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A b s t r a c t .  Numerical data poses a problem to symbolic learning meth- 
ods, since numerical value ranges inherently need to be partitioned into 
intervals for representation and handling. An evaluation function is used 
to approximate the goodness of different partition candidates. Most ex- 
isting methods for multisplitting on numerical attributes axe based on 
heuristics, because of the apparent efficiency advantages. We characterize 
a class of well-behaved cumulative evaluation functions for which efficient 
discovery of the optimal multisplit is possible by dynamic programming. 
A single pass through the data suffices to evaluate multisplits of all ax- 
ities. This class contains many important attribute evaluation functions 
familiar from symbolic machine learning research. Our empirical experi- 
ments convey that there is no significant differences in efficiency between 
the method that produces optimM partitions and those that are based on 
heuristics. Moreover~ we demonstrate that optimal multisplitting can be 
beneficial in decision tree learning in contrast to using the much applied 
binarization of numerical attributes or heuristical multisplitting. 

1 Introduction 

When presenting symbolic information about  numerical data,  the underlying 
value range needs to be parti t ioned into two or more intervals. Numerical domain 
is either discrete (integer) or continuous (real) and typically very large, even 
infinite. Therefore, it has been the general misconception tha t  formally founded 
multiway partit ioning of numerical da ta  is inherently inefficient. Hence, many  
existing machine learning and da ta  mining ~ystems simply use ad hoc heuristics 
in handling numerical value ranges. Efficient, well-founded methods for induction 
are part icularly vMuable in da ta  mining where massive collections of da ta  are 
processed. 

In this paper  we show that  efficient, well-founded multisplitt ing of numerical 
da ta  is feasible. We characterize the class of well-behaved evaluation functions 
for which efficient discovery for the optimal multisplit is possible by dynamic 
programming.  The work reported in this paper  builds upon the tradit ion of 
supervised machine learning, decision tree learning in particular.  We consider 
the most  basic setting where a single a t t r ibute 's  value is the basis of sample 
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partitioning: the data is greedily divided into subsets according to the value of 
that attribute, which evaluates as the best. The correlation of an instance's class 
and the values of its attributes is approximated by an evaluation function, or a 
goodness criterion. 

When discretizing a numerical value range we inherently meet the problem 
of choosing the right arity for the partitioning; i.e., into how many intervals 
should we split the range. This is often evaded in practical learners by using 
binarization (Breiman et al. 1984, Quinlan 1993), in which the value range is 
split into only two intervals at a time. Further partitioning of the domain is 
generated by subsequently continuing the binarization of previously induced in- 
tervals. This approach easily produces decision trees that are unnecessarily large 
and complicated~ thus, hard to interpret and understand. 

An alternative approach uses greedy multisplitting (Catlett 1991, Fayyad and 
Irani 1993), where the value range is similarly partitioned by recursive binariza- 
tion, but at once; the resulting multisplit is assigned as a single proposition to 
the evolving rule or decision tree. 

Neither of the above-mentioned methods can guarantee the quality (as mea- 
sured by the evaluation function) of the resulting partition. Elomaa and Rousu 
(1996) devised a general and efficient algorithm for finding optimal multisplits. 
The evaluation functions that can be handled by this general scheme need to 
be well-behaved and cumulative. An earlier attempt to develop a general algo- 
rithm for optimal multisplits was made by Fulton, Kasif, and Salzberg (1995), 
but their method fails to guarantee that the optimality of the resulting partition 
with respect to the evaluation function (Elomaa and Rousu 1996). 

This paper recapitulates the basic definitions and results that are known 
about numerical value range discretization. We explore the extent of the class 
of well-behaved evaluation functions. Finally, we experiment empirically with 
different multisplitting strategies and evaluation functions. These experiments 
underline that the optimal multisplitting algorithm can handle numerical data 
without compromising on the efficiency of processing or the intelligibility and 
the quality of the resulting description. Thus, the method is particularly well 
suited for data mining applications. 

