Hence,
its value is 0 < ~ ~ log 2 k. Thus, BGlog penalizes all equal arity partitions
uniformly and always maximally as regards GR.

Gain ratio has been observed to have some difficulties in particular in con-
nection with numerical attributes. As to overcome those problems L6pez de
Ms (1991) has proposed to use another, but closely related evaluation
function, and Quinlan (1996) has been compelled to change the evaluation of
numerical attributes in C4.5.

Elomaa and Rousu (1997) demonstrated that gain ratio is not convex. But,
what about the well-behavedness of gain ratio? It appears that gain ratio is well-
behaved by Definition 4, which only requires good behavior as regards binary
partition. The proof would involve some numerical manipulation, but it should
not be too difficult. However, for present purposes it suffices to conjecture, based
on empirical evidence, that the claim holds: when tested on several real-world
data sets, we could not find a contradicting case.

Elomaa and Rousu (1997), further, present a set of examples such that the
optimal, w.r.t, gain ratio, three-way partition is not defined by two boundary
points. Thus, the gain ratio function, which is not convex, but appears to be well-
behaved with respect to binary partitioning, cannot handle higher arity splitting

185

well. Moreover, its non-cumulativity means in practice that there is no efficient
(single-pass) evaluation scheme for this function.

The class of well-behaved evaluation functions manages to capture many
important attribute evaluation functions, even such that are not convex. For
cumulative evaluation functions the definition of a well-behaved function lives
up to its name: if the function behaves well on binary partitioning, then it will do
the same on multisplitting. Unfortunately, for the ones that are not cumulative
the definition cannot discriminate between in practice well-behaving and poorly-
doing evaluation functions as regards multisplitting.

5 Empirical experiments

We report on experiments carried out using standard machine learning test data
(mainly from the UCI repository). These data sets cannot be described as mas-
sive (the largest one contains 4,435 examples), but they serve to indicate the
relative performance of different splitting strategies and evaluation functions.
We describe two sets of experiments: In the first one the focus is on the run-
ning times of different multisplitting strategies. The second set of experiments
observes the practical effects of splitting strategies and evaluation functions on
decision tree learning. The test strategy is 10-fold cross-validation repeated 10
times.

Judging by the number of greedy approaches to multisplitting it is a public
sentiment that finding the optimum is inefficient. The results in Table 1 speak
for the opposite: in practice, optimal splitting is very fast, provided that we use
a cumulative, well-behaved evaluation function. The table lists average running
times required by three partitioning strategies to produce a multisplit. This fig-
ure also includes preprocessing time, which is also given separately in its own
column. The partitioning strategies are the multisplitting method proposed by
Fulton, Kasif, and Salzberg (1995), greedy multisplitting as suggested by Fayyad
and Irani (1993) and optimal multisplitting as presented by Elomaa and Rousu
(1996). The evaluation function for all three strategies is the average class en-
tropy.

From Table 1 we can observe that the FKS approach clearly is not a feasible
data mining tool. It is orders of magnitude slower than the two other approaches.
As for the remaining strategies, we can see that the Greedy approach is some-
what faster than finding optimal multisplits. However, the difference is minimal,
and totally dominated by the preprocessing time. Moreover, what is not shown
here, is the fact that the quality of partitions produced by the Greedy approach is
inferior to optimal partitions (Elomaa and Rousu 1996). Since Greedy multisplit-
ting on numerical data obviously is efficient enough even for massive collections
of data, we can conclude from this experiment that it is feasible to go mining
for optimal partitions and not be content with heuristically good multisplits on
numerical data.

For the second set of tests we implemented BGlog into C4.5 as an alternative
numerical attribute evaluation function. Nominal attributes are always handled

186

Table 1. Average running times of the mnltisplitting strategies (in seconds/split).

