
Parametrized Verification of Linear Networks
Using Automata as Invariants *

A. Prasad Sistla I

Electrical Engineering and Computer Science Department, The University of Illinois
at Chicago, USA

1 I n t r o d u c t i o n

Recently there has been much interest in parametrized verification, i.e., verifica-
tion of a family of systems {P~}i=l~ where P~ is a system consisting of i number
of processes, against a specification given in temporal logic or by an automa-
ton. Such interest is motivated by the fact that many algorithms in practice are
designed to work with arbitrary number of processes.

In general, the problem of determining if a family of networks of similar
processes satisfies a temporal logic specification is undecidable [AK86]. Never-
theless, automated and semi-automated methods for verification for restricted
classes of parametrized systems have been proposed in literature. The works of
[SG87, GS92, EN96] present fully automated methods for systems composed of
a single control process and an arbitrary number of identical client processes.

One of the semi-automated methods is to show that for certain class of prob-
lems (specifically, rings of arbitrary size or client-server problesm) there exists a
k such that correctness of families of networks upto size up to k implies the cor-
rectness of networks of all sizes; this has bee done in the works of [EN95, GS92].

An alternate method, which we use, is to use induction on the number of
processes. Roughly speaking, this method, when applied to a linear network
composed of an arbitrary number of processes P works as follows. An inductive
invariant I, specified as another process, is obtained. The induction step is shown
by establishing that the process I | < P where | is the composition operator,
__ is an appropriate monotonic pre-order on processes. The basis step is obtained
by showing that the system composed of a small number of processes is less
than or equal to I in the pre-order. The correctness of the family of systems
is established by showing that I itself satisfies the correctness property. All the
three steps can be automated if I is a finite state process. The above approach
has been taken in [WL89, KM89, BCG89].

Although the above approach of specifying the invariant as another pro-
cess is elegant, it has the following drawback. It is difficult to specify invariants
that involve predicates on global states as well as predicates on communication
patterns. To overcome this problem, Abstract Transition Systems (ATS) were

* This work is partly supported by the NSF grants CCR-9623229, CCR-9212183, CCR-
9633536

413

employed in [CGJ95] to specify the invariaat. An abstract transition system con-
sists of abstract states and transitions between the abstract states. An abstract
state is specified by a regular expression or automaton that denotes a predicate
on the global states of systems with arbitrary number of processes. Thus, ATS
uses two different formalisms-- the regular expressions to specify properties of
global states and the transitions in the ATS to specify computation steps.

In this paper, we propose a unified formalism based on automata on two
dimensional strings to specify the inductive invariant. Use of such automata is
based on the observation that the computation of a linear network of n processes
can be looked as a two dimensional string. One dimension is the time dimension
which is infinite and the other is the space dimension consisting of the states
of processes at any particular time. An automaton on two dimensional string
takes as input the states and transitions of individual processes from the two
dimensional string where these inputs are generated by scanning the string from
left to right in the space dimension, and bottom to top in the time dimension.
The automaton accepts the string by going through a final state infinitely often.

In our approach, the inductive invariant is specified by a finite state au-
tomaton A on two dimensional strings. The set of computations accepted by
the automaton denotes the inductive invariant. We show how to compose an
automaton with a process P to obtain another automaton A | P. The inductive
step is proved by showing that L(A | P) is contained in L(A) where L(A) is the
set of two dimensional strings accepted A. This method is shown to be sound
and complete for verifying correctness of families of linear networks (as well as
circular networks) of the form I | pi | E (for all i > 0) where I, E and P are
processes. The completeness result we prove is a semantic completeness result. It
is for the first time that such a completeness result has been given for induction
based proof systems for parametrized networks.

In general checking if L(A1) C L(A2) is an undecidable problem. However,
one can show that L(A1) C_ L(A2) by exhibiting a simulation relation between
the states of A1 and A2, or by showing that s C_ s where s is
the set of one dimensional strings accepted by Ai. While automatically checking
for the existence of simulation relations can be done efficiently, the problem of
checking if L(A1) C s can be done in exponential time using traditional
automata theoretic approaches. We illustrate our approach by simple examples.

