
Using Compositional Preorders in the Verification
of Sliding Window Protocol

Roope Kaivola*

Department of Computer Science
PO Box 26 (Teollisuuskatu 23)

FIN-00014 University of Helsinki, Finland

Abst rac t The main obstacle to automatic verification of temporal lo-
gic properties of finite-state systems is the state explosion problem. One
way to alleviate this is to replace components of a system with smaller
ones and verify the required properties from the smaller system. This
approach leads to notions of compositional property-preserving equival-
ences and preorders~ Previously we have shown that the NDFD preorder
is the weakest preorder which is compositional w.r.t, standard operators
and preserves nexttime-less linear temporal logic properties. In this paper
we describe a case study where NDFD preorder was used to verify semi-
automatically both safety and liveness properties of the Sliding Window
protocol for arbitrary channel lengths and realistic parameter values. In
this process we located a previously undiscovered fault leading to lack of
liveness in a version of the protocol.

1 I n t r o d u c t i o n

A promising approach to verification of finite-state concurrent systems is the use
of propositional temporal logic as a specification language and the application of
model-checking algorithms for the verification task (for an overview, see [4, 14]).
In practice the main obstacle to this approach is that the execution graphs of
realistic systems are too large for feasible model-checking, as in the general case
the size of an execution graph is exponential in the number of concurrent pro-
cesses. Several techniques have been proposed for alleviating this state explosion
problem. Most of these are based on the fact that the components of a system
are often reasonably small, even though the total system may be large [2, 10].

One particular technique is compositional reduction. Here the idea is to re-
place the individual components of a system by smaller ones before building the
model of the whole system, and to do this in such a way that if the reduced
model fulfils the required properties, then the full system does so as well. This
approach leads to notions of compositional property-preserving equivalences and
preorders between modules. Assuming that we have a preorder for which the re-
quired properties that hold of a model also hold of all models which are lower in
the preorder, and which is congruent with respect to the composition operators

* e-maih Roope.Kaivola@helsinki.fi

49

used in building the system, we can replace a module of a system with any mod-
ule which is smaller in size but lies higher in the preorder, and if the required
properties hold of the resulting system then they also hold of the original one.

In this paper we describe a case study where compositional preorders were
used to verify safety and liveness properties of the Sliding Window or SW com-
munication protocol [13]. The SW protocol forms the basis of the data transfer
function of the HDLC protocol [6], and an extreme simplification of it is the
Alternating Bit protocol, a stock example in the literature on formal verification.
Although almost any method seems to cope with the AB protocol, analysis of the
more general SW protocol is harder; even with small window sizes and channel
lengths the state space becomes far too large for direct model-checking.

In the case study the components of the protocol were modelled by ordinary
labelled transition systems, and the complete protocol was built from these by
Basic LOTOS [1] operators. The properties that were required of the protocol
were expressed using a transition-oriented variant of the propositional nexttime-
less linear temporal logic. To express the requirements in a propositional language
and to model the system in a finitary way, we used the technique of data inde-
pendence [17, 12], which allows us to deduce that the system works correctly for
all sequences of data, if it works correctly for data sequences of certain forms.

The notion of preorder used in the verification was the so-called non-divergent
failures divergences or NDFD preorder. In [8, 9] it was shown that the related
NDFD equivalence preserves all nexttime-less linear temporal logic properties,
and in [16] that it is a congruence with respect to all Basic LOTOS operators.
Moreover, in [9] it was shown that NDFD equivalence is the weakest or loosest
possible criterion of equivalence which has these properties. These results can be
generalised to the NDFD preorder in a natural way [7].

In practive the main task in the verification was the construction of an ab-
straction of the sender part of the protocol. This was done manually, guided by
intuitions about the protocol. Next, it was verified that this abstraction is higher
in the NDFD preorder than the sender combined with a channel of arbitrary
length. This was done automatically, using the ARA toolset [15]. Finally, the ab-
straction was combined with the receiver end of the protocol, and it was verified
that the resulting system fulfils the required properties of the protocol. In this
extended abstract, only the main steps are presented. For a full analysis, see [7].

