
A
TermiLog:

System for Checking Termination of Queries
to Logic Programs *

N. Lindenstrauss, Y. Sagiv, A. Serebrenik
Dept. of Computer Science

Hebrew University
Jerusalem, Israel

Email: {naomil,sagiv,alicser }@cs.huji.ac.il

A b s t r a c t . TermiLog is a system implemented in SICStus Prolog for au-
tomatically checking termination of queries to logic programs. Given a
program and query, the system either answers that the query terminates
or t h a t it c a n n o t prove termination. The system can handle automati-
cally 82% of the 120 programs we tested it on.

1 I n t r o d u c t i o n

TermiLog is a system, implemented in SICStus Prolog [SICS95], for automatic
termination analysis of logic programs. The system accepts as input a Prolog
program and a query, and returns as the answer either that the query terminates
or that it cannot prove termination. In contrast to some other systems the pro-
gram does not have to satisfy any condition in order to be analyzed by TermiLog
(e.g., in the system of [Plug0], the program has to be well-moded). Most prede-
fined predicates of Prolog may appear in the program and are handled directly
or by suitable transformations.

The type of termination analyzed by the system is the termination of com-
puting all the answers to the given query, using Prolog's computation rule. As
pointed out in [O'K90], this is the relevant notion of termination for Prolog, be-
cause even when one is interested only in a single answer, it is still important to
know that the computation of all answers terminates, due to the possibility of
backtracking.

We have applied TermiLog to 120 programs, taken from the literature on ter-
mination and some benchmarks. 82% of these programs were analyzed correctly
by TermiLog, completely automatically. The largest program that was analyzed
is the 57-clause credit-evaluation expert system from [StSh86].

* This research was supported in part by grants from the Israel Science Foundation

445

2 O v e r v i e w o f t h e s y s t e m

Termination is proved by using well-founded orderings on terms. Formally, we
define a norm for each term as follows:

n

llf(T1,...T)ll = c + a4] ll
i----1

where c and a l , . . . , a,~ are non-negative integers that depend only on f / n . The
norm of a variable X is denoted by X itself. In general, the norm is a linear
expression. To be used in a termination proof, however, the norm of the term
must be an integer (such a term will be called instantiated enough). Note that the
norm of a non-ground term may be an integer, since some of the ai may be zero.
Our definition of norm includes, as special cases, the term-size norm [VanG91]
and the list-size norm [UV88].

The system consists of three main parts - - see [LiSa96, LiSa97] for details.
The first does the instantiation analysis - - that is, it determines which argu-
ment positions of predicates are instantiated enough and which are not. The
instantiation analysis is done by means of a bot tom-up abstract interpretation
similar to groundness analysis (cf. ICons92]).

The second part is inference of constraints among argument sizes. The types
of constraints are the monotonicity and equality constraints of [BrSa89], but
the inference is done in a more accurate way. Since inferred constraints are not
always needed to show termination, the system provides the option of restricting
the constraint inference just to some parts of the given program.

The constraint inference also tells us whether a constraint is recursive or
non-recursive. Non-recursive constraints can often be "factored out" from the
termination analysis by automatic unfolding. This suggests a completely auto-
matic way of handling, for example, the mergesort program, that previously was
shown to terminate only by first applying some ad hoc transformation.

The third part consists of constructing the query-mapping pairs and applying
the test of [Sag91], which was originally intended for Datalog programs and is
here extended to general logic programs.

3 B e n c h m a r k s

This section sums up the results of applying our system to 120 programs taken
from papers on termination [DSD94, Plu90, AP94, Ver92], the benchmark col-
lection of [BGH94], and some other sources. TermiLog has analyzed correctly
82% of them. The results are given in the following table--explanat ions follow.
The detailed results may be found in the tables in [LiSaExp].

The TermiLog system has analyzed correctly all the examples from the survey
of [DSD94] on termination, including the mutually recursive bool. It is worth not-
ing that mutual recursion does not require any special consideration in our sys-
tem, while in earlier work [Plu90, VanGgl] special transformations were needed
to eliminate mutual recursion.

446

llSoarce INamber of Programs HazLdled Correctly Automatically
[DSD94] 7 7 (100%)
[pl.90] 1~ 16 (94%)
,[AP94] 19 17 (89%)
[BGH9,~] 24 11 (46%)
[Ver92] 32 26 (81%)

Other 21 21(100%)
U ~ l 120 9s (s2~)

TermiLog can handle all the examples of [Ptu90] that PHimer's own system
can handle, except for the program perm. TermiLog can also handle the pro-
gram malt, which Plfimer's system cannot handle. The program perm would be
handled by our system once linear equalities among argument sizes are added.