Data set Preproc. FKS Greedy Optimal

Annealing 0.31 27.22 0.32 0.33
Australian 0.23 14.78 0.25 0.89
Auto insurance 0.02 1.50 0.04 0.16
Breast W 0.24 15.05 0.24 0.24
Colic 0.04 1.67 0.05 0.11
Diabetes 0.28 18.66 0.30 0.87
Euthyroid 4.33 197.64 4.41 4.63
German 0.48 32.04 0.50 1.47
Glass 0.03 1.97 0.05 0.30
Heart C 0.05 3.67 0.06 0.13
Heart H 0.04 2.53 0.05 0.13
Hepatitis 0.01 0.57 0.02 0.04
Hypothyroid 7.39 233.72 7.41 8.28
Iris 0.01 0.73 0.02 0.02
Mole 0.09 3.06 0.10 0.25
Robot 2 .12 205.58 2.16 2.16
Satellite 11.27 876.51 11.29 11.43
Segmentation 0.03 1.94 0.07 0.48
Sonar 0.02 1.28 0.05 0.31
Vehicle 0.34 26.80 0.36 0.69
Wine 0.02 10.47 0.03 0.12

by C4.5'sdefault evaluation scheme. For significance testing two-tailed Student 's
t-test was used. Table 2 lists the average prediction accuracies and standard
deviations obtained using the standard C4.5 binarization combined with the gain
ratio evaluation function and two multisplitting version of C4.5 that use BG1og as
the numerical attribute evaluation function - optimal and greedy multisplitting
strategies are employed. In the table statistically significant difference in favor
of evaluation scheme A over B in the average values is denoted as B << A (or
equivalently A >> B) and, respectively, a single < sign stands for an almost

statistically significant difference.
From Table 2 we see that the statistically significant differences are more

often in favor of the optimal multisplitting scheme (4+3) than in favor of C4.5
(1+2). Thus, it is reasonable to assume the difference of 0.8 percentage points in
the average prediction accuracies over all domains to be significant as well. Very
similar results are obtained when greedy and optimal multisplitting strategies
are contrasted with each other. This time 4+2 statistically significant differences
are in favor of the optimal strategy and 1+1 in favor of the greedy strategy.

All in all, it appears that even an almost trivial penalization added to infor-
mation gain function against favoring multisplitting excessively can significantly
outperform needlessly complicated penalization at tempt of gain ratio, which has

187

T a b l e 2. Opt imal muir• vs. s tandard C4.5 binaxization and greedy multisplit-
ring.

Da ta set C4.5 Optimal Greedy

Annealing 90.5 • < 91.3 • >> 88.6 •
Austral ian 84.7 • 85.3 • 84.9 •
Auto insurance 76.8 • > 75.2 • < 76.4 •
Breast W 94.7 • 94.7 • > 94.0 •
Colic 84.7 &0.8 84.2 • >> 82.7 •
Diabetes 72.9 • < 74.3 • 73.6 •
Euthyroid 98.6 • 98.6 • 98.3 =t=0.2
German 71.6 • 72.3 • 72.0 •
Glass 68.6 • << 72.3 • > 71.0 •
Heart C 53.4 • 53.7 • 53.8 •
Heart H 81.8 • >> 79.7 • 79.0 •
Hepati t is 79.9 • << 81.9 • >~ 80.1 •
Hypothyroid 99.1 • 99.2 • 99.2 •
Iris 93.5 • 93.4 • 93.5 •
Mole 81.4 • < 82.5 • 81.7 •
Robot 99.3 • 99.5 • 99.6 •
Satellite 86.3 • 86.0 • ~ 86.9 •
Segmentation 86.6 • > 85.4 • 86.2 •
Sonar 66.8 • ~ 74.9 • >> 71.3 •
Vehicle 71.8 • 72.0 • 71.4 •
Wine 92.5 • ~ 94.4 • 93.9 •

Average 82.6 83.4 82.8

led i t to have a p o o r l y ba l anced bias as d e m o n s t r a t e d above and a d m i t t e d by
Qu in l an (1996). Moreover , these expe r imen t s c lear ly ind ica te t h a t o p t i m a l mul-
t i sp l i t t i ng possesses s ignif icant advan tages over b o t h the b ina r i z a t i on a p p r o a c h
and the g reedy muir• s t ra tegy.