In the case study we succesfully verified that the SW-protocol meets its safety
and liveness requirements for a variety of realistic window sizes and arbitrary
channel lengths. A more surprising observation was that a variant of the protocol
fails to fulfil usual liveness requirements. This variant arises from a modification
which seems harmless enough that it has sometimes appeared in the literature.
In our opinion this result illustrates well the advantages of rigorous verification.

The verification of the SW protocol has been studied extensively (see [7, Sect.
7.3] for a survey). Like the original proof [13], most work has been manual or
concentrated on safety properties, often both. Closest to the current work is
[11], where safety properties of the protocol are expressed in temporal logic and
verified by direct model-checking, with limits set by the state-explosion problem.

50

2 B a c k g r o u n d

D e f i n i t i o n l . For any set A, 2 A denotes the powerset of A, A* the set of finite
strings of elements of A and A ~ the set of infinite strings of elements of A. Define
A ~ = A* UA ~. If (r = aoal . . . E A ~ , cr(n) denotes the element an and c~[n...]
the string a~a,~+l . . . We use �9 to denote catenation and I~rl the length of c~.

D e f i n i t i o n 2. Fix an infinite transition alphabet ~, which does not contain the
empty transition label v. Define S~ = ~U{~'}. A labelled transition system (Its) is
a triple L = (S, s, A), where S is a finite set of states, s E S a unique initial state,

and A C_ S • Z~ • S a finite transition relation. If p E ~*, we write so p) s~
iff there are s l , . . . , s ,~ -~ such that for all 0 <_ i < n, (sl ,p(i) , s~+~) E A, and

so - -~ iff there is an sn such that so -2-+ sn. If p E Z ~ , we write so ,,,~ ~ iff there
are s l , s 2 , . . , such that for a t l i >_ O, (si,p(i),s~+l) E 2i. Ifc~ E (Z'* U 27~), we

write So ~ s,~ (so ~) iff there is some p E (Z~ tO 2 ~) such that so p~) s~

(so ~) and ~r is the string obtained from p by removing all v symbols.

We use parallel composition, hicling and renaming operators to combine ltss.
We abuse notation slightly in the following, and write for example h i d e sc, in L
to mean that all labels beginning with se are hidden, and L[sc,/er,] to mean
that each label of the form scxx is renamed to erxx.

D e f i n i t i o n 3 . Let L1 = (SI , s l ,Z t l) , L2 = (S2,s2,A2) be ltss and G, H sets
G = {gl , . . . ,g~} C ~ and H = { h l , . . . , h a } C Z. Then

* nl I[gl,.. . , gn]lL2 is the lts (S1 x $2, (sl, s2), A), where ((t, u), l, (t', u')) E A
iff either 1 E G, (t, l, t ') E A1 and (u, l, u') E A2, or 1 ~ G, (t, l, t') E A~ and
u = u ' , o r l ~ G , (u , l , u t) E 3 2 a n d t = t l,

. h i d e g I , . . . , gn in L1 is the lts (S1, Sl, A), where (t, l, t') E A, iffeither l ~ G
and (t, l, t ') E ,~1 o r 1 = v and there is a gi E G such that. (t, gi, t ') E A~,

* L~[hl/gl , . . . ,h~/g~] is the lts (S~,s l ,A) , where (t,t , t ') E A, iff either l ~ G
and (t, l, t ') E z~l or 1 = hi and (t, gl, t ') E Ai.

D e f i n i t i o n 4 . Let L = (S, A, s) be a labelled transition system. We say that

�9 p E Z ~ is a maximal behaviour of L iff either p is infinite and s ~ , or p is

finite and there is some s ~ such that s .~ ~ s' and s' - ~ ~ for no a E Zr ,
a

�9 c~ E Z ~ is an infinite trace of L iff s ==~,

�9 ~ E Z* is a divergence trace of L iff there is some s' such that s ~ s ~ r ~ ,
�9 (o', A) E Z* • 2 ~ is a nondivergent failure of L iff cr is not a divergence trace

of L, and there is some s ~ such that s ~ s ~ and s ~ =:~ for no a E A,
We use maxbeh(L) to denote the set of maximal behaviours of L, inftr(L) the set
of infinite traces of L, divtr(L) the set of divergence traces of L, and ndfail(L)
the set of nondivergent failures of L.