2 P a r t i t i o n i n g  n u m e r i c a l  v a l u e  r a n g e s  

The basic setting that we consider is the following. At our disposal we have pre- 
classified data acquired from the application domain. The intent is to find a good 
predictor for classifying, on the basis of the given attributes, further instances 
from the same application domain. For that end a machine learning algorithm 
needs to approximate how well an attribute's values correlate with the classi- 
fication of examples. The attributes respective correlations are then compared 
and the one that appears best is chosen to the evolving concept description. For 
correlation comparison a fixed evaluation function is applied. 

In numerical attribute discretization the underlying assumption is that we 
have sorted our n examples into (ascending) order according to the value of a 
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numerical at tr ibute A. With this sorted sequence of examples in hand we t ry  to 
elicit the best possible (in class prediction) binary or multiway parti t ion along 
the dimension determined by at tr ibute A. 

Let valA (s) denote the value of the at tr ibute A in the example s. A partition 
k ~Ji=l S~ of sample S into k intervals consists of non-empty, disjoint subsets tha t  

k cover the whole domain. If partit ion Ui=l si  has been induced on the basis of 
at tr ibute A, then for all i < j ,  if s~ E S~ and sj C Sj, then valA(si) < valA(sj). 
When splitting a set S of examples on the basis of the value of an at t r ibute A, 
then there is a set of thresholds {T~, . . . ,  Tk-1 } C Dom(A) that  defines a parti t ion 

k U~=l Si for the sample in an obvious manner: $1 = {s E S [ ValA(s) < T1}, 
S~ = {s E S ] T~-I < ValA(S) < T~}, when 1 < i < k, and Sk = {s E S ] Tk_l < 
valA (s) }. 

A partit ion is a function from the domain of the numerical at tr ibute into 
the intervals. Hence, a parti t ion cannot be realized so that  two examples with 
an equal value for that  attr ibute would belong to different intervals. Therefore, 
we can, as well, consider a categorized version of the data: we can throw all 
examples, that  have the same value for the at tr ibute in question, into a common 
bin and consider only thresholds in between bins as potential cut points. This is 
the standard technique of numerical value range discretization, used e.g., in the 
C4.5 decision tree learner (Quinlan 1993). In practice, usually V ~ n, where V 
denotes the number of different values (bins) in an attr ibute 's  domain. 

Fayyad and Irani's (1992) analysis of the binarization technique proved that  
substantial reductions in time consumption can be obtained for the information 
gain function (Quinlan 1986), since only boundary points need to be considered 
as potential  cut points, because optimal splits always fall on boundary points. 
Let us recapitulate the exact definition of a boundary point. 

D e f i n i t i o n  1 ( F a y y a d  a n d  I r an i  1992) .  A value T in the range of the at- 
t r ibute A is a boundary point iff in the sequence of examples sorted by the value 
of A, there exist two examples sl,  s2 E S, having different classes, such that  
ValA(Sl) < T < ValA(S2); and there exists no other example s E S such that  
valA(sl) < valA(s) < vale(s2). 

In between any two values there are infinitely many real numbers tha t  would 
all qualify as boundary points according to the above definition. For all that  
follows, it is immaterial which of them is chosen as long as one is fixed. A 
part i t ion with the same intervals would result even if one or the other of the 
inequalities in the last equation of Definition 1 was allowed to be non-strict. For 
instance, C4.5 takes a threshold defining a partit ion to be the largest appearing 
value from the domain of the at tr ibute in question such that  it is less or equal 
to the boundary point value conforming to Definition 1. 

We call the intervals separated by boundary points as blocks. Let B be the 
number of blocks in the domain. For any relevant at tr ibute B << n, since oth- 
erwise there clearly is no correlation between the value of the at tr ibute and 
the examples' classification (Fayyad and Irani 1992). Since boundary points are 
taken from among the potential cut points, it is clear that  B < V always holds. 
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As to avoid unnecessary complications in the exceptional example sets tha t  
have only one or do not have any boundary points, we take the low and high 
extremes of the value range always to be additional boundary points. We refer to 
this extended set of boundary points as the augmented set of boundary points. 
Thus all example sets have at least two boundary points with respect to every 
numerical attribute. 

