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Abst rac t  The main obstacle to automatic verification of temporal lo- 
gic properties of finite-state systems is the state explosion problem. One 
way to alleviate this is to replace components of a system with smaller 
ones and verify the required properties from the smaller system. This 
approach leads to notions of compositional property-preserving equival- 
ences and preorders~ Previously we have shown that the NDFD preorder 
is the weakest preorder which is compositional w.r.t, standard operators 
and preserves nexttime-less linear temporal logic properties. In this paper 
we describe a case study where NDFD preorder was used to verify semi- 
automatically both safety and liveness properties of the Sliding Window 
protocol for arbitrary channel lengths and realistic parameter values. In 
this process we located a previously undiscovered fault leading to lack of 
liveness in a version of the protocol. 

1 I n t r o d u c t i o n  

A promising approach to verification of finite-state concurrent systems is the use 
of propositional temporal logic as a specification language and the application of 
model-checking algorithms for the verification task (for an overview, see [4, 14]). 
In practice the main obstacle to this approach is that the execution graphs of 
realistic systems are too large for feasible model-checking, as in the general case 
the size of an execution graph is exponential in the number of concurrent pro- 
cesses. Several techniques have been proposed for alleviating this state explosion 
problem. Most of these are based on the fact that the components of a system 
are often reasonably small, even though the total system may be large [2, 10]. 

One particular technique is compositional reduction. Here the idea is to re- 
place the individual components of a system by smaller ones before building the 
model of the whole system, and to do this in such a way that if the reduced 
model fulfils the required properties, then the full system does so as well. This 
approach leads to notions of compositional property-preserving equivalences and 
preorders between modules. Assuming that we have a preorder for which the re- 
quired properties that hold of a model also hold of all models which are lower in 
the preorder, and which is congruent with respect to the composition operators 
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used in building the system, we can replace a module of a system with any mod- 
ule which is smaller in size but lies higher in the preorder, and if the required 
properties hold of the resulting system then they also hold of the original one. 

In this paper we describe a case study where compositional preorders were 
used to verify safety and liveness properties of the Sliding Window or SW com- 
munication protocol [13]. The SW protocol forms the basis of the data transfer 
function of the HDLC protocol [6], and an extreme simplification of it is the 
Alternating Bit protocol, a stock example in the literature on formal verification. 
Although almost any method seems to cope with the AB protocol, analysis of the 
more general SW protocol is harder; even with small window sizes and channel 
lengths the state space becomes far too large for direct model-checking. 

In the case study the components of the protocol were modelled by ordinary 
labelled transition systems, and the complete protocol was built from these by 
Basic LOTOS [1] operators. The properties that were required of the protocol 
were expressed using a transition-oriented variant of the propositional nexttime- 
less linear temporal logic. To express the requirements in a propositional language 
and to model the system in a finitary way, we used the technique of data inde- 
pendence [17, 12], which allows us to deduce that the system works correctly for 
all sequences of data, if it works correctly for data sequences of certain forms. 

The notion of preorder used in the verification was the so-called non-divergent 
failures divergences or NDFD preorder. In [8, 9] it was shown that the related 
NDFD equivalence preserves all nexttime-less linear temporal logic properties, 
and in [16] that it is a congruence with respect to all Basic LOTOS operators. 
Moreover, in [9] it was shown that NDFD equivalence is the weakest or loosest 
possible criterion of equivalence which has these properties. These results can be 
generalised to the NDFD preorder in a natural way [7]. 

In practive the main task in the verification was the construction of an ab- 
straction of the sender part of the protocol. This was done manually, guided by 
intuitions about the protocol. Next, it was verified that this abstraction is higher 
in the NDFD preorder than the sender combined with a channel of arbitrary 
length. This was done automatically, using the ARA toolset [15]. Finally, the ab- 
straction was combined with the receiver end of the protocol, and it was verified 
that the resulting system fulfils the required properties of the protocol. In this 
extended abstract, only the main steps are presented. For a full analysis, see [7]. 

In the case study we succesfully verified that the SW-protocol meets its safety 
and liveness requirements for a variety of realistic window sizes and arbitrary 
channel lengths. A more surprising observation was that a variant of the protocol 
fails to fulfil usual liveness requirements. This variant arises from a modification 
which seems harmless enough that it has sometimes appeared in the literature. 
In our opinion this result illustrates well the advantages of rigorous verification. 

