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A b s t r a c t .  A hybrid system consists of a collection of digital programs 
that interact with each other and with an analog environment. Examples 
of hybrid systems include medical equipment, manufacturing controllers, 
automotive controllers, and robots. The formal analysis of the mixed 
digital-analog nature of these systems requires a model that incorporates 
the discrete behavior of computer programs with the continuous behav- 
ior of environment variables, such as temperature and pressure. Hybrid 
automata capture both types of behavior by combining finite automata 
with differential inclusions (i.e. differential inequalities). HYTECH is a 
symbolic model checker for linear hybrid automata, an expressive, yet 
automatically analyzable, subclass of hybrid automata. A key feature of 
HYTECH is its ability to perform parametric analysis, i.e. to determine 
the values of design parameters for which a linear hybrid automaton 
satisfies a temporal requirement. 

F r o m  f in i t e  to h y b r i d  a u t o m a t a .  Model checking I l l ,  39], and in particular sym- 
bolic model checking [10] (i.e. the manipulation of state sets rather than individual 
states), has been proven an effective technique for the automatic analysis of complex 
finite-state systems. The first extensions of discrete models toward mixed discrete- 
continuous behavior considered real-numbered time [15]. One such model is the timed 
automaton--a finite automaton augmented with a finite number of real-valued clocks, 
i.e. continuous variables whose rate of change is always I [3]. Symbolic model check- 
ing for timed automata involves the computation of fixpoints over state sets that are 
represented by a restricted class of linear constraints, namely, boolean combinations of 
inequalities of the form x <: k and x - y < k, for clocks x and y and constants k [31]. 
Although the state space of a timed automaton is infinite, the fixpoint computation 
is guaranteed to terminate. Hybrid automata are extensions of timed automata that 
allow continuous variables with more general dynamics than clocks [2, 38, 1]. 

In contrast to most other formalisms for hybrid systems [18, 8, 5], where the pro- 
posed analysis methods are deductive, research on hybrid automata has focused on 
(semi)algorithmic state-space analysis. This has led to the definition of linear hybrid 
automata, for which the dynamics of the continuous variables are defined by linear dif- 
ferential inclusions of the form A:~ < b, for a constant matrix A, a vector x of variables, 
and a constant vector b. 1 For linear hybrid automata, the successor states of a state 
set defined by linear constraints are computable, and themselves linearly definable [4]. 
Thus, symbolic model checking for timed automata can be extended to linear hybrid au- 
tomata, provided that state sets are represented by boolean combinations of arbitrary 
linear inequalities. The price to pay for the increased generality is the loss of guaran- 
teed ~ermination. The theory of hybrid au tomata- - in  particular, decidability results 
for subclasses of linear hybrid automata-- is  presented in [30, 21, 20, 28, 22, 29, 36]. 
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Fig .  1. Thermostat  automaton 
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A s i m p l e  e x a m p l e .  A hybrid automaton is a nondeterministic finite transit ion graph 
whose nodes are labeled with differential inclusions. The hybrid automaton to the left 
in Figure 1 models a simple thermostat .  The temperature  x is initially 2 degrees, and 
rising at the rate of - x + 5  degrees per minute. When the temperature  reaches 3 degrees, 
the heater is turned off, and the temperature  then falls at  the rate  of - x  degrees per 
minute. While the automaton control resides in a given node, the behavior of the 
continuous variables satisfies the node's  differential inclusions. Nodes are a~o labeled 
with invariant conditions on the values of the variables. For example, the invariant 
of the node on is 1 < x < 3, implying that  the automaton control must leave the 
node before the temperature exceeds 3. Transitions between nodes may be guarded 
by constraints on the variables (e.g. the guard on the transition labeled turn_off is 
x = 3), and may incorporate reassignment of the variables, such as resetting a clock 
to 0. Shared event labels allow transitions in one hybrid automaton to be synchronized 
with transitions in another (this does not occur in the example). 

For algorithmic analysis, we restrict our model to linear hybrid automata ,  described 
above. This formalism does not allow general differential inclusions, but  is still quite 
expressive. For example, the model captures stopwatches (variables whose rates may 
be either 0 or 1), skewed clocks (variables whose rates are constant, possibly differ- 
ent from 1), and variables whose rates have constant bounds, such as clocks whose 
rates drift within some interval [1 - e, 1 + e]. Nonlinear hybrid au tomata  may be an- 
alyzed either by translating them into linear hybrid au tomata  where possible, or by 
conservatively approximating them with linear hybrid au tomata  [23, 32]. 