The goodness criteria that  are used to evaluate candidate partitions are many 
(see e.g., Kononenko 1995). Fayyad and Irani (1992) focused on a particular 

k impurity measure, the average class entropy. Let Ui=l s~ be a parti t ion of S, 

then by ACE(Uk~=I S~) we denote the average class entropy of the partition: 

A C E ( U  S~) = ~ H(Si) = [S, IH(Si), 
i = I  i=- i  

where H is the entropy function, H(S) = -~i~=1 P(Ci, S)log 2 P(C~,S), in 
which m denotes the number of classes and P(C, S) stands for the proportion 
of examples in S that  have class C. Impurity measures tend to be cumulative; 
i.e., the impurity of a parti t ion is obtained by (weighted) summation over the 
impurities of its intervals. 

D e f i n i t i o n  2. Let U~=I s~ be a partit ion of the example set S. An evaluation 
k function F is cumulative if there exists a function f such that  F(U~=I S~) = 

k cs .  ~ = 1  f(S~), where cs is an arbitrary constant coefficient (whose value may 
depend on S, but  not on its partitions). 

For most evaluation functions the aim is to find their least value. In the sequel 
we normally assume that  evaluation is a task involving minimization (of the 
impurity).  However, there are also goodness functions for which the maximum is 
to be sought for. The results in this paper have their natural  counterparts tha t  
apply for maximization. 

Fayyad and Irani (1992) proved that  average class entropy is a teleologically 
well-behaved evaluation function in the sense that  it will never favor an obviously 
bad cut, one that  needlessly disperses examples of one class into different sides 
of a cut. They proved that  when searching for the best binary split by choosing 
a single cut point, we can restrict our attention to boundary points. Their  main 
result can be restated as follows: 

T h e o r e m  3 (Fayyad and Irani 1992).  If value T defines a partition So U $1 
of S such that it minimizes the impurity ACE(So W $1), then T is a boundary 
point. [] 

There is one exception to this result, viz., in the degenerate case that  the 
sample S contains only members of one class, then ACE(So tA $1) --- O, inde- 
pendent of whether the value defining the parti t ion is a boundary point or not. 
Recall tha t  in this case the only boundary points are at the far ends of the value 
range. We can surmount this complication easily by focusing on such minimum 
impurity partitions that  do not contain superfluous thresholds. 
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3 T h e  w e l l - b e h a v e d n e s s  of  funct ions  

Fayyad and Irani (1992) base the proof of Theorem 3 on the fact that average 
class entropy is convex (downwards) in between any two boundary points. Thus, 
average class entropy's minimum values for binary partitions can only occur 
at boundary points. Convexity of a given function is a property that can be 
easily detected by observing its (first and second) derivatives. However, it is a 
needlessly restrictive requirement to pose to an evaluation function. Independent 
of the shape of the function curve, for teleologically good behavior, as regards 
binary partitions, it suffices that the function receives its minimum value at a 
boundary point. 

By shorthand notation F(T)  we denote the value of the evaluation function 
F for the (binary) partition that is defined by the cut point T. 

Defini t ion 4 (Elomaa and Rousu  1996). Let S be an arbitrary example set 
and let T = (To, . . .  ,TB+I} be the augmented set of boundary points in S in 
the dimension determined by an arbitrary numerical attribute A. An evaluation 
function is well-behaved if there exists a value T in T such that F(T)  < F ( W )  
for all W e Dom(A). 

Through the use of the augmented set of boundary points this definition also 
covers the degenerate case, where there are no natural boundary points in the 
example set. According to this definition also ACE is well-behaved. In fact, the 
requirements of this definition are so weak that well-behaved evaluation functions 
is, clearly, the largest class of teleologically useful functions that can be defined. 