The verification of the SW protocol has been studied extensively (see [7, Sect. 
7.3] for a survey). Like the original proof [13], most work has been manual or 
concentrated on safety properties, often both. Closest to the current work is 
[11], where safety properties of the protocol are expressed in temporal logic and 
verified by direct model-checking, with limits set by the state-explosion problem. 
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2 B a c k g r o u n d  

D e f i n i t i o n l .  For any set A, 2 A denotes the powerset of A, A* the set of finite 
strings of elements of A and A ~ the set of infinite strings of elements of A. Define 
A ~ = A* UA ~. If (r = aoal . . .  E A ~ ,  cr(n) denotes the element an and c~[n...] 
the string a~a,~+l . . .  We use �9 to denote catenation and I~rl the length of c~. 

D e f i n i t i o n  2. Fix an infinite transition alphabet ~,  which does not contain the 
empty transition label v. Define S~ = ~U{~'}. A labelled transition system (Its) is 
a triple L = (S, s, A), where S is a finite set of states, s E S a unique initial state, 

and A C_ S • Z~ • S a finite transition relation. If p E ~*,  we write so p ) s~ 
iff there are s l , . . . , s ,~ -~  such that for all 0 <_ i < n, (sl ,p(i) ,  s~+~) E A, and 

so - -~  iff there is an sn such that so -2-+ sn. If p E Z ~ ,  we write so ,,,~ ~ iff there 
are s l , s 2 , . . ,  such that for a t l i  >_ O, (si,p(i),s~+l) E 2i. Ifc~ E (Z'* U 27~), we 

write So ~ s,~ ( so ~ ) iff there is some p E (Z~ tO 2 ~ )  such that so p~ ) s~ 

( so ~ ) and ~r is the string obtained from p by removing all v symbols. 

We use parallel composition, hicling and renaming operators to combine ltss. 
We abuse notation slightly in the following, and write for example h i d e  sc,  in  L 
to mean that all labels beginning with se are hidden, and L[sc,/er,] to mean 
that each label of the form scxx is renamed to erxx. 

D e f i n i t i o n 3 .  Let L1 = (SI , s l ,Z t l ) ,  L2 = (S2,s2,A2) be ltss and G, H sets 
G = {gl , . . . ,g~}  C ~ and H = { h l , . . . , h a }  C Z.  Then 

* nl I[gl,.. . ,  gn]lL2 is the lts (S1 x $2, (sl, s2), A), where ((t, u), l, (t', u')) E A 
iff either 1 E G, (t, l, t ') E A1 and (u, l, u') E A2, or 1 ~ G, (t, l, t') E A~ and 
u = u ' , o r l ~ G , ( u , l , u  t) E 3 2 a n d t = t  l, 

. h i d e  g I , . . . ,  gn in L1 is the lts (S1, Sl, A), where (t, l, t') E A, iffeither l ~ G 
and (t, l, t ') E ,~1 o r  1 = v and there is a gi E G such that. (t, gi, t ') E A~, 

* L~[hl/gl , . . . ,h~/g~] is the lts (S~,s l ,A) ,  where (t,t , t ')  E A, iff either l ~ G 
and (t, l, t ') E z~l or 1 = hi and (t, gl, t ') E Ai.  

D e f i n i t i o n 4 .  Let L = (S, A, s) be a labelled transition system. We say that 

�9 p E Z ~  is a maximal behaviour of L iff either p is infinite and s ~ ,  or p is 

finite and there is some s ~ such that s .~  ~ s' and s' - ~ ~ for no a E Zr ,  
a 

�9 c~ E Z ~ is an infinite trace of L iff s ==~, 

�9 ~ E Z* is a divergence trace of L iff there is some s' such that s ~ s ~ r ~ ,  
�9 (o', A) E Z* • 2 ~ is a nondivergent failure of L iff cr is not a divergence trace 

of L, and there is some s ~ such that s ~ s ~ and s ~ =:~ for no a E A, 
We use maxbeh(L) to denote the set of maximal behaviours of L, inftr(L) the set 
of infinite traces of L, divtr(L) the set of divergence traces of L, and ndfail(L) 
the set of nondivergent failures of L. 