D e f i n i t i o n h . Let L and L' be ltss. We say that L is lower than L' in the nondi-
a d f d

vergent failures divergences preorder or NDFD preorder and write L -~ L t i f f
�9 inftr(L) C_ inftr(L'),

51

�9 divtr(L) C divtr(L'), and
�9 ndfail(L) C_ ndfail(L') U (divtr(L') x 2~).

For a full analysis of the NDFD preorder and its relation to other related
failure-based preorders, see [16]. As far as the current paper is concerned, its
two important properties are that and it preserves all maximal finite and infinite
traces, and thereby also all nexttime-less linear temporal logic properties, and it
is congruent with respect to the composition operators above,

Proposit ion6 [16]. IlL1 n~aL'l and L2 "~aL~, then

�9 L11[gl,..., gn] IL2 ,_~d L~ I[gl... , gn] IL'2,
n d f d

�9 h ide gl , . . . ,g ,~ in L1 --< h ide g l , . . . , g n in L] and
t t d fd

�9 L l [h l / r h./g.] -< h./g.].

Most temporal logics used in program specification are essentially state-
based, describing properties of execution states and sequences of them. However,
here we would like to make reference to transitions and their labels directly.
To this purpose we define a variant of the usual nexttime-less linear temporal
logic L T U . Similar extensions from state-based to transition-based logics are
discussed in [3]. In [7] we describe a general model where both states and trans-
itions of a transition system carry labels and both of these can be referred to in
the logic. However, in the current case study ordinary ltss suffice.

Def in i t i on 7. The formulae of the logic tLTL ~ are defined by the abstract syn-
tax: r ::= q- J --1r J r V r J r162 J eHar ', where a varies over ~. We use
1, A, ==~ and r as derived operators in the usual way, and define ~ r = 3-/4r
Or = ~ - , r (Z ~ r = TUar and (~ = THAT. If r is a formula, we use ~(r
to denote the set of labels a C Z occurring in operators /A/a in r

We say that r is true of a sequence cr E Z ~ , denoted by c~ ~ r according
to the following inductive rules: c~ ~ T always, (r ~ --1r iff not ~r ~ r cr ~ r V r
iffcr ~ r or ~ ~ r (r ~ r 1 6 2 iff there is some 0 < i < Ic~l such that o'[i...] ~ r
and cr[j...] ~ r for all 0 < j < i, and finally, c~ ~ r162 iff there is some
0 < i < Ic~l such that c~(i) = a, o-[i+ 1. . .] ~ r and for all 0 < j < i, o'(j) -~ a
and cr[j...] ~ r We say that r is true of an lts L and write L ~ r iff ~r ~ r for
all ~ ~ maxbeh(L).

Here, N is the standard until operator. The less familiar r162 operator
says that r holds immediately after the next transition labelled with a, such a
transition exists, and until that moment r holds. The derived operator (~[:)r
says that r holds after the next transition labelled with a, and there is such a
transition, and (~[:) that some future transition is labelled with a.

ndfd I
P r o p o s i t l o n 8 [8, 7]. If r isatLTL'-formula, L' ~ r and L -< L , thenL ~ r

We use to following simple result to ignore uninteresting labels in a model.