Definition 4 constraints search of the optimal binary partition to boundary 
points. Moreover, if a well-behaved evaluation function is also cumulative, then 
it has the same desirable property with respect to multiway partitions. In order 
to minimize the goodness score of a partition, with respect to any well-behaved 
and cumulative evaluation function, it suffices to examine only boundary points. 

T h e o r e m  5 (Elomaa and Rousu  1996). For any cumulative and well-behav- 
ed evaluation function F there exists a partition of an arbitrary example set such 
that it minimizes the value of F and the corresponding cut points are boundary 
points. [] 

Theorem 5 tells us that we are can focus on the boundary points in search- 
ing for the optimal partition if using a well-behaved and cumulative evaluation 
function. Since the best k-partition of a subsample S I C S does not depend on 
the splitting of its complement set S \ S ~, the required search strategy can be 
implemented easily by using dynamic programming (Fulton, Kasif and Salzberg 
1995). The impurities of cut point candidates can very conveniently be calculated 
from the impurities of shorter intervals and smaller-arity partitions (Elomaa and 
Rousu 1996). The computation entails obtaining impurities for lower arity par- 
titions during the process. Hence, the time requirement of finding the optimal 
partitioning into at most k intervals is O(kB2), where B is the number of blocks 
in the range. Since in practice B _< V << n, the method is efficient enough as 
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to recover (in a single pass) the best partition from among all partitions (arities 
2 , . . . ,  B). 

In summary, the well-behavedness of an evaluation function suffices to guar- 
antee efficient optimal binarization of the numerical value range and, thus, also 
efficient greedy multisplitting of the data using, e.g., the method of Fayyad and 
Irani (1993). Moreover, Theorem 5 shows that  we can efficiently find good-quality 
multisplits, if only the evaluation function at hand is also cumulative. Hence, a 
well-behaved and cumulative evaluation function combined with the evaluation 
scheme outlined above constitutes a good candidate data  mining applications. 

4 T h e  c l a s s  o f  w e l l - b e h a v e d  e v a l u a t i o n  f u n c t i o n s  

According to Definition 4 an evaluation function must satisfy only very weak re- 
quirements for it to be well-behaved. It suffices that  (one of) the lowest-impurity- 
partitions into two intervals falls on a boundary point. Clearly, convex evaluation 
functions fulfill this requirement. Thus, the well-behavedness of some important 
attr ibute evaluation functions is already known. 

Breiman et al. (1984) and Breiman (1996) have studied learning regression 
trees using two evaluation functions: the gini index of diversity, or the quadratic 
entropy, and the twoing criterion. They proved that  both these impurity mea- 
sures are convex. Thus, they are well-behaved as well. 

T h e o r e m  6. The impurity measures gini index and twoing criterion are well- 
behaved. [] 

Fayyad and Irani (1992) defined the profound concept of a boundary point in 
examining how to speed up ID3's (Quinlan 1986) numerical attribute handling. 
They proved that  the evaluation function ACE is convex (downwards) in between 
any two boundary points. From that  result it follows that  also ID3's attr ibute 
evaluation function, information gain, is convex (upwards). Using our earlier 
notation it can be expressed as IG(S, A) = H(S)  - ACE([.J~I Si), where H(S)  
is the class entropy of the sample S prior to partitioning. The value of H(S)  
is the same for all attributes and partitions. Hence, IG obtains its maximum 
value when ACE receives its minimum value. Thus, the welt-behavedness of 
information gain is also clear. 