D e f i n i t i o n h .  Let L and L' be ltss. We say that L is lower than L' in the nondi- 
a d f d  

vergent failures divergences preorder or NDFD preorder and write L -~ L t i f f  
�9 inftr(L) C_ inftr(L'), 
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�9 divtr(L) C divtr(L'), and 
�9 ndfail(L) C_ ndfail(L') U (divtr(L') x 2~). 

For a full analysis of the NDFD preorder and its relation to other related 
failure-based preorders, see [16]. As far as the current paper is concerned, its 
two important properties are that and it preserves all maximal finite and infinite 
traces, and thereby also all nexttime-less linear temporal logic properties, and it 
is congruent with respect to the composition operators above, 

Proposit ion6 [16]. IlL1 n~aL'l and L2 "~aL~, then 

�9 L11[gl,..., gn] IL2 ,_~d L~ I[gl... ,  gn] IL'2, 
n d f d  

�9 h ide  gl , . . . ,g ,~  in L1 --< h ide  g l , . . . , g n  in L] and 
t t d fd  

�9 L l [ h l / r  h./g.] -< h./g.]. 

Most temporal logics used in program specification are essentially state- 
based, describing properties of execution states and sequences of them. However, 
here we would like to make reference to transitions and their labels directly. 
To this purpose we define a variant of the usual nexttime-less linear temporal 
logic L T U .  Similar extensions from state-based to transition-based logics are 
discussed in [3]. In [7] we describe a general model where both states and trans- 
itions of a transition system carry labels and both of these can be referred to in 
the logic. However, in the current case study ordinary ltss suffice. 

Def in i t i on  7. The formulae of the logic tLTL  ~ are defined by the abstract syn- 
tax: r ::= q- J --1r J r V r J r162 J eHar  ', where a varies over ~.  We use 
1,  A, ==~ and r as derived operators in the usual way, and define ~ r  = 3-/4r 
Or = ~ - , r  ( Z ~ r  = TUar and ( ~  = THAT. If r is a formula, we use ~(r  
to denote the set of labels a C Z occurring in operators /A/a in r 

We say that r is true of a sequence cr E Z ~ ,  denoted by c~ ~ r according 
to the following inductive rules: c~ ~ T always, (r ~ --1r iff not ~r ~ r cr ~ r V r 
iffcr ~ r or ~ ~ r (r ~ r 1 6 2  iff there is some 0 < i < Ic~l such that o'[i...] ~ r 
and cr[j...] ~ r for all 0 < j < i, and finally, c~ ~ r162 iff there is some 
0 < i < Ic~l such that c~(i) = a, o-[i+ 1. . .]  ~ r and for all 0 < j < i, o'(j) -~ a 
and cr[j...] ~ r We say that r is true of an lts L and write L ~ r iff ~r ~ r for 
all ~ ~ maxbeh(L). 

Here, N is the standard until operator. The less familiar r162 operator 
says that r holds immediately after the next transition labelled with a, such a 
transition exists, and until that moment r holds. The derived operator (~[:)r 
says that r holds after the next transition labelled with a, and there is such a 
transition, and (~[:) that some future transition is labelled with a. 

ndfd I 
P r o p o s i t l o n 8  [8, 7]. If  r isatLTL'-formula,  L' ~ r and L -< L ,  thenL ~ r 

We use to following simple result to ignore uninteresting labels in a model. 

P r o p o s i t i o n 9  [7]. Ire  is a tLTL'-formula and II C Z a set of labels such that 
~ ( r  then L ~ r i f fh ide  / /  in L ~ r 
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SENDER 
Variables 

d[0. . .  ( tw - 1)] : table of data items; i, j ,  k : int 
Initially i = 0 ,  j = 0 ,  k = 0  
loop infinitely 

choose nondeterministically 

/* x, a: temporary variables */ 

i < tw - - 4  receive( data source, d[i] ); i := i + 1; 
j < i - ~  send( c h a , ~ a ,  ( j  �9 k, d[j]) ); j := j + 1; 
j = i A i > 0 ~ receive( timeout ); j := 0; 
T --+ receive( ack channel, x ); a := (x (-7) k) + 1; 

if (a <_ tw)  then 
d [ 0 . . .  ( tw - 1 - a)] :=  d i d . . .  ( tw - 1)]; 
i := max(0, i -  a); j := max(0, j -  a); k := x@ 1 

end if; 
end choose; 

end loop; 