P r o p o s i t i o n 9 [7]. Ire is a tLTL'-formula and II C Z a set of labels such that
~ (r then L ~ r i f fh ide / / in L ~ r

52

SENDER
Variables

d[0. . . (tw - 1)] : table of data items; i, j , k : int
Initially i = 0 , j = 0 , k = 0
loop infinitely

choose nondeterministically

/* x, a: temporary variables */

i < tw - - 4 receive(data source, d[i]); i := i + 1;
j < i - ~ send(c h a , ~ a , (j �9 k, d[j])); j := j + 1;
j = i A i > 0 ~ receive(timeout); j := 0;
T --+ receive(ack channel, x); a := (x (-7) k) + 1;

if (a <_ tw) then
d [0 . . . (tw - 1 - a)] := d i d . . . (tw - 1)];
i := max(0, i - a); j := max(0, j - a); k := x@ 1

end if;
end choose;

end loop;

RECEIVER
Variables

t [0 . . . (rw - 1)]: table of data items; r [0 . . . (rw - 1)]: table of booleans
e : int; /* x, y, s: temporary variables */

Initially e = 0, r [0 . . . (rw - 1)] = (Z , . . . , •
loop infinitely

receive(channel, (x, y)); s := x O e;
if (s < rw) then r[s] := T; t[s] := y; end if;
while (r[0] r _L) do

send(data target, t[0]);
t [0 . . . (rw - 2)] := t [1 . . . (r ~ - 1)]; r [0 . . . (rw - 2)] := r [1 . . . (rw - 1)];
r [r w - - 1] := _l 4 e : = e G 1 ;

end while;
send(ack channel, (e O 1));

end loop;

Notation: x (9 y = (x + y) mod (w + 1) and x O y = (x - y) rood (w + 1)

F igu re1 . Sender and receiver

3 S l i d i n g W i n d o w p r o t o c o l

The objec t of the case s tudy is a unidirect ional version of the Sliding Window
protocol [13], which t r ies to provide reliable t r ansmiss ion of da ta over an unreli-
able communica t ion med ium. The sys tem consists of six components . The s e n d e r
receives da ta i tems f rom an external data source, sends messages consis t ing of
a sequence number and a da ta i t em to the channel , receives acknowledgement
messages f rom the a c k n o w l e d g e m e n t channel , and receives t imeou t signals f rom
an unspecified external source. The rece iver reads messages f rom the channel,
forwards correct ly received da ta i tems to an external data target , and sends

53

acknowledgement messages consisting of a sequence number to the acknowledge-
ment channel. The channel and acknowledgement channel may distort or lose
messages but may not change their order. Three parameters to the protocol are
the transmission window size tw the reception window size rw, and the maximum
value w for the sequence numbers. These must fulfil the constraint t w + r w <_ w+ 1
[13]. The sender and receiver processes are described in Figure 1.

We have specified only a very simple timeout mechanism for the protocol:
instead of presenting explicitly the setting and cancelling of timers, we have
specified that the sender may receive a timeout signal in situations where it
cannot send any new data items to the channel. We make the assumption that
timeouts should not occur prematurely, i.e. when some acknowledgement is still
on its way to the sender. This is not reflected in the description so far, but will be
taken into account when modelling the protocol. In reality this could be achieved
by setting the timeout delay to be longer than the maximum message transit time
from the sender to the receiver and back. The assumptions regarding timeouts
are only needed for liveness properties of the protocol, not for safety.

The aim of the protocol is to transmit a sequence of data items from the data
source to the target in the correct order. Reflecting this, the requirements to the
protocol which we tried to verify were:
S A F E The data delivered to the target should be correct, i.e. the data sequence

transmitted to the target before any given moment should be a prefix of the
data sequence received from the source before that moment.

L I V E 1 If n data items are read from the source along an execution sequence,
and the execution sequence is complete under the assumption that no more
data is available for reading from the source, then n data items should be
delivered to the target along the execution sequence.

L I V E 2 If infinitely many data items are read from the data source along an
execution sequence, then infinitely many data items should be delivered to
the target along that execution sequence.

L I V E 3 The sender should accept data from the source, i.e. for any moment
in a maximal execution sequence there should be a future moment when the
sender reads a data item from the source, unless no more data is available.

The liveness properties are expected to hold under the fairness condition:
F A I R Let i E {0 , . . . , w} be any sequence number. If messages with sequence

number i are sent to the channel infinitely often, then messages with that se-
quence number will also be transmitted successfully to the receiver infinitely
often. The same holds for the acknowledgement channel.