T h e o r e m  7. The evaluation functions average class entropy and information 
gain are well-behaved. [] 

As to examine the extent and generality of well-behaved attribute evalua- 
tion functions, Elomaa and Rousu (1996) took two non-standard functions and 
proved their well-behavedness: The incremental MDL exception coding scheme 
of Wallace and Patrick (1993), denoted as WP, and the straightforward evalua- 
tion scheme of minimizing the training set error, TSE, of a decision tree, which 
is applied, e.g., in the T2 algorithm (Auer, Holte and Maass 1995). Both of these 
were shown to be well-behaved. 
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Moreover, in their empirical experiments Elomaa and Rousu (1996, 1997) 
have examined two variants of information gain function, balanced gain, which 
can be expressed as BG(S, A) = IG(S, A)/k,  where k is the arity of the parti- 
tion. The second variant is an enhanced, logarithmic version of balanced gain: 
BGIog(S,A) = IG(S,A)/log2 k. Both of these are clearly well-behaved by the 
well-behavedness of IG. The logarithmic version of balanced gain never exhibits 
performance that is significantly worse than that of BG. 

T h e o r e m  8. The evaluation functions WP, TSE, BG, and BGlog are well- 
behaved. [] 

Information gain function does not place any penalty to the increase of the ar- 
ity of a partition. Therefore, it favors excessively multi-valued nominal attributes 
and multisplitting numerical attribute value ranges. As a rectification attempt to 
this deficiency Quinlan (1986) suggested dividing the IG score of a partition by 
the term ~ = -~-~/k=l (ISil/ISI)log2(IS~l/ISt). The resulting evaluation function 
is known as the gain ratio: GR(S, A) = IG(S, A)/n. 

However, Quinlan (1986, 1993) places an additional constraint to the parti- 
tion that is determined as the best one: its IG score has to be at least as good 
as the average score among candidate partitions. Notice that gain ratio is not 
cumulative, since the coefficient 1/~ to its cumulative component IG cannot be 

k evaluated incrementally as it refers to the partition U~=l s~ of the sample S. 
Therefore, gain ratio evaluation cannot be implemented in the efficient dynamic 
programming fashion and it really only suits binarization tasks. 

To see that the logarithmic version of balanced gain is closely related to the 
gain ratio function, observe that the denominator ~ in the formula of GR is the 
entropy function H applied to the intervals, not to the class distribution. Hence, 
its value is 0 < ~ ~ log 2 k. Thus, BGlog penalizes all equal arity partitions 
uniformly and always maximally as regards GR. 

Gain ratio has been observed to have some difficulties in particular in con- 
nection with numerical attributes. As to overcome those problems L6pez de 
Ms (1991) has proposed to use another, but closely related evaluation 
function, and Quinlan (1996) has been compelled to change the evaluation of 
numerical attributes in C4.5. 

Elomaa and Rousu (1997) demonstrated that gain ratio is not convex. But, 
what about the well-behavedness of gain ratio? It appears that gain ratio is well- 
behaved by Definition 4, which only requires good behavior as regards binary 
partition. The proof would involve some numerical manipulation, but it should 
not be too difficult. However, for present purposes it suffices to conjecture, based 
on empirical evidence, that the claim holds: when tested on several real-world 
data sets, we could not find a contradicting case. 

Elomaa and Rousu (1997), further, present a set of examples such that the 
optimal, w.r.t, gain ratio, three-way partition is not defined by two boundary 
points. Thus, the gain ratio function, which is not convex, but appears to be well- 
behaved with respect to binary partitioning, cannot handle higher arity splitting 
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well. Moreover, its non-cumulativity means in practice that  there is no efficient 
(single-pass) evaluation scheme for this function. 

The class of well-behaved evaluation functions manages to capture many 
important attribute evaluation functions, even such that  are not convex. For 
cumulative evaluation functions the definition of a well-behaved function lives 
up to its name: if the function behaves well on binary partitioning, then it will do 
the same on multisplitting. Unfortunately, for the ones that  are not cumulative 
the definition cannot discriminate between in practice well-behaving and poorly- 
doing evaluation functions as regards multisplitting. 

5 Empirical experiments 

We report on experiments carried out using standard machine learning test data  
(mainly from the UCI repository). These data  sets cannot be described as mas- 
sive (the largest one contains 4,435 examples), but they serve to indicate the 
relative performance of different splitting strategies and evaluation functions. 
We describe two sets of experiments: In the first one the focus is on the run- 
ning times of different multisplitting strategies. The second set of experiments 
observes the practical effects of splitting strategies and evaluation functions on 
decision tree learning. The test strategy is 10-fold cross-validation repeated 10 
times. 