RECEIVER 
Variables 

t [0 . . .  (rw - 1)]: table of data items; r [0 . . .  (rw - 1)]: table of booleans 
e : int; /* x,  y, s: temporary variables */  

Initially e = 0, r [0 . . .  ( rw  - 1)] = ( Z , . . . ,  •  
loop infinitely 

receive( channel, (x, y) ); s := x O e; 
if (s < rw) then r[s] := T; t[s] := y; end if; 
while (r[0] r _L) do 

send( data target, t[0] ); 
t [ 0 . . .  (rw - 2)] := t [ 1 . . .  ( r ~  - 1)]; r [ 0 . . .  (rw - 2)] := r [ 1 . . .  ( rw - 1)]; 
r [ r w - - 1 ]  := _l 4 e : = e G 1 ;  

end while; 
send( ack channel, (e O 1) ); 

end loop; 

Notation: x (9 y = (x + y) mod (w + 1) and x O y = (x - y) rood (w + 1) 

F igu re1 .  Sender and receiver 

3 S l i d i n g  W i n d o w  p r o t o c o l  

The  objec t  of  the case s tudy  is a unidirect ional  version of the Sliding Window 
protocol  [13], which t r ies  to provide  reliable t r ansmiss ion  of da ta  over an unreli- 
able communica t ion  med ium.  The  sys tem consists of  six components .  The  s e n d e r  
receives da ta  i tems f rom an external  data source,  sends messages  consis t ing of  
a sequence number  and a da ta  i t em to the channel ,  receives acknowledgement  
messages  f rom the a c k n o w l e d g e m e n t  channel ,  and receives t imeou t  signals f rom 
an unspecified external  source. The  rece iver  reads messages  f rom the channel,  
forwards  correct ly received da ta  i tems to an external  data target ,  and sends 
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acknowledgement messages consisting of a sequence number to the acknowledge- 
ment channel. The channel and acknowledgement channel may distort or lose 
messages but may not change their order. Three parameters to the protocol are 
the transmission window size tw the reception window size rw, and the maximum 
value w for the sequence numbers. These must fulfil the constraint t w + r w  <_ w+ 1 
[13]. The sender and receiver processes are described in Figure 1. 

We have specified only a very simple timeout mechanism for the protocol: 
instead of presenting explicitly the setting and cancelling of timers, we have 
specified that the sender may receive a timeout signal in situations where it 
cannot send any new data items to the channel. We make the assumption that 
timeouts should not occur prematurely, i.e. when some acknowledgement is still 
on its way to the sender. This is not reflected in the description so far, but will be 
taken into account when modelling the protocol. In reality this could be achieved 
by setting the timeout delay to be longer than the maximum message transit time 
from the sender to the receiver and back. The assumptions regarding timeouts 
are only needed for liveness properties of the protocol, not for safety. 

The aim of the protocol is to transmit a sequence of data items from the data 
source to the target in the correct order. Reflecting this, the requirements to the 
protocol which we tried to verify were: 
S A F E  The data delivered to the target should be correct, i.e. the data sequence 

transmitted to the target before any given moment should be a prefix of the 
data sequence received from the source before that moment.  

L I V E 1  If n data items are read from the source along an execution sequence, 
and the execution sequence is complete under the assumption that no more 
data is available for reading from the source, then n data items should be 
delivered to the target along the execution sequence. 

L I V E 2  If infinitely many data items are read from the data source along an 
execution sequence, then infinitely many data items should be delivered to 
the target along that execution sequence. 

L I V E 3  The sender should accept data from the source, i.e. for any moment 
in a maximal execution sequence there should be a future moment when the 
sender reads a data item from the source, unless no more data is available. 

The liveness properties are expected to hold under the fairness condition: 
F A I R  Let i E {0 , . . . ,  w} be any sequence number. If messages with sequence 

number i are sent to the channel infinitely often, then messages with that se- 
quence number will also be transmitted successfully to the receiver infinitely 
often. The same holds for the acknowledgement channel. 

