
The Invariant Checker: A u t o m a t e d Deduct ive
Verification of React ive Systems

Hassen Sa'idi
VERIMAG 1

saidi�9 fr
http://www, imag. fr/VERIMAG/PEOPLE/Hassen. Saidi/Invariant-Checker. html

1 D e s i g n P h i l o s o p h y

The Invariant Checker [GS96,Sa'i96] is a tool for the verification of invariance
properties of reactive systems using theorem-proving techniques and tools. The
system is designed as a front-end for the Pvs [OSR93a] theorem prover. The
Invariant Checker can be seen as an extension of the Pvs verification system
to handle the notion of transition systems and invariants as well as the usual
mathematical objects. These extensions appear at two different levels: the Pvs
specification language is extended by the notion of a system, that, is a program
given as a transition system or a parallel composition of transition systems. The
Pvs prover is also extended with a proof rule (cf. [MP95]) dedicated to invariance
properties. To check whether a predicate P is an inductive invariant of a system
S, it is sufficient to check the validity of a set of first order formulas called
verification conditions (VCs) (cf. [GS96]), expressing the fact that each transition
of the program preserves P. This proof rule also provides a strengthening method
for P: if some of the generated VCs are not provable, P is replaced by PA~r~(P)
in a model checking like manner. This method can be completely automatized,
but convergence is not guaranteed.

This kind of invariant verification makes a different use of theorem proving
than the "classical" one where the program semantics is encoded in the prover's
specification language. In this "classical" approazh the proof process is compli-
cated by the encoding of semantics and the rewriting of semantics definitions,
while the most important and difficult part of the verification process is the rea-
soning about the program variables and their values. Also, it requires too much
user intervention. The objective of our tool is to provide more automatization
using a set of features. The architecture of the tool is presented in Figure 1.

2 F e a t u r e s

Syntax: Programs can be described in a Simple Programming Language (SPL),
close to the one used in [MP95], where program variables can be of any type
definable in Pvs, and can be assigned by any Pvs expression of compatible type.
Also, it is possible to import any defined Pvs theory. Programs described in SPL
are translated automatically to guarded commands with explicit control.

1 Centre Equation, 2, Avenue de la Vignate, 38610 Grenoble-Gi~res, Tel: (+33)
4.76.63.48.447 Fax: (+33) 4.76.63.48.50

437

-~ ~-~

i i i
i n i

_ i

i
i

I
I
I

e

s

J

gu i
i
i
i

L~

438

Typecheck ing : Typechecking a program consists in checking that every guarded
command is well typed according to a typing context, that is each guard is a
boolean expression, and each variable is assigned by an expression of a com-
patible type. This typing context consists of all variable declarations and the
imported Pvs theory . Typechecking a specification leads to the generation of
type correctness conditions (TCCs) which have to be proved as i n v a r i a n t s and
not as valid formulas. If all generated TCCs are proved, this guarantees "ab-
sence of run-time errors"~ such as division by zero or the application of the tail
function to the empty list.

P r o o f session: A proof session starts with typechecking the program and the
property to be verified. The program is translated into an internal representa-
tion which is used by all components of the tool. One can apply static analysis
methods in order to extract inductive invariants using the techniques described
in [BLS96]. The generated invariants are stored in the invariant data base.
In order to prove that the considered property is an inductive invariant of the
program, the user can apply the proof rule using two different modes:

- Interactive mode: In this mode the user invokes the proof rule which gener-
ates a set of VCs. Each VC is submitted to the prover, where a proof strategy
is applied. If some of the generated VCs are not provable, the user can either
try to prove them interactively or he can apply the proof rule again. In this
case, the invariant is automatically strengthened, and a fresh set of VCs is
generated.

- Automatic mode: In this mode the user indicates to the proof manager the
maximal number of strengthening step. The proof rule is then applied with-
out user interaction until this maximal number is reached, or until an induc-
tive invariant is computed.

In both modes, the user can decide to use the invariants in the data base in
order to weaken the generated VCs. In this case, for every generated VC, a set
of relevant generated invariants is automatically selected to achieve the proof.

A u t o m a t i c d i scharg ing o f VCs: The generated VCs are submitted to the
Pvs prover, where automatic proof strategies combining automatic induction,
automatic rewriting, boolean simplification using Bdds and decision procedures
are applied. The user can defined such strategies, by combining pre-defined Pvs
strategies and user defined ones. Non provable assertions are considered non
valid.

Invar ian t da t a base: It contains the invariants generated using the techniques
described in [BLS96]. Each already proved invariant is automatically added to
the data base. Also, the user can always enrich the data base. Therefore, with
each invariant is associated a status which changes during a proof session. The
status has three possible values:

- assumed: these arc user defined invariants for which no proof is required.
They play the rote of axioms, and can therefore lead to inconsistent proofs.

- unproved .

439

- proved: a proof is associated with such an invariant. It consists of the applied
proof strategy and the invariants used during the proof. In order to mainta in
a coherent da ta base, if some invariant is removed, all the already proved
invariants depending on it, become unproved.

A u t o m a t i c a b s t r a c t i o n : Recently, we added a new feature, which consists of
the use of abstraction techniques [GS97]. Given a set of predicates 91, ..., ~ on
the variables of a program, an abstract state graph (where states are valuations of
91,---, ~) is constructed in an automat ic way using user defined proof strategy.
An abstract state graph can be used in many ways:

- It defines an invariant of the program.
- Any verification technique for finite state systems can be applied. We have

interfaced our tool with ALDI~BARAN [FGK+96], which allows:
* minimization of the abstract state graph modulo bisimulation.
�9 evaluation of any temporal logic formula without existential quantifica-

tion over paths.
- The abstract state graph (or its minimization w.r.t to strong bisimulation)

can be used as a global control graph from which stronger invariants can be
generated and added to the invariant da ta base.

U s e r i n t e r f ace" P v s has emacs as user interface. We found convenient to use
the same user interface for our prototype. All the functions of the tool can be
invoked by emacs commands.

3 Experiments

Using our tool we verified various classical mutual exclusion a lgor i thms, a read
and write buffer using complex da ta types [GS96]. The use of abstract ion tech-
niques allow us to prove in a fully automat ic way parameterized versions of an
alternating bit and a bounded retransmission protocol [GS97].

References

[BLS96] S. Bensalem, Y. Lakhnech, and H. Sai'di. Powerful Techniques for the Auto-
matic Generation of Invariants. In Conference on Computer Aided Verifi-
cation CAV'96, LNCS 1102, July 1996.

[FGK+96] J.-C. Fernandez, H. Garavel, A. Kerbrat, R. Mateescu, L. Mounier and M.
Sighireanu. CADP (Ceesar/Ald6baran Development Package): A protocol
validation and verification toolbox. In CAV' 1996. LNCS 1102, 1996.

[GS96] S. Graf and H. Sai'di. Verifying invariants using theorem proving. In Con-
ference on Computer Aided Verification CA V'96, LNCS 1102, July 1996.

[GS97] S. Graf and H. Sai'di. Construction of abstract state graphs with PVS. In
this volume.

[MP95] Z. Manna and A. Pnueli. Temporal Verification of Reactive Systems: Safety.
Springer-Verlag, New York, 1995.

[OSR93a] S. Owre, N. Shankar, and J. M. Rushby. A Tutorial on Specification and
Verification Using PVS. Computer Science Laboratory, SRI International,
February 1993.

[Sai'96] H. SeiidJ. A Tool for Proving I nvariance Properties of Concurrent Systems
Automatically. In TACAS'96, LNCS 1056, Springer-Verlag.