Judging by the number of greedy approaches to multisplitting it is a public 
sentiment that  finding the optimum is inefficient. The results in Table 1 speak 
for the opposite: in practice, optimal splitting is very fast, provided that  we use 
a cumulative, well-behaved evaluation function. The table lists average running 
times required by three partitioning strategies to produce a multisplit. This fig- 
ure also includes preprocessing time, which is also given separately in its own 
column. The partitioning strategies are the multisplitting method proposed by 
Fulton, Kasif, and Salzberg (1995), greedy multisplitting as suggested by Fayyad 
and Irani (1993) and optimal multisplitting as presented by Elomaa and Rousu 
(1996). The evaluation function for all three strategies is the average class en- 
tropy. 

From Table 1 we can observe that  the FKS approach clearly is not a feasible 
data  mining tool. It is orders of magnitude slower than the two other approaches. 
As for the remaining strategies, we can see that  the Greedy approach is some- 
what faster than finding optimal multisplits. However, the difference is minimal, 
and totally dominated by the preprocessing time. Moreover, what is not shown 
here, is the fact that  the quality of partitions produced by the Greedy approach is 
inferior to optimal partitions (Elomaa and Rousu 1996). Since Greedy multisplit- 
ting on numerical data  obviously is efficient enough even for massive collections 
of data, we can conclude from this experiment that  it is feasible to go mining 
for optimal partitions and not be content with heuristically good multisplits on 
numerical data. 

For the second set of tests we implemented BGlog into C4.5 as an alternative 
numerical attribute evaluation function. Nominal attributes are always handled 
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Table 1. Average running times of the mnltisplitting strategies (in seconds/split). 

Data set Preproc. FKS Greedy Optimal 

Annealing 0.31 27.22 0.32 0.33 
Australian 0.23 14.78 0.25 0.89 
Auto insurance 0.02 1.50 0.04 0.16 
Breast W 0.24 15.05 0.24 0.24 
Colic 0.04 1.67 0.05 0.11 
Diabetes 0.28 18.66 0.30 0.87 
Euthyroid 4.33 197.64 4.41 4.63 
German 0.48 32.04 0.50 1.47 
Glass 0.03 1.97 0.05 0.30 
Heart C 0.05 3.67 0.06 0.13 
Heart H 0.04 2.53 0.05 0.13 
Hepatitis 0.01 0.57 0.02 0.04 
Hypothyroid 7.39 233.72 7.41 8.28 
Iris 0.01 0.73 0.02 0.02 
Mole 0.09 3.06 0.10 0.25 
Robot 2 .12  205.58 2.16 2.16 
Satellite 11.27 876.51 11.29 11.43 
Segmentation 0.03 1.94 0.07 0.48 
Sonar 0.02 1.28 0.05 0.31 
Vehicle 0.34 26.80 0.36 0.69 
Wine 0.02 10.47 0.03 0.12 

by C4.5'sdefault  evaluation scheme. For significance testing two-tailed Student 's 
t-test was used. Table 2 lists the average prediction accuracies and standard 
deviations obtained using the standard C4.5 binarization combined with the gain 
ratio evaluation function and two multisplitting version of C4.5 that  use BG1og as 
the numerical attribute evaluation function - optimal and greedy multisplitting 
strategies are employed. In the table statistically significant difference in favor 
of evaluation scheme A over B in the average values is denoted as B << A (or 
equivalently A >> B) and, respectively, a single < sign stands for an almost 

statistically significant difference. 
From Table 2 we see that the statistically significant differences are more 

often in favor of the optimal multisplitting scheme (4+3) than in favor of C4.5 
(1+2). Thus, it is reasonable to assume the difference of 0.8 percentage points in 
the average prediction accuracies over all domains to be significant as well. Very 
similar results are obtained when greedy and optimal multisplitting strategies 
are contrasted with each other. This time 4+2 statistically significant differences 
are in favor of the optimal strategy and 1+1 in favor of the greedy strategy. 