4 M o d e l l i n g t h e p r o t o c o l

As the first step in the verification of the protocol, we appeal to a syntactic
property of the system called data-independence [17, 12], which allows us to verify
the requirements to the system just for certain representative data sequences
or certain data sources and conclude that the system works correctly with all
possible sequences of data items. We shall omit the details here and just state:

54

--~] dsl ,[l dsl ,~--~

Figure2. Data source ltss Dsafe (left) and Du~r (right)

�9 The protocol satisfies the requirement SAFE iff on any maximal execution
of the protocol connected to the data source Ds~f, in Fig. 2, the sequence of
data items delivered to the target belongs to the language 0 ~ - (1 - 2 c~ U E).

�9 Assuming that the protocol satisfies the safety requirement, it satisfies the
requirements LIVE1-3 iff on any maximal execution of the protocol connected
to the data source Dlive in Fig. 2, either the data item 1 or infinitely many
0:s are delivered to the target.

The analysis showing that it is enough to consider these data sources and se-
quences [7, App. A and Sect. 3.3] is similar to that of [17, 12]. However, for
safety properties they consider the data sequences 0*. 1 �9 0* �9 2 �9 0 ~, whereas here
we found it more convenient to use the data sequences 0 ~ . (1 �9 2 ~ O e). For
liveness properties, we use sequences 0 ~176 �9 1 instead of 0 ~ of [17, 12] to cover also
finite sequences of data.

To model the protocol by labelled transition systems, we fix the set of data
items as {0, 1, 2} and set some upper bounds nc and na for the capacity of the
channel and the acknowledgement channel. Having decided the values of w, tw,
rw, nc and n~, we build a model of the system from six basic ltss: S modelling
the sender process, R modelling the receiver process, C modelling a channel with
the capacity of one message, A modelling an acknowledgement channel with the
capacity of one message, CF modelling a faulty channel with the capacity of one
message, and AF modelling a faulty acknowledgement channel with the capacity
of one message.

The ltss S and R can be constructed straightforwardly from the descriptions
in Fig. 1. The lts C is just a one-place buffer and easy to construct. To represent
the unreliability of the channel, we use the lts CF, a one-place buffer which may
lose the message it has received. Distorted messages are assumed to be detected
by some checksum mechanism and discarded, to be treated as lost.

The lts modelling the whole protocol is constructed from the basic ltss as
described in Figure 3. We use synchronisation labels dsy to correspond to trans-
mission of data item y from data source to sender, sexy to messages from sender
to channel, e rxy to messages from channel to receiver, rax to acknowledgement
messages from receiver to ack. channel, asx to aek. messages from ack. channel
to sender, r t y to transmission of data items from receiver to target, and t i m to
the timeout signal. Here x ranges over {0 , . . . , w} and y over {0, 1, 2}.

The lts P modelling the whole protocol can be formally defined as follows:

$ c o = $

SCi+, = h i d e sc* in (SC~[sc*/cr*] I[sc*,tim]l C)

55

I

1 2 h a - 1 I
-

I
q �9 - - - .

I

S I i R
. I I

1 2 n c - - 1 , ,

. I

SC&i

Figure3. Structure of the model

SCAo = SC = SC,~o-1

SCAi+I = hide as* in (SCAi[as*/ra*] J[as*,tim]l A)

SCA = SCAn~

SCFA = SCA[sc*/cr*] [sc*,tim][CF

SCFAF = SCFA[as*/ra*] I[as*, tim]l AF

P = SCFAF [[cr*, ra,, tim]l R

To capture the assumption that timeouts do not occur prematurely, we syn-
chronised all components of the system with respect to the t im action so that
a timeout could occur only if all components agree on that. A t im transition is
allowed in C, CF, A and AF only when the corresponding buffer is empty, and
in R only when the receiver cannot send any acknowledgements.