4 M o d e l l i n g  t h e  p r o t o c o l  

As the first step in the verification of the protocol, we appeal to a syntactic 
property of the system called data-independence [17, 12], which allows us to verify 
the requirements to the system just  for certain representative data sequences 
or certain data sources and conclude that the system works correctly with all 
possible sequences of data items. We shall omit the details here and just state: 
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--~ ] dsl ,[ l dsl ,~--~ 

Figure2.  Data source ltss Dsafe (left) and Du~r (right) 

�9 The protocol satisfies the requirement SAFE iff on any maximal execution 
of the protocol connected to the data source Ds~f, in Fig. 2, the sequence of 
data items delivered to the target belongs to the language 0 ~ - (1 - 2 c~ U E). 

�9 Assuming that the protocol satisfies the safety requirement, it satisfies the 
requirements LIVE1-3 iff on any maximal execution of the protocol connected 
to the data source Dlive in Fig. 2, either the data item 1 or infinitely many 
0:s are delivered to the target. 

The analysis showing that it is enough to consider these data sources and se- 
quences [7, App. A and Sect. 3.3] is similar to that of [17, 12]. However, for 
safety properties they consider the data sequences 0*. 1 �9 0* �9 2 �9 0 ~, whereas here 
we found it more convenient to use the data sequences 0 ~ . (1 �9 2 ~ O e). For 
liveness properties, we use sequences 0 ~176 �9 1 instead of 0 ~ of [17, 12] to cover also 
finite sequences of data. 

To model the protocol by labelled transition systems, we fix the set of data 
items as {0, 1, 2} and set some upper bounds nc and na for the capacity of the 
channel and the acknowledgement channel. Having decided the values of w, tw, 
rw, nc and n~, we build a model of the system from six basic ltss: S modelling 
the sender process, R modelling the receiver process, C modelling a channel with 
the capacity of one message, A modelling an acknowledgement channel with the 
capacity of one message, CF modelling a faulty channel with the capacity of one 
message, and AF modelling a faulty acknowledgement channel with the capacity 
of one message. 

The ltss S and R can be constructed straightforwardly from the descriptions 
in Fig. 1. The lts C is just a one-place buffer and easy to construct. To represent 
the unreliability of the channel, we use the lts CF, a one-place buffer which may 
lose the message it has received. Distorted messages are assumed to be detected 
by some checksum mechanism and discarded, to be treated as lost. 

The lts modelling the whole protocol is constructed from the basic ltss as 
described in Figure 3. We use synchronisation labels dsy to correspond to trans- 
mission of data item y from data source to sender, sexy to messages from sender 
to channel, e rxy  to messages from channel to receiver, rax  to acknowledgement 
messages from receiver to ack. channel, asx to aek. messages from ack. channel 
to sender, r t y  to transmission of data items from receiver to target, and t i m  to 
the timeout signal. Here x ranges over {0 , . . . ,  w} and y over {0, 1, 2}. 

The lts P modelling the whole protocol can be formally defined as follows: 

$ c o  = $ 

SCi+, = h i d e  sc* in (SC~[sc*/cr*] I[sc*,tim]l C) 
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Figure3. Structure of the model 

SCAo = SC = SC,~o-1 

SCAi+I = hide as* in (SCAi[as*/ra*] J[as*,tim]l A) 

SCA = SCAn~ 

SCFA = SCA[sc*/cr*] [sc*,tim][ CF 

SCFAF = SCFA[as*/ra*] I[as*, tim]l AF 

P = SCFAF [[cr*, ra,, tim]l R 

To capture the assumption that timeouts do not occur prematurely, we syn- 
chronised all components of the system with respect to the t im action so that 
a timeout could occur only if all components agree on that. A t im transition is 
allowed in C, CF, A and AF only when the corresponding buffer is empty, and 
in R only when the receiver cannot send any acknowledgements. 