The above approach is extended for verifying correctness under fairness as
well. For this we use generalized Buchi automata [GW91] and define fair compo-
sition of such an automaton with a process. The inductive invariants are specified
by generalized Buchi automata. We show that this induction based approach for
verifying correctness under fairness is sound. However, we do not have a com-
pleteness theorem for this case. To the best of our knowledge, all the earlier
induction based approaches did not consider fairness.

Our paper is organized as follows. Section 2 defines the automata that we plan
to use and the composition of an automata with a process. Section 3 presents the
inductive approach for linear and circular networks. It also presents the induction
based approach for correctness under fairness. It contains examples illustrating
the approach. Section 4 contains concluding remarks.

414

2 D e f i n i t i o n s

A u t o m a t a . A Buchi automaton on two dimensional strings is defined exactly
simita~ to the way a Bnchi automaton on infinite strings is defined. The only
difference is that the input alphabet to the two dimensional automaton has a
special structure. Each input symbol to the automaton is of the form (u, a, d, u I)
where u and u I are process states, a is an action symbol which can be an element
from A U {e, i% cv} and d is an indicator denoting if the process is an internal
process or a boundary process (if so which). Here u denotes the current local
state of the process being scanned by the automaton and u' is the state of the
same process in the next global state. If the action symbol a is e then it indicates
that the process does not make any transition in the current computational step;
if a is iT then it indicates that the process makes an internal transition (i.e., no
communication) in the current computational step; if a is cr then it denotes a
synchronized communication with a neighboring process in the current computa-
tional step; if a is in A then it indicates tha t the process offers a communication
denoted by a to the external world and only boundary processes can offer such
communication.

Throughout this section, we assume that S is a set of process states and the
states ofal t the processes are drawn from this set. We also assume that A , A ' are

communication alphabets that do not contain the symbols e, iv, c% and that they
contain complementary act ion/communicat ion symbols; for an action symbol a,
we let ~ denote the complement of a; furthermore, if b = ~ then b = a.

Formally, an automaton A over A, is a 5-tuple (Q0, Z , Q, 6, F) where Z =
S x (A U {iT, c~-,e}) x { le f t , right, i n t e r n a l } x S is the set of input symbols as
indicated above, Q is the set of automaton states, Qo is the set of initial states,
5 C Q x Z x Q is the next state relation and F C_ Q is the set of final states.

Let n be a positive integer. A two-dimensional string c~ of width n over an
alphabet A is an infinite alternating sequence So, ao, s l , a l , ..., s i , ai , ... where si =

(si,o, si,1..., si,n-1) is an n-tuple of process states and ai = (ai,0, ai,1,..., a i ,n -~)
is an n-tuple of process actions where each ai,i E A U {e, iv , c'r} (Note tha t the
representation we used here is a row major representation of a 2-d string; this
representation does not cause any loss of information). Each such string denotes
a computation in which s i j denotes the local state of process j in the global
state si, and a i j denotes the action taken by process j in the computational
step from s~ to si+l.

A linearization of a 2-d string is obtained by scanning the 2-d string row
by row, left to right, bot tom to top, and output t ing all quadruples of the form
(s, a, d, s s) where s and s ~ are the current and next states of the process being
scanned, a is the action executed by the process and d is an indicator denoting
the position of the process. Formally, a linearization l (a) of a 2-d string a =
so, a0, s l , a l , . . .s i , ai , ..., as given above, is the infinite sequence
u0,0, Uo, 1, ..., u o , n - 1 , . . . , ui,o, u~, 1 , . . . , u~, j , . . , where ui j = (s i , j , a~,j, d~j, si+ 1 j) and

415

for 0 < i < c~, d~,o = left, di,,~-i = right, and for 0 < j < n - l , di,j = internal.
Here di,j denotes whether j is the left boundary process , right boundary process
or an internal process.