To verify that the protocol satisfies the safety requirement, we express the
property the sequence of data items delivered to the target belongs to the language
0 ~176 �9 (1 - 2 ~ U e) by the following formula r

((~) ::r @ (- , @ A - , (~))) A ((] @ :::f @ (- - , (~) A - , @)) A ((~) :::r (~))

and verify that D,a/, I[ds*]l P I:= r Similarly, to verify the liveness require-
ments, we try to verify that Dli~e [[ds*]l P ~ @ire, where @~w is the formula

and the fairness constraint is expressed by the following formula r

O<i<w O<_j<_2 O_j_<2 O<i<_w

56

5 Veri f icat ion

For verifying both safety and liveness properties of the SW-protocol, we used the
general approach of constructing an abstraction S on the basis of the sender lts S.
The particular abstractions used for safety and liveness properties are different,
but the techniques and reasoning are very similar. Because of this, we shall just
discuss liveness properties here. Full details are in [7].

Before constructing the abstraction for liveness, we can ease the verification
by a couple of simple techniques. First of all, the fixed data source Dli,r produces
only a fraction of all the potential data sequences, which means that a large part of
the state space of P will not be reachable in Dli~ [[ds*]l P. Therefore, rather than
build P first and then compose it with D~ve, it is better to start by composing
the sender S with Dliw and then build the other ltss on that basis; the resulting
ltss will be the same up to isomorphism. Secondly, when trying to determine the
validity of r162 over a model, by Prop. 9 we are allowed to hide labels ds* and
t im which do not appear in r What is more, as h i d e distributes over parallel
composition as long as the hidden labels are not used for synchronisation, we can
hide ds* immediately after the data source is combined with the sender.

Let S denote the abstraction, and define DS = h i d e ds* in (Dli~[[ds*]lS).
Furthermore, let DP denote the system built by combining DS with the faulty
elements CF and AF and the receiver R, in the same way as P was built on the
basis of SCA. The essential properties of the abstraction are

A: (h ide ds* in Dli.~i[ds*]lS) -.~ DS
B. h i d e sc , in (DS[sc*/cr*]t[sc*,tim]]C)od~d -~ DS

n d f d - -

c . h i d e as, in (DS[as,/ra,]l[as,,t im]lA) -~ DS
D: D P ~ r

Here A states that the abstraction is higher in the NDFD-preorder than the
sender combined with D l ~ , and B and C that the abstraction alone is higher
in the preorder than when combined with a one-place channel or acknowledge-

n d f d

ment channel. On the basis of compositionality of -< , it is easy to see from

claims A-C that (h ide ds* in (Dii~[[ds,][SCA))~dDS, no matter what the
channel capacities n~ and na are. From claim D and Prop. 8 it follows then that
Dti~,,[[ds*]]P ~ Crave, as required. This approach to dealing with channels of
arbitrary length has appeared previously in [18].

The abstraction S for liveness properties is described in Fig. 4. The two basic
intuitions behind it are the following. First, it mimics the behaviour of the sender
with channels of unspecified length. What this means is that sent messages do
not necessarily appear or acknowledgements cause effect immediately. Secondly,
in the context of the complete system often only a subset of all possible acknow-
ledgement messages can actually occur. In the abstraction it is specified that
after the reception of an unexpected acknowledgement message, the abstraction
becomes 'chaotic', capable of performing any action (same idea appears in [5]).

The abstraction was formulated manually, aided by intuitions on which char-
acteristics of the protocol were relevant for liveness properties. Once the ab-
straction was constructed, claims A-C were checked by the ARA toolset [15].