To verify that the protocol satisfies the safety requirement, we express the 
property the sequence of data items delivered to the target belongs to the language 
0 ~176 �9 (1 - 2 ~ U e) by the following formula r 

( (~ )  ::r @ ( - , @ A - , ( ~ ) ) ) A ( ( ] @  :::f @ ( - - , ( ~ ) A - , @ ) ) A ( ( ~ )  :::r (~ ) )  

and verify that D,a/, I[ds*]l P I:= r Similarly, to verify the liveness require- 
ments, we try to verify that Dli~e [[ds*]l P ~ @ire, where @~w is the formula 

and the fairness constraint is expressed by the following formula r 

O<i<w O<_j<_2 O_j_<2 O<i<_w 
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5 Veri f icat ion 

For verifying both safety and liveness properties of the SW-protocol, we used the 
general approach of constructing an abstraction S on the basis of the sender lts S. 
The particular abstractions used for safety and liveness properties are different, 
but the techniques and reasoning are very similar. Because of this, we shall just  
discuss liveness properties here. Full details are in [7]. 

Before constructing the abstraction for liveness, we can ease the verification 
by a couple of simple techniques. First of all, the fixed data source Dli,r produces 
only a fraction of all the potential data sequences, which means that a large part  of 
the state space of P will not be reachable in Dli~ [[ds*]l P.  Therefore, rather than 
build P first and then compose it with D~ve, it is better to start by composing 
the sender S with Dliw and then build the other ltss on that basis; the resulting 
ltss will be the same up to isomorphism. Secondly, when trying to determine the 
validity of r162 over a model, by Prop. 9 we are allowed to hide labels ds* and 
t im which do not appear in r What is more, as h i d e  distributes over parallel 
composition as long as the hidden labels are not used for synchronisation, we can 
hide ds* immediately after the data source is combined with the sender. 

Let S denote the abstraction, and define DS = h i d e  ds* in  (Dli~[[ds*]lS). 
Furthermore, let DP denote the system built by combining DS with the faulty 
elements CF and AF and the receiver R, in the same way as P was built on the 
basis of SCA. The essential properties of the abstraction are 

A: (h ide  ds* in  Dli.~i[ds*]lS) -.~ DS 
B. h i d e  sc ,  in  (DS[sc*/cr*]t[sc*,tim]]C)od~d -~ DS 

n d f d  - -  

c .  h i d e  as, in  (DS[as,/ra,]l[as,,t im]lA) -~ DS 
D: D P ~ r  

Here A states that the abstraction is higher in the NDFD-preorder than the 
sender combined with D l ~ ,  and B and C that the abstraction alone is higher 
in the preorder than when combined with a one-place channel or acknowledge- 

n d f d  

ment channel. On the basis of compositionality of -< , it is easy to see from 

claims A-C that (h ide  ds* in (Dii~[[ds,][SCA))~dDS, no matter what the 
channel capacities n~ and na are. From claim D and Prop. 8 it follows then that 
Dti~,,[[ds*]]P ~ Crave, as required. This approach to dealing with channels of 
arbitrary length has appeared previously in [18]. 

The abstraction S for liveness properties is described in Fig. 4. The two basic 
intuitions behind it are the following. First, it mimics the behaviour of the sender 
with channels of unspecified length. What this means is that sent messages do 
not necessarily appear or acknowledgements cause effect immediately. Secondly, 
in the context of the complete system often only a subset of all possible acknow- 
ledgement messages can actually occur. In the abstraction it is specified that 
after the reception of an unexpected acknowledgement message, the abstraction 
becomes 'chaotic', capable of performing any action (same idea appears in [5]). 

The abstraction was formulated manually, aided by intuitions on which char- 
acteristics of the protocol were relevant for liveness properties. Once the ab- 
straction was constructed, claims A-C were checked by the ARA toolset [15]. 
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SENDER ABSTRACTION 
Variables 

d [ ( - t w ) . . .  ( tw  - 1)] : table of data items; i, j ,  k : int; ch : bool; 
Initially i = 0 ,  j = 0 ,  k = 0 ,  ch=-L  
loop infinitely 

choose nondeterministically 
ch ~ perform any action; /* (also r possible) */ 
- ,ch A i < tw  ---+ receive( data source, d[i] ); i := i + 1; 
- ,ch A j < i ~ send( channel, ( j  @ k , d b ] )  ); j : = j +  1; 

if j < 0 then j := r n d ( j , . . . ,  0) end if; 
- ,ch A j = i A i > 0 ---+ receive( timeout ); j := 0; 
~ch - - ~  receive( ack chan~el, x ); a :=  (x e k) + 1; 

if ((a - min(j, 0)) < tw)  then 
d [ ( - t w )  . . . ( tw  - 1 - a)] :----- d [ ( - t w  -t- a) . . , ( tw  - 1)]; 
i := max(-tw, i -  a); j := j -  a; 
if j < 0 then j := r n d ( j  . . . .  ,0) end if 
k : = x |  

else if a # w + 1 then ch := T end if; 
end choose; 

end loop; 