Let s denote the set of all strings from Z ~ accepted by the Buchi au-
tomaton A when A is considered as an au tomaton over infinite strings. We say
tha t a 2-d string a is accepted by the au tomaton A if l(a) C s i.e., the
linearization of a is accepted by the au tomaton A when A is considered as an
au tomaton on infinite strings. For an au tomaton A, we let L(A) denote the set
of all 2-d strings accepted by A.

C o m p o s i t i o n o f a 2 -d s t r i n g a n d a P r o c e s s . Now, we define the composition
of a 2-d string with a process. This is needed in order to define a composition
of an au tomaton with a process. A process over an alphabet of actions A is a
triple (S, R, S0) where S is a set of states, R c S • (A U {iT}) • S is a set of
transitions and So is the set of initial states.

Let a be a 2-d string of width n over an alphabet A and P be a process
over the alphabet A ~. Let A" = (A U A ~) - (A N A~). Now, we define the right
composition of a and P, denoted as a | P , to be a set of 2-d strings of width
n + 1 over the alphabet A" as follows. Intuitively, a 2-d string 5 is in a | P if
it is obtained by fusing the 2-d string a with with a computat ion of P where
the fusion is carried out by synchronizing on complementary actions. The formal
definition of a | P is is given in the full paper [Si97].

C o m p o s i t i o n o f an A u t o m a t o n w i t h a P r o c e s s . Let A be an au tomaton
over A and P = (S, R, So) be a process over A'. We define an au tomaton A | P
over (S, A ') , where A" = A U A ~ -- A N A t as follows. We call A | P to be the
right composition of A with P. As we will show later L(A | P) will be equal to
the union of a | P where the union is taken over all a E L(A).

Intuitively, A | works as follows. When it runs on a two dimensional string,
as it goes from left to right, it behaves like A until it reaches the right end, at
the right end it will model possible synchronization of action with P and move
one more position to the right and possibly simulate a transit ion of P, after this
it will move to the left of the next top row and repeat this process. It knows
tha t it is at the right end if it gets an input symbol of the form (t, a, right, #)
where right denotes the right end.

Formally, A | = (Q0 ~, Z t, Q', 5', F t) and Z t = S x A ' • {left, right, internal} x
S where A" is as given above. Each state in Q~ is a 5-tuple of the form (q, s, flagl,
flag2, flag3, a) where q, s are the states of A and P respectively, flag1, flag2, flag3
are binary flags and a is an action symbol. Here flag1= 1 indicates tha t the
next computat ional step will be caused by a transit ion of P which is either an
internal transit ion or a transit ion offering an action in (A t - A). If flag1= 1 then
all first n processes in the computat ional step will not change states and only
process P which is the (n + 1)st process will make the above type of transition.
flag2= 1 indicates that the au tomaton has scanned the first n states in the
current row; this implies tha t the next state scanned will be tha t of the right

416

most process which is process P. When flag3= 1 at tha t t ime flag2 will also have
value 1; this case indicates tha t the right most process, i.e., process P , should
make a transit ion offering action a; in this case a E A N A ~ and this occurs when
synchronization on complementary action occurs between P and the n th process.
The formal and complete definition of the A | P can be found in [Si97].

T h e o r e m 1. A 2-d string 5 of width (n + 1) over the alphabet A" is accepted by
the automaton A 63 P iff there exists a 2-d string a of width n over A such that
5 �9 a | P, i.e., L(A 63 P) = U~rEL(A) O" 63 P.