57

SENDER ABSTRACTION
Variables

d [(- t w) . . . (tw - 1)] : table of data items; i, j , k : int; ch : bool;
Initially i = 0 , j = 0 , k = 0 , ch=-L
loop infinitely

choose nondeterministically
ch ~ perform any action; /* (also r possible) */
- ,ch A i < tw ---+ receive(data source, d[i]); i := i + 1;
- ,ch A j < i ~ send(channel, (j @ k , d b])); j : = j + 1;

if j < 0 then j := r n d (j , . . . , 0) end if;
- ,ch A j = i A i > 0 ---+ receive(timeout); j := 0;
~ch - - ~ receive(ack chan~el, x); a := (x e k) + 1;

if ((a - min(j, 0)) < tw) then
d [(- t w) . . . (tw - 1 - a)] :----- d [(- t w -t- a) . . , (tw - 1)];
i := max(-tw, i - a); j := j - a;
if j < 0 then j := r n d (j ,0) end if
k : = x |

else if a # w + 1 then ch := T end if;
end choose;

end loop;

Notation: r n d (x , . . . , y) returns a random element from {x , . . . , y}

Figure4. Abstraction for liveness properties

Although originally designed for a slightly different semantic model, with added
pre-processing steps it could deal with the NDFD preorder. Since no temporal
logic model checker was available, claim D was also verified using the ARA tool-
set, by combining D P with tester processes trying to find a path violating Cuw
[7, App. B]. The table below lists sizes of some ltss involved in the verification:

1 1 111 22 12 56 95 61
3 2 211 98 48 280 723 915
5 3 311266 838 2851 5179
6 3 31310 140 977 3791 6018
7 4 4 562 240 1940 811721379

6 F a u l t y v a r i a n t o f t h e p r o t o c o l

In the sender process of the SW protocol an acknowledgement is treated as valid,
if it contains a sequence number anywhere in the current transmission window.
In another variant of the protocol, occasionally found in the literature [11], an
acknowledgement is treated as valid, if it contains a sequence number between
the beginning of the transmission window and the sequence number to be sent

58

I SteplActionlExplanation
1 ds0 sender receives data item 0 from source
2 dsO sender receives data item 0 from source
3 scO0 sender sends first data item to channel
4 crO0 channel forwards it to receiver
5 rtO receiver forwards it to target
6 raO receiver sends an ack to first data item to ack channel
7 r ack channel loses it
8 sc lO sender sends second data item to channel
9 cr lO channel forwards it to receiver
10 rtO receiver forwards it to target
11 r a l receiver sends an ack to second data item to ack channel
12 r ack channel loses it
13 t i m timeout: sender starts sending data items again
14 scO0 sender sends first data item to channel
15 crO0 channel forwards it to receiver
16 ra l receiver sends an ack to second data item to ack channel
17 a s l ack channel forwards it to sender, sender i g n o r e s i t as invalid
18 scl0 sender sends second data item to channel
19 crIO channel forwards it to receiver
20 ra l receiver sends an ack to second data item to ack channel
21 r ack channel loses it
22 - repeating from 13 -
Parameters: w = 2 (or any w > 2), t w = 2, r w = 1, nc = na = 1.

Figure5. Failure of liveness

next. In the sender process this corresponds to changing the last if-statement
from 'if (a <~ t w) ' to 'if (a _< j) ' . This change to the protocol seems innocent
enough: How could there be an acknowledgement to any of the data items in the
remaining par t of the transmission window, anyway? After all, these data items
are only just to be sent.

The safety properties of the variant can be verified as with the original pro-
tocol. However, when trying to verify the liveness properties, we were unable
to produce an abstraction fulfilling the claims A-D above. After analysing the
reasons behind this, it emerged that the variant actually f a i l s to fulfil the liveness
requirements. Fig. 5 describes one execution sequence of the variant where this
failure appears. Although the sequence is fair, it fails to fulfil property LIVE3, re-
quiring the system to accept data f rom the source; after the first two data items,
no more data is accepted. Intuitively, although a s l is delivered to the sender
infinitely often, it always arrives at a t ime when the sender regards it as invalid.

In our opinion this failure illustrates two issues. First, the change causing
the protocol to fail liveness is natural and seems unimpor tant enough that, for
example, [11] used the faulty variant when verifying safety properties of the pro-
tocol. We feel that this is a good example of the benefits of the rigorousness
induced by a formal verification method. Secondly, the example reminds of the
fact that liveness properties cannot be reliably verified unless divergences and

59

fairness conditions are properly kept track of. For example, if channel events
were hidden and the services provided by the protocols compared with respect
to observation equivalence, ignoring divergences, both versions would be con-
sidered equivalent. In effect, divergences corresponding to fair executions would
be confused with ones corresponding to unfair executions, and ignored.