6 C o n c l u s i o n

T h e class of wel l -behaved eva lua t ion funct ions can c a p tu r e a la rger set of t he
mos t i m p o r t a n t a t t r i b u t e eva lua t ion funct ions t h a n convex funct ions can. Unfor-
t una te ly , for non-cumula t ive funct ions , like ga in ra t io , the wel l -behavedness on
b i n a r y p a r t i t i o n i n g does no t necessar i ly ca r ry over to h igher a r i t y pa r t i t i on ing .

Wel l -behavedness of an eva lua t ion funct ion is a necessary, b u t no t a sufficient
cond i t ion for te leologicMly good behav io r as r ega rds numer ica l a t t r i b u t e s . In
a d d i t i o n the func t ion has to be ba lanced . For cumula t ive eva lua t ion func t ions
wel l -behavedness a lone suffices to gua ran tee good behavior . C u m u l a t i v i t y Mso
makes a func t ion eva luable in a single pass t h r o u g h the da t a .

188

Our empirical experiments have given a clear indication tha t cumulative,
well-behaved evaluation functions are a tool tha t suits the handling of even
massive collections of data. They are as efficient to evaluate as one can hope for,
and can enhance the quMity of the resulting concept classifier as compared to
those produced using ad hoc heuristics.

Acknowledgements The work of T. Elomaa is in par t supported by European
Commission's Marie Curie Fellowship. He is on leave from the Depar tment of
Computer Science, University of Helsinki, Finland.

References

Auer, P., Holte, R., Maass, W.: Theory and application of agnostic PAC-learning with
small decision trees. In A. Prieditis, S. Russell (eds.), Proe. Twelfth International
Conference on Machine Learning (21-29). Morgan Kaufmann, San Francisco, CA,
1995.

Breiman, L.: Some properties of splitting criteria. Mach. Learn. 24 (1996) 41-47.
Breiman, L., Friedman, J., Olshen, R., Stone, C.: Classification and Regression Trees.

Wadsworth, Pacific Grove, CA, 1984.
Catlett, 3.: On changing continuous attributes into ordered discrete attributes. In Y.

Kodratoff (ed.), Proc. Fifth European Working Session on Learning (164-178), Lec-
ture Notes in Computer Science 482. Springer-Verlag, Berlin, 1991.

Elomaa, T., Rousu, J.: General and efficient multisplitting of numerical attributes.
Report C-1996-82. Department of Computer Science, University of Helsinki. Oct.
1996, 25 pp.

Elomaa, T., Rousu, J.: On the well-behavedness of important attribute evaluation
functions. NeuroCOLT Technical Report NC-TR-97-006. Department of Computer
Science, Royal Holloway, University of London. Feb. 1997, 14 pp.

Fayyad, U., Irani, K.: On the handling of continuous-valued attributes in decision tree
generation. Mach. Learn. 8 (1992) 87-102.

Fayyad, U., Irani, K.: Multi-interval discretization of continuous-valued attributes for
classification learning. In Proc. Thirteenth International Joint Conference on Arti-
ficial Intelligence (1022-1027). Morgan Kaufmann, San Mateo, CA, 1993.

Fulton, T., Kasif, S., Salzberg, S.: Efficient algorithms for finding multi-way splits
for decision trees. In A. Prieditis, S. Russell (eds.), Proc. Twelfth International
Conference on Machine Learning (244-251). Morgan Kaufmann, San Francisco,
CA, 1995.

Kononenko, I.: On biases in estimating multi-vMued attributes. In Proc. Fourteenth In-
ternational Joint Conference on Artificial Intelligence (1034-1040). Morgan Kauf-
mann, San Francisco, CA, 1995.

L6pez de Mhntaras, R.: A distance-based attribute selection measure for decision tree
induction. Mach. Learn. 6 (1991) 81-92.

Quinlan, R.: Induction of decision trees. Mach. Learn. 1 (1986) 81-106.
Quinlan, R.: C~.5: Programs for Machine Learning. Morgan Kaufmann, San Mateo,

CA, 1993.
Quinlan, R.: Improved use of continuous attributes in C4.5. J. Artif. Intell. Res. 4

(1996) 77-90.
Wallace, C., Patrick, J.: Coding decision trees. Mach. Learn. 11 (1993) 7-22.