We define similarly left composition P | a of a process P with a 2-d string
a, and the left composition P 63 A of a process P with an au tomaton A. We also
define left-right composition of a process P with a 2-d string a and also with a
process P , denoted by P | a and P @ A respectively. In this case both P and
a and also A should be on the same action alphabet. P | a forces every action
of P to be synchronized with a complementary action in a and vice versa; thus,
the resulting set of 2-d strings do not offer any communication to the external
world. P | A is defined similarly. The input alphabet of the resulting au tomaton
P | A has only input symbols of the form (s, a, d, s') where a �9 {e, iT, CT} and
d = internal. The au tomata P 63 A and P | A satisfy similar properties as given
by Theorem 1.

3 Verification of Linear Networks Us ing Induct ion

We consider linear networks of processes in which adjacent processes communi-
cate using CCS/CSP type of actions. We assume tha t the communicat ion actions
of processes are drawn from a set A which consists of actions of the from a? and
a! which are called complemented pair of actions. Communicat ion occurs when
two adjacent processes execute complementary actions. In this section, we show
how we can verify the correctness of such linear networks and circular networks
using au toma ta as invariants. Let A be an action alphabet.

3.1 Linear Networks

In a linear network, each process can communicate only with its left and right
neighbors. To model this, we assume tha t the actions a process uses are of the
form left.a and right.a where a C A. Let A' = {left.a, right.a : a C A}.

Let Po, P1, . . , Pn-1 be a set of processes with action symbols taken from A ~.
We define the linear composition P0 | P1 | ... | P,~-I, called a linear chain, by
using CCS composition operator as follows. For each i, such tha t 0 _< i < (n - 1),
we rename all actions of the form right.a in P~ to ai, and for each i such tha t
0 < i _< n - 1, we rename all actions of the form left.a in Pi to a i - t . Note tha t
actions of the form left.a in P0 and actions of the form right.a in Pn-1 are not
renamed. Let the resulting processes be P~, P~, ..., P ~ - I (Note tha t the ~ is the
complement of ai). Now we define the linear chain Po | P1 | ...Pn-1 to be same
as P~ o P~... o P ~ - I where o is the tradit ional C CS/CSP composition operator.

417

The set of infinite computations of the chain of processes, denoted as C(Po |
�9 .. | Pn-1) is the set of 2-d strings a -- uo,ao,ul ,al , ...us,as, ... of width n over
the alphabet A ~ satisfying the following properties: for each j , u0,j is an initial
state of process Pj and for each i > 0, the computational step (ui, ai, ui+l)
either involves an internal transition of process j , for some 0 ~ j < n, and
in this case ai,j is iT, or it involves synchronized communication involving two
adjacent processes j and j + 1 and in this case ai,j and ai,j+l are both m-. If
a process j is not involved in the computational step (ui, ai, Ui+l) then as,j is
and us+l,j = u i , j .

Let P, I and E be a processes over the alphabet A ~ such that all the actions
in I are of the form right.a and all the actions in E are of the form left.a where
a E A, i.e., I and E do not offer communication to the left and right respectively.
Consider a computation of a linear chain of the form I | p i | E for some i > 0,
where p i denotes the composition P | ... | P taken i times. All the action
symbols appearing in such a computation are from the set {e, iT, CT}. This is due
to the fact that the left most process I does not offer any communication to the
left, and E does offer any communication to the right. Let r be an automaton
over the alphabet {e, iT, CT}. We say that the linear chain I | pS | E satisfies
the property specified by r if C(I | pS | E) C L(r

Let ~-i be be the linear chain I | pc+i | E. Now, consider the family of
linear chains ~-i for i = 0, 1 For an automaton A over the alphabet A ~, let
A[a/right.a] denote the automaton obtained by renaming all actions of the form
right.a to a in ,4. Similarly, A[a/left.a] and A[a/left.a][a/right.a] are defined. In
the last case, both type of actions left.a and right.a are renamed to a. For a
process P, we let P[a/left.a], P[a/right.a] and P[a/left.a][a/right.a] denote pro-
cesses obtained by similar renaming. Let A" = {right.a : a E A}. The following
theorem presents a method for verification of the correctness of a family of linear
networks.