R e f e r e n c e s

1. Bolognesi, T. & Brinksma, E.: Introduction to the ISO specification language LO-
TOS, in The Formal Descr. Technique LOTOS, North-Holland, 1989, pp. 23-73

2. Clarke, E. M. & Long, D. E. & McMillan, K. L.: Compositional model checking,
in Proceedings o] the Fourth IEEE LICS, 1989, pp. 353-362

3. De Nicola, R. & Vaandrager, F.: Action vs. state based logics for transition systems,
in Semantics of Sys. of Conc. Proc., LNCS vol. 469, Springer, 1990, pp. 407- 419

4. Emerson, E. A.: Temporal and modal logic, in van Leeuwen, J. (ed.): Handbook of
Theoretical Computer Science, Elsevier/North-Holland, 1990, pp. 997-1072

5. Graf, S. & Steffen, B. & Liittgen, G.: Compositional Minimisation of Finite State
Systems Using Interface Spec., in Formal Asp. of Comp., vol. 8, 1996, pp. 607-616

6. International Standards Organisation: Data Communications - HDLC Unbalanced
Class of Procedures, Ref. No. ISO 6159, ISO, Geneva, 1980

7. Kaivola, R.: Equivalences, Preorders and Compositional Verification]or Linear
Time Temp. Logic and Conc. Sys., A-1996-1, Univ. of Helsinld, Dept. of Comp. Sci.,
1996, 176+9 p., also in h t t p ://www. cs .Helsink• F I / ~ r k a i v o l a / r e s e a r c h / f t .ps

8. Kaivola, R. & Valmari, A.: Using truth-preserving reductions to improve the clarity
of Kripke-models, in CONCUR'91, LNCS vol. 527, Springer, 1991, pp. 361-375

9. Kaivola, R. & Valmari, A.: The weakest compositional semantic equivalence pre-
serving nexttime-less linear temporal logic, CONCUR '92, LNCS vol. 630, Springer,
1992, pp. 207-221

10. Manna, Z. & Pnueli, A.: The Temporal Logic of Reactive and Concurrent Systems,
vol. 1, Specification, Springer, 1991

11. Richier, J. L. & Rodriguez, C. & Sifakis, J. & Voiron, J.: Verification in Xesar of
the sliding window protocol, in PSTV VII, North-Holland, 1987, pp. 235-248

12. Sabnani, K.: An algorithmic technique for protocol verification, in IEEE Transac-
tions on Communications, vol. 36, no. 8, 1988, pp. 924-931

13. Stenning, N. V.: A data transfer protocol, in Computer Networks, vol. 11, 1976,
pp. 99-110

14. Stirling, C.: Modal and temporal logics, in Abramsky, S. & al. (eds.): Handbook of
Logic in Computer Science, Oxford University Press, 1992, pp. 477-563

15. Valmari, A. & Kemppainen, J. & Clegg, M. & Levanto, M.: Putting advanced
reaehability analysis techniques together: the "ARA" tool, in FME'93: Industrial-
Strength Formal Methods, LNCS vol. 670, Springer, 1993, pp. 597-616

16. Valmari, A. & Tienari, M.: Compositional failure-based semantic models for Basic
LOTOS, in Formal Aspects of Computing, vol. 7, 1995, pp. 440-468

17. Wolper, P.: Expressing interesting properties of programs in propositional temporal
logic, in Proceedings of the 13th ACM POPL, 1986, pp. 184-193

18. Wolper, P. & Lovinfosse, V.: Verifying Properties of Large Sets of Processes with
Network Invariants, in Proc. of International Workshop on Automatic Verification
Methods for Finite State Systems, LNCS vol. 407, Springer, 1990, pp. 68-80

