
HYTECH: A Mode l Checker for Hybrid Systems*

T h o m a s A. Henzinger ~ Pei-Hsin Ho * ~ Howard Wong-Toi~

A b s t r a c t . A hybrid system consists of a collection of digital programs
that interact with each other and with an analog environment. Examples
of hybrid systems include medical equipment, manufacturing controllers,
automotive controllers, and robots. The formal analysis of the mixed
digital-analog nature of these systems requires a model that incorporates
the discrete behavior of computer programs with the continuous behav-
ior of environment variables, such as temperature and pressure. Hybrid
automata capture both types of behavior by combining finite automata
with differential inclusions (i.e. differential inequalities). HYTECH is a
symbolic model checker for linear hybrid automata, an expressive, yet
automatically analyzable, subclass of hybrid automata. A key feature of
HYTECH is its ability to perform parametric analysis, i.e. to determine
the values of design parameters for which a linear hybrid automaton
satisfies a temporal requirement.

F r o m f in i t e to h y b r i d a u t o m a t a . Model checking I l l , 39], and in particular sym-
bolic model checking [10] (i.e. the manipulation of state sets rather than individual
states), has been proven an effective technique for the automatic analysis of complex
finite-state systems. The first extensions of discrete models toward mixed discrete-
continuous behavior considered real-numbered time [15]. One such model is the timed
automaton--a finite automaton augmented with a finite number of real-valued clocks,
i.e. continuous variables whose rate of change is always I [3]. Symbolic model check-
ing for timed automata involves the computation of fixpoints over state sets that are
represented by a restricted class of linear constraints, namely, boolean combinations of
inequalities of the form x <: k and x - y < k, for clocks x and y and constants k [31].
Although the state space of a timed automaton is infinite, the fixpoint computation
is guaranteed to terminate. Hybrid automata are extensions of timed automata that
allow continuous variables with more general dynamics than clocks [2, 38, 1].

In contrast to most other formalisms for hybrid systems [18, 8, 5], where the pro-
posed analysis methods are deductive, research on hybrid automata has focused on
(semi)algorithmic state-space analysis. This has led to the definition of linear hybrid
automata, for which the dynamics of the continuous variables are defined by linear dif-
ferential inclusions of the form A:~ < b, for a constant matrix A, a vector x of variables,
and a constant vector b. 1 For linear hybrid automata, the successor states of a state
set defined by linear constraints are computable, and themselves linearly definable [4].
Thus, symbolic model checking for timed automata can be extended to linear hybrid au-
tomata, provided that state sets are represented by boolean combinations of arbitrary
linear inequalities. The price to pay for the increased generality is the loss of guaran-
teed ~ermination. The theory of hybrid au tomata- - in particular, decidability results
for subclasses of linear hybrid automata-- is presented in [30, 21, 20, 28, 22, 29, 36].

This research was supported in part by the ONR YIP award N00014-95-1-0520, by the NSF
CAREER award CCR-9501708, by the NSF grant CCR-9504469, by the AFOSR contract F49620-
93-1-0056, by the ARO MURI grant DAAH-04-96-1-0341, by the ARPA grant NAG2-892, and by
the SRC contract 95-DC-324.036.

** EBCS Department, University of California, Berkeley; tah@eecs.berkeley.edu.
~** Strategic CAD Labs, Intel Corporation, Hillsboro, Oregon; pho@ichips.intel.com.

t Cadence Berkeley Labs, Berkeley, California; howard@cadence.com.
1 This definition of linearity differs from the definition commonly used in systems theory.

461

x ---- 2

turn .o f f V
o, ~ oE

1 < = < 3 1 < x < 3

x = 2
Ay=0
Az----0

on
l<~:<3Ay_< 60

6 [2, 4] ^
y:Ihi=l

tz~rn_off

Fig . 1. Thermostat automaton

l < x < 3 A y < 60

~}=IA~----0

A s i m p l e e x a m p l e . A hybrid automaton is a nondeterministic finite transit ion graph
whose nodes are labeled with differential inclusions. The hybrid automaton to the left
in Figure 1 models a simple thermostat . The temperature x is initially 2 degrees, and
rising at the rate of - x + 5 degrees per minute. When the temperature reaches 3 degrees,
the heater is turned off, and the temperature then falls at the rate of - x degrees per
minute. While the automaton control resides in a given node, the behavior of the
continuous variables satisfies the node's differential inclusions. Nodes are a~o labeled
with invariant conditions on the values of the variables. For example, the invariant
of the node on is 1 < x < 3, implying that the automaton control must leave the
node before the temperature exceeds 3. Transitions between nodes may be guarded
by constraints on the variables (e.g. the guard on the transition labeled turn_off is
x = 3), and may incorporate reassignment of the variables, such as resetting a clock
to 0. Shared event labels allow transitions in one hybrid automaton to be synchronized
with transitions in another (this does not occur in the example).