Notation: r n d ( x , . . . ,  y) returns a random element from {x , . . . ,  y} 

Figure4.  Abstraction for liveness properties 

Although originally designed for a slightly different semantic model, with added 
pre-processing steps it could deal with the NDFD preorder. Since no temporal  
logic model checker was available, claim D was also verified using the ARA tool- 
set, by combining D P  with tester processes trying to find a path violating Cuw 
[7, App. B]. The table below lists sizes of some ltss involved in the verification: 

1 1 111 22 12 56 95 61 
3 2 211 98 48 280 723 915 
5 3 311266 838 2851 5179 
6 3 31310 140 977 3791 6018 
7 4 4 562 240 1940 811721379 

6 F a u l t y  v a r i a n t  o f  t h e  p r o t o c o l  

In the sender process of the SW protocol an acknowledgement is treated as valid, 
if it contains a sequence number anywhere in the current transmission window. 
In another variant of the protocol, occasionally found in the literature [11], an 
acknowledgement is treated as valid, if it contains a sequence number between 
the beginning of the transmission window and the sequence number to be sent 
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I SteplActionlExplanation 
1 ds0 sender receives data item 0 from source 
2 dsO sender receives data item 0 from source 
3 scO0 sender sends first data item to channel 
4 crO0 channel forwards it to receiver 
5 rtO receiver forwards it to target 
6 raO receiver sends an ack to first data item to ack channel 
7 r ack channel loses it 
8 sc lO sender sends second data item to channel 
9 cr lO channel forwards it to receiver 
10 rtO receiver forwards it to target 
11 r a l  receiver sends an ack to second data item to ack channel 
12 r ack channel loses it 
13 t i m  timeout: sender starts sending data items again 
14 scO0 sender sends first data item to channel 
15 crO0 channel forwards it to receiver 
16 ra l  receiver sends an ack to second data item to ack channel 
17 a s l  ack channel forwards it to sender, sender  i g n o r e s i t  as invalid 
18 scl0 sender sends second data item to channel 
19 crIO channel forwards it to receiver 
20 ra l  receiver sends an ack to second data item to ack channel 
21 r ack channel loses it 
22 - repeating from 13 - 
Parameters: w = 2 (or any w > 2), t w  = 2, r w  = 1, nc = na = 1. 

Figure5.  Failure of liveness 

next. In the sender process this corresponds to changing the last if-statement 
from 'if (a <~ t w ) '  to 'if (a _< j ) ' .  This  change to the protocol seems innocent 
enough: How could there be an acknowledgement to any of the data items in the 
remaining par t  of the transmission window, anyway? After all, these data items 
are only just  to be sent. 

The safety properties of the variant can be verified as with the original pro- 
tocol. However, when trying to verify the liveness properties, we were unable 
to produce an abstraction fulfilling the claims A-D above. After analysing the 
reasons behind this, it emerged that the variant actually f a i l s  to fulfil the liveness 
requirements. Fig. 5 describes one execution sequence of the variant  where this 
failure appears. Although the sequence is fair, it fails to fulfil property LIVE3, re- 
quiring the system to accept data  f rom the source; after the first two data items, 
no more data is accepted. Intuitively, although a s l  is delivered to the sender 
infinitely often, it always arrives at a t ime when the sender regards it as invalid. 

In our opinion this failure illustrates two issues. First, the change causing 
the protocol to fail liveness is natural and seems unimpor tant  enough that, for 
example,  [11] used the faulty variant  when verifying safety properties of the pro- 
tocol. We feel that this is a good example of the benefits of the rigorousness 
induced by a formal verification method. Secondly, the example reminds of the 
fact that liveness properties cannot be reliably verified unless divergences and 
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fairness conditions are properly kept track of. For example,  if channel events 
were hidden and the services provided by the protocols compared with respect 
to observation equivalence, ignoring divergences, both versions would be con- 
sidered equivalent. In effect, divergences corresponding to fair executions would 
be confused with ones corresponding to unfair executions, and ignored. 
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