The paper of [AP94] does not deal with automatic termination analysis, but
develops a theoretical basis for studying termination of logic programs as well
as Prolog programs. Our system can handle all the examples of lAP94], except
for program perm of [Plug0] and the map-coloring program of [StSh86].

The benchmark collection of [BGH94] has more complex programs than those
usually found in the literature on termination. Out of the 24 programs in that
collection, our system could handle 11 (46%) programs. Some programs of that
benchmark could not be handled because the algorithms we use are not powerful
enough to show their termination, while others were too big and caused memory
problems.

The examples from [Ver92] are handled automaticallly except for six, three of
the latter being programs in which termination depends on the differentiation be-
tween constants (cf. [Llo87]), which is not made in our abstraction (cf. [LiSa96]).

The TermiLog system has analyzed correctly 21 further examples, including
* Four programming examples from the SICStus manual [SICS95].
* Ackermann's function (from [StSh86]).
* Greatest common divisor.
* Huffman codes computation.
* Quicksort using difference lists (from [StSh86]).
* 8 queens.
* Rewriting system for normalizing expressions with an associative operator.
* A game program from [AP93].
* The Yale shooting problem from [AB91].
* The credit-evaluation expert system from [StSh86] (this 57-clause program is
the biggest among all those analyzed).

It should be emphasized that all the experimental results reported in this
section were obtained by using only the basic algorithms implemented in the
system, and without any additional program transformations or other ad hoc
features intended to increase the power of the system.

An example session with TermiLog is given in [LSS97].

447

R e f e r e n c e s

[AB91]

[AP93]

[AP94]

[BrSa89]

[BGH94]

[Cous92]

[DSD94]

[LiSa96]

[LiSa97]

[LiSaExp]

[LSS97]

[Llo87]

[O'K90]
[Ph90]

[Sag91]

[SICS95]

[StSh86]
[vvs8]

[VanG91]

[Ver92]

K. R. Apt and M. Bezem. Acyclic Programs. New Generation Computing,
9:335-363, 1991.
K. R. Apt and D. Pedreschi. Reasoning about Termination of Pure Prolog
Programs. Information and Computation, 106:109-157, 1993.
K. R. Apt and D. Pedreschi. Modular Termination Proofs for Logic and
Pure Prolog Programs. In Advances in Logic Programming Theory, 183-229.
Oxford University Press, 1994.
A. Brodsky and Y. Sagiv. Inference of monotonicity constraints in Data-
log programs. Proceedings of the Eighth A CM SIGACT-SIGART-SIGMOD
Symposium on Principles of Database Systems, 1989, 190-199.
F. Bueno, M. Garc/a de la Panda and M. Hermenegildo. Effectiveness of
Global Analysis in Strict Independence-Based Automatic Program Paral-
lelization. International Symposium on Logic Programming, 320-336. MIT
Press, 1994.
P. Cousot and R. Cousot. Abstract interpretation and application to logic
programs. J. Logic Programming, 13:103-179, 1992.
D. De Schreye and S. Decorte. Termination of Logic Programs: the Never-
Ending Story. J. Logic Programming, 19/20:199-260, 1994.
N. Lindenstrauss and Y. Sagiv. Checking Termination of Queries to Logic
Programs. http://www.cs.huji.ac.il/~naomil/
N. Lindenstrauss and Y. Sagiv. Automatic Termination Analysis of Logic
Programs. ICLP'97. MIT Press, 1997.
N. Lindenstrauss and Y. Sagiv. Automatic Termination Analysis of Logic
Programs (with Detailed Experimental Results).
http://www.cs.huji, ac.il/~naomil/
N. Lindenstrauss ,Y. Sagiv and A. Serebrenik. An Example Session with
TermiLog. http://www.cs.huji, ac.il/~naomil/
J. W. Lloyd. Foundations of Logic Programming. Springer Verlag, second
edition, 1987.
R. A. O~Keefe. The Craft of Prolog. MIT Press, 1990.
L. Pliimer. Termination Proofs for Logic Programs. Springer Verlag, LNAI
446, 1990.
Y. Sagiv. A termination test for logic programs. In International Logic
Programming Symposium. MIT Press, 1991.
SICStus Prolog User's Manual. Release 3. Swedish Institute of Computer
Science, 1995.
L. Sterling and E. Shapiro. The Art of Prolog. MIT Press, 1986.
J. D. Ullman and A. Van Gelder. Efficient tests for top-down termination
of logical rules. 3ACM 35:2(1988), 345-373.
A. Van Gelder. Deriving constraints among argument sizes in logic pro-
grams. Annals of Mathematics and Artificial Intelligence, 3:361-392, 1991.
C. Verschaetse. Static Termination Analysis for Definite Horn Clause Pro-
grams. Ph.D. Thesis, K.U. Leuven, 1992.