For algorithmic analysis, we restrict our model to linear hybrid automata , described
above. This formalism does not allow general differential inclusions, but is still quite
expressive. For example, the model captures stopwatches (variables whose rates may
be either 0 or 1), skewed clocks (variables whose rates are constant, possibly differ-
ent from 1), and variables whose rates have constant bounds, such as clocks whose
rates drift within some interval [1 - e, 1 + e]. Nonlinear hybrid au tomata may be an-
alyzed either by translating them into linear hybrid au tomata where possible, or by
conservatively approximating them with linear hybrid au tomata [23, 32].

For example, in order to analyze the proport ion of t ime that the thermostat is on,
we use the linear hybrid automaton to the right in Figure 1, which is derived from the
original nonlinear hybrid automaton as follows. First , we overapproximate the nonlinear
behavior of the temperature by placing lower and upper bounds on its ra te within each
node (e.g. in node on, the invariant 1 < x < 3 implies that the rate - x + 5 is bounded
within the interval [2, 4]). Next, we introduce a clock y that measures the elapsed time,
and a stopwatch z that measures the accumulated time spent in node on. We wish

2 of the first hour of operation. To to check that the thermostat is on for less than
ensure termination of the computation, we add the conjunct y _< 60 to the invariants.
HYTEctt then fully automatically verifies that no state satisfying y = 60 A z > 2_y is

- - 3

reachable from the initial state.

T h e too l . Early versions of HYTECH were built using Mathemat ica [24, 34]. Build-
ing on the observation that a linear constraint over n variables can be represented
by the union of n-dimensional polyhedra, the current, more efficient, generation of
HYTECH [27, 26] manipulates linear constraints via calls to a l ibrary for polyhedral
operations [19]. A HYTEcH input file consists of two parts: a textual description of a
collection of hybrid automata, and a sequence of analysis commands. The component
au tomata are composed into a product representing the entire system. The analysis
language provides access to a variety of operations for polyhedral manipulation within

462

a flexible framework for writing state-space exploration programs. For added conve-
nience, there are built-in macros for reachability analysis, temporal operators, abstract
interpretation [25], error-trace generation, and parametric analysis [13, 6].

In parametric analysis, the system is described using design pararaeters--symbolic
constants with unknown, fixed values. Standard reachability analysis followed by exis-
tentiai quantification can be used to determine necessary and sufficient constraints on
the parameters under which system violations cannot occur. Thus, rather than merely
verifying (or falsifying) systems, HYTEc~I can be used to extract quantitative informa-
tion, further aiding the design process. Common uses for parametric analysis include
determining minimum and maximum bounds on variables, and finding cutoff points
for the placement of sensors or the values of timers. For example, to compute an upper
bound on the time the thermostat is on during the first hour of operation, we intro-
duce a parameter c~ and use HYTEcH to determine the values of a for which there is
a reachable state satisfying y = 60 A z _> a . HYTEcn returns the constraint a _< 36,
implying that the thermostat is on for no more than 36 minutes during the first hour.

A p p l i c a t i o n s . HYTEcH has been used in a number of case s tudies- -pr imar i ly control-
based applicat ions-- including a distributed robot controller [24], a robot system in
manufacturing [24], the Philips audio control protocol [35], an active structure con-
troller [26], a generalized railroad controller [26], a nonlinear temperature controller [23],
a predator-prey ecology [32], an aircraft landing-gear system [37], a steam-boiler con-
troller [33], and an automotive controller [40]. Corbett [12] has verified robot controllers
written in a subset of ADA by automatically translating them into linear hybrid au-
tomata for analysis with tIYTEcH. We are currently experimenting with the modeling
and analysis of timed circuits.