All in all, it appears that  even an almost trivial penalization added to infor- 
mation gain function against favoring multisplitting excessively can significantly 
outperform needlessly complicated penalization at tempt of gain ratio, which has 
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T a b l e  2. Opt imal  muir• vs. s tandard C4.5 binaxization and greedy multisplit-  
ring. 

Da ta  set C4.5 Optimal  Greedy 

Annealing 90.5 • < 91.3 • >> 88.6 • 
Austral ian 84.7 • 85.3 • 84.9 • 
Auto insurance 76.8 • > 75.2 • < 76.4 •  
Breast W 94.7 • 94.7 • > 94.0 • 
Colic 84.7 &0.8 84.2 • >> 82.7 • 
Diabetes 72.9 • < 74.3 • 73.6 • 
Euthyroid 98.6 • 98.6 • 98.3 =t=0.2 
German 71.6 • 72.3 • 72.0 • 
Glass 68.6 • << 72.3 • > 71.0 • 
Heart  C 53.4 • 53.7 • 53.8 • 
Heart  H 81.8 • >> 79.7 • 79.0 • 
Hepati t is  79.9 • << 81.9 • >~ 80.1 • 
Hypothyroid 99.1 • 99.2 • 99.2 • 
Iris 93.5 • 93.4 • 93.5 • 
Mole 81.4 • < 82.5 • 81.7 • 
Robot 99.3 • 99.5 • 99.6 • 
Satellite 86.3 • 86.0 • ~ 86.9 •  
Segmentation 86.6 • > 85.4 • 86.2 • 
Sonar 66.8 • ~ 74.9 • >> 71.3 • 
Vehicle 71.8 • 72.0 • 71.4 • 
Wine 92.5 • ~ 94.4 • 93.9 • 

Average 82.6 83.4 82.8 

led i t  to  have a p o o r l y  ba l anced  bias  as d e m o n s t r a t e d  above  and  a d m i t t e d  by  
Qu in l an  (1996). Moreover ,  these  expe r imen t s  c lear ly  ind ica te  t h a t  o p t i m a l  mul-  
t i sp l i t t i ng  possesses s ignif icant  advan tages  over b o t h  the  b ina r i z a t i on  a p p r o a c h  
and  the  g reedy  muir•  s t ra tegy.  

6 C o n c l u s i o n  

T h e  class of  wel l -behaved  eva lua t ion  funct ions  can  c a p tu r e  a la rger  set  of t he  
mos t  i m p o r t a n t  a t t r i b u t e  eva lua t ion  funct ions  t h a n  convex funct ions  can.  Unfor-  
t una te ly ,  for non-cumula t ive  funct ions ,  like ga in  ra t io ,  the  wel l -behavedness  on 
b i n a r y  p a r t i t i o n i n g  does  no t  necessar i ly  ca r ry  over to  h igher  a r i t y  pa r t i t i on ing .  

Wel l -behavedness  of an  eva lua t ion  funct ion  is a necessary,  b u t  no t  a sufficient 
cond i t ion  for te leologicMly good  behav io r  as r ega rds  numer ica l  a t t r i b u t e s .  In  
a d d i t i o n  the  func t ion  has  to  be  ba lanced .  For  cumula t ive  eva lua t ion  func t ions  
wel l -behavedness  a lone suffices to  gua ran tee  good  behavior .  C u m u l a t i v i t y  Mso 
makes  a func t ion  eva luable  in a single pass  t h r o u g h  the  da t a .  
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Our empirical experiments have given a clear indication tha t  cumulative, 
well-behaved evaluation functions are a tool tha t  suits the handling of even 
massive collections of data. They are as efficient to evaluate as one can hope for, 
and can enhance the quMity of the resulting concept classifier as compared to 
those produced using ad hoc heuristics. 
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