For example, in order to analyze the proport ion of t ime that  the thermostat  is on, 
we use the linear hybrid automaton to the right in Figure 1, which is derived from the 
original nonlinear hybrid automaton as follows. First ,  we overapproximate the nonlinear 
behavior of the temperature  by placing lower and upper bounds on its ra te  within each 
node (e.g. in node on, the invariant 1 < x < 3 implies that  the rate - x  + 5 is bounded 
within the interval [2, 4]). Next, we introduce a clock y that  measures the elapsed time, 
and a stopwatch z that  measures the accumulated time spent in node on. We wish 

2 of the first hour of operation. To to check that  the thermostat  is on for less than 
ensure termination of the computation, we add the conjunct y _< 60 to the invariants. 
HYTEctt then fully automatically verifies that  no state satisfying y = 60 A z > 2_y is 

- -  3 

reachable from the initial state.  

T h e  too l .  Early versions of HYTECH were built using Mathemat ica  [24, 34]. Build- 
ing on the observation that  a linear constraint over n variables can be represented 
by the union of n-dimensional polyhedra, the current, more efficient, generation of 
HYTECH [27, 26] manipulates linear constraints via calls to a l ibrary for polyhedral 
operations [19]. A HYTEcH input file consists of two parts: a textual  description of a 
collection of hybrid automata,  and a sequence of analysis commands. The component 
au tomata  are composed into a product  representing the entire system. The analysis 
language provides access to a variety of operations for polyhedral  manipulation within 
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a flexible framework for writing state-space exploration programs. For added conve- 
nience, there are built-in macros for reachability analysis, temporal  operators,  abstract  
interpretation [25], error-trace generation, and parametric analysis [13, 6]. 

In parametric analysis, the system is described using design pararaeters--symbolic 
constants with unknown, fixed values. Standard reachability analysis followed by exis- 
tentiai quantification can be used to determine necessary and sufficient constraints on 
the parameters under which system violations cannot occur. Thus, rather  than merely 
verifying (or falsifying) systems, HYTEc~I can be used to extract  quantitative informa- 
tion, further aiding the design process. Common uses for parametric  analysis include 
determining minimum and maximum bounds on variables, and finding cutoff points 
for the placement of sensors or the values of timers. For example, to compute an upper  
bound on the time the thermostat  is on during the first hour of operation, we intro- 
duce a parameter  c~ and use HYTEcH to determine the values of a for which there is 
a reachable state satisfying y = 60 A z _> a .  HYTEcn returns the constraint a _< 36, 
implying that  the thermostat  is on for no more than 36 minutes during the first hour. 

A p p l i c a t i o n s .  HYTEcH has been used in a number of case s tudies- -pr imar i ly  control- 
based applicat ions-- including a distributed robot controller [24], a robot system in 
manufacturing [24], the Philips audio control protocol [35], an active structure con- 
troller [26], a generalized railroad controller [26], a nonlinear temperature  controller [23], 
a predator-prey ecology [32], an aircraft landing-gear system [37], a steam-boiler con- 
troller [33], and an automotive controller [40]. Corbett  [12] has verified robot controllers 
written in a subset of ADA by automatically translating them into linear hybrid au- 
tomata  for analysis with tIYTEcH. We are currently experimenting with the modeling 
and analysis of timed circuits. 

A v a i l a b i l i t y .  HYTECI~ has been ported to the following platforms: DEC worksta- 
tions running Ultrix and Digital Unix, HP workstations running HP-UX, Sun worksta- 
tions running SunOS and Solaris, and x86 PCs running Linux. HYTEcH's home page 
h t t p  ://www. e e c s . b e r k e l e y ,  e d u / - t  ah/tlyTech includes the source code, executables, 
an online demo, a user guide, a graphical front end (courtesy of members of the UPPAAL 
project [9]), numerous examples, online versions of papers, and pointers to additional 
literature. Requests may also be sent to hy t ech@eecs .be rke l ey . edu .  

R e l a t e d  too l s .  POLKA analyzes linear hybrid systems with an emphasis on abstract-  
interpretat ion strategies [19]. SHIFT provides a simulation environment for general- 
ized hybrid automata,  but  does not perform state-space analysis [16]. Symbolic model 
checkers for the more restrictive t imed-automaton model include KRONOS [14], t imed 
COSPAN [7], UPPAAL [9], a n d  VERITI [17]. 
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