A v a i l a b i l i t y . HYTECI~ has been ported to the following platforms: DEC worksta-
tions running Ultrix and Digital Unix, HP workstations running HP-UX, Sun worksta-
tions running SunOS and Solaris, and x86 PCs running Linux. HYTEcH's home page
h t t p ://www. e e c s . b e r k e l e y , e d u / - t ah/tlyTech includes the source code, executables,
an online demo, a user guide, a graphical front end (courtesy of members of the UPPAAL
project [9]), numerous examples, online versions of papers, and pointers to additional
literature. Requests may also be sent to hy t ech@eecs .be rke l ey . edu .

R e l a t e d too l s . POLKA analyzes linear hybrid systems with an emphasis on abstract-
interpretat ion strategies [19]. SHIFT provides a simulation environment for general-
ized hybrid automata, but does not perform state-space analysis [16]. Symbolic model
checkers for the more restrictive t imed-automaton model include KRONOS [14], t imed
COSPAN [7], UPPAAL [9], a n d VERITI [17].

R e f e r e n c e s .
1. It. Alur, C. Coureoubetis, N. Halbwaehs~ T.A. Henzlnger, P.-H. Ho, X. Nieollin, A. Olivero~

J. Sifakis, and S. Yovine. The algorithmic analysis of hybrid systems. Theoretical Computer
Science, 138:3-34, 1995.

2. R. Alur, C. Courcoubetis, T.A. Henzinger, and P.-H. Ho. Hybrid automata: an algorithmic
approach to the specification and verification of hybrid systems. In Hybrid Systems I, LNCS
736, pp. 209-229. Springer, 1993.

3. R. Alur and D.L. Dill. A theory of timed automata. Theoretical Computer Science, 126:183-
235, 1994.

4. 13.. Alur, T.A. Henzinger, and P.-H. Ho. Automatic symbolic verification of embedded systems.
IEEE Trans. Software Engineering, 22:181-201, 1996.

5. It. Alur, T.A. Henzinge L and E.D. Sontag, eds. Hybrid Systems III: Verification and Control.
LNCS 1066. Springer, 1996.

6. It. Alur, T.A. Henzinger, and M.Y. Vardi. Parametric real-time reasoning. In Proc. 25th ACM
Syrup. Theory of Computing, pp. 592-601, 1993.

7. It. Alur and It.P. Kurshan. Timing analysis in Cospan. In Hybrid Systems III, LNCS 1066,
pp. 220-231. Springer, 1996.

8. P. Antsaklis, A. Nerode, W. Kohn, and S. Sastry, eds. Hybrid Systems II. LNCS 999. Springer,
1995.

463

9. J. Bengtsson, K.G. Larsen, F. Larsson, P. Pettersson, and W. Yi. UppAal: a tool-suite for
automatic verification of real-time systems. In Hybrid Systems III, LNCS 1066, pp. 232-243.
Springer, 1996.

10. J.R. Burch, E.M. Clarke, K.L. McMillan, D.L. Dill, and L.3. Hwang. Symbolic model checking:
1020 states and beyond. Information and Computation, 98:142-170, 1992.

11. E.M. Clarke and E.A. Emerson. Design and synthesis of synchronization skeletons using
branching-time temporal logic. In Logic of Programs, LNCS 131. Springer, 1981.

12. J. C. Corbett. Timing analysis of Ada tasking programs. IEEE Trans. Software Engineering,
22:461-483, 1996.

13. P. Cousot and N. Halbwachs. Automatic discovery of linear restraints among variables of a
program. In Proc. 5th ACM Syrup. Principles of Programming Languages, pp. 84-97, 1978.

14. C. Daws, A. Olivero, S. Tripakis, and S. Yovine. The tool Kronos. In Hybrid Systems III,
LNCS 1066, pp. 208-219. Springer, 1996.

15. J.W. de Bakker, K. Huizing, W.-P. de Roever, and G. Ho~enberg, eds. Real Time: Theory in
Practice. LNCS 600. Springer, 1992.

16. A. Deshpande, A. GSllii, and L. Semenzato. The Shift programming language and run-
time system for dynamic networks of hybrid automata. PATH report, h t tp : / /www-path .
eecs.berkeley.edu/shift/doc/ieeshift.ps.gz, 1996.

17. D.L. Dill and H. Wong-Toi. Verification of real-time systems by successive over- and underap-
proximation. In Computer-aided Verification, LNCS 939, pp. 409-422. Springer, 1995.

18. R.L. Grossman, A. Nerode, A.P. Ravn, and H. Rischel, eds. Hybrid Systems I. LNCS 736.
Springer, 1993.

19. N. Halbwachs, P. Raymond, and Y.-E. Proy. Verification of linear hybrid systems by means of
convex approximation. In Static Analysis Syrup., LNCS 864, pp. 223-237. Springer, 1994.

20. M.R. Henzinger, T.A. Henzinger, and P.W. Kopke. Computing simulations on finite and infinite
graphs. In Proc. 36rd IEEE Syrup. Foundations of Computer Science, pp. 453-462, 1995.

21. T.A. Henzinger. Hybrid automata with finite bisimulations. In ICALP: Automata, Languages,
and Programming, LNCS 944, pp. 324-335. Springer, 1995.

22. T.A. Henzinger. The theory of hybrid automata. In Proc. 11th IEEE Syrup. Logic in Computer
Science, pp. 278-292, 1996.

23. T.A. Henzinger and P.-H. Ho. Algorithmic analysis of nonlinear hybrid systems. In Computer-
aided Verification, LNCS 939, pp. 225-238. Springer, 1995.

24. T.A. Henzinger and P.-H. Ho. HyTech: The Cornell Hybrid Technology Tool. In Hybrid
Systems H, LNCS 999, pp. 265-293. Springer, 1995.

25. T.A. Henzinger and P.-H. Ho. A note on abstract-interpretation strategies for hybrid automata.
In Hybrid Systems II, LNCS 999, pp. 252-264. Springer, 1995.

26. T.A. Henzinger, P.-H. Ho, and H. Wong-Toi. HyTech: the next generation. In Proc. 16th IEEE
Real-time Systems Syrup., pp. 56-65, 1995.

27. T.A. Henzinger, P.-H. Ho, and H. Wong-Toi. A user guide to HyTech. In Tools and Algorithms
for the Construction and Analysis of Systems, LNCS 1019, pp. 41-71. Springer, 1995.

28. T.A. Henzinger and P.W. Kopke. State equivalences for rectangular hybrid automata. In
Concurrency Theory, LNCS 1119, pp. 530-545. Springer, 1996.

29. T.A. Henzinger and P.W. Kopke. Discrete-time control for rectangular hybrid automata. In
ICALP: Automata, Languages, and Programming, LNCS. Springer, 1997.

30. T.A. Henzinger, P.W. Kopke, A. Purl, and P. Varaiya. What 's decidable about hybrid au-
tomata? In Proc. 27th ACM Syrup. Theory of Computing, pp. 373-382, 1995.

31. T.A. Henzinger, X. Nicollin, J. Sifakis, and S. Yovine. Symbolic model checking for real-time
systems. Information and Computation, 111:193-244, 1994.

32. T.A. Henzinger and H. Wong-Toi. Linear phase-portrait approximations for nonlinear hybrid
systems. In Hybrid Systems III, LNCS 1066, pp. 377-388. Springer, 1996.

33. T.A. Henzinger and H. Wong-Toi. Using HyTech to synthesize control parameters for a steam
boiler. In Formal Methods for Industrial Applications: Specifying and Programming the
Steam Boiler Control, LNCS 1165, pp. 265-282. Springer, 1996.

34. P.-H. Ho. Automatic Analysis of Hybrid Systems. PhD thesis, Cornell Univ., 1995.
35. P.-H. Ho and H. Wong-Toi. Automated analysis of an audio control protocol. In Computer-

aided Verification, LNCS 939, pp. 381-394. Springer, 1995.
36. P.W. Kopke. The Theory of Rectangular Hybrid Automata. PhD thesis, Cornetl Univ., 1996.
37. S. Nadjm-Tehrani and J.-E. StrSmberg. Proving dynamic properties in an aerospace applica-

tion. In Proc. 16th IEEE Real-time Systems Syrup., pp. 2-10, 1995.
38. X. Nicollin, A. Olivero, J. sifakis, and S. Yovine. An approach to the description and analysis

of hybrid systems. In Hybrid Systems I, LNCS 736, pp. 149-178. Springer, 1993.
39. J. Queille and J. Sifakis. Specification and verification of concurrent systems in Cesar. In

Syrup. on Programming, LNCS 137, pp. 337-351. Springer, 1981.
40. T. Stauner, O. Miiller, and M. Fuchs. Using HyTech to verify an automotive control system.

In Hybrid and Real*Time Systems, LNCS 1201, pp. 139-153. Springer, 1997.