T h e o r e m 2 (S o u n d n e s s a n d C o m p l e t e n e s s T h e o r e m) . For i = 0, 1..., let
iTi = I | pc+i | E be a family of linear networks and r be an automaton over
{~, iT, CT}. Then, Vi > O, J:i satisfies the specification given by r iff there exists
a finite state automaton Jt over A" satisfying the following properties.

1. C(I | pc) C_ L(A);
2. L(A[a/right.a] | P[a/left.a]) C_ L(A);
3. L(A[a/right.a] | E[a/left.a]) C_ L(r

Soundness part of the above theorem, given by the "if" part, is shown by
proving that , Vi _> 0, L(A) contains all the computations of I| this follows
from part 1 of the theorem and the property of the composition operator of an
automaton with a process. The completeness, specified by the "only if" part ,
is shown by obtaining an automaton .A with the property that the set of 2-d
strings accepted by .4 is exactly the computations of a linear network of the
form I | pc+i; the automaton ,4 moves on the 2-d string and ensures that the
string is according to the transitions of the individual processes.

418

In the above theorem `4 is the automaton that specifies the inductive invari-
ant, step (1) is the basis of the induction, step (2) is the induction step, and step
(3) is the step that checks the correctness with respect to r

3.2 Linear Networks w i th Fairness

In this subsection, we present an induction based method for verification of
correctness under fairness. The fairness that we consider here is the classical
weak fairness; roughly speaking, a computation is said to be weakly fair if every
process is infinitely often disabled or infinitely often executed.

The set of fair computations of a linear chain P0 | ..- | Pn-1 , denoted
by :TC(Po | ... | Pn-1), is defined to be the set of computations that satisfy
the fairness requirements for all the processes excepting the boundary process
Pn-1 (the boundary process Pn-~ is open and its fairness will be taken into
consideration when we compose the chain with another process on the right
side).

In order to specify invariants, we use generalized Buchi automata [GW91] on
2-d strings. A generalized Buchi automata is almost same as a Buchi automata
defined earlier excepting that the acceptance condition is a collection of subsets
of states; formally, a generalized Buchi automata A is a 5-tuple (Q0, Z, Q, 5, F)
where F is a collection {F1, ..., Fk} of subsets of Q; Q0, Z, Q, 5 are defined as
before. An input string in ~ is accepted by Jt if there exists a run of A on the
input such that for each i = 1, ..., k some state in Fi appears infinitely often in
the run. The languages ~(A) and L(A) are defined as before.

Now we define the fair right composition of a generalized Buchi automaton A
and a process P, denoted as A| as follows. The construction of the automaton
.4 | P is similar to A | P excepting that it uses an additional flag to capture
the fairness condition on the previous right most process; note that after the
composition the new right most process will be P. If F and F ~, respectively, are
the acceptance conditions in A and ,4 | P then the number of subsets in F ' is
one more than that in F; the additional subset in F I captures the weak fairness
requirement on the previous right most process, and the remaining subsets of F ~
correspond with those of F. Details of the construction of A | P will be given
in the full paper.

Let I, P and E be processes as defined in the previous subsection and r be a
generalized Buchi automaton over the alphabet {c, iT, c~-}. As usual we say that
the the linear chain I | p i | E satifies r under fairness if all fair computations
of the chain are accepted by r Now, we have the following soundness theorem
for verifying correctness under fairness.

T h e o r e m 3 (Soundnes s T h e o r e m) . Let ~i = I|174 for i = 0, 1..., be
a family of linear networks and r be an automaton over {c, iT, CT}. Then, Vi >_ O,
Yi satisfies the specification given by r under fairness if there exists a finite state
generalized Buchi automaton A over A" satisfying the following properties.

1. ~ d (I (3 P ~) C_ L(A);

419

2. L(A[a/right.a] | P[a/left.a]) C L(A);
3. L(,4[a/right.a] | E[a/left.a]) C_ L(r

3.3 Circular Networks

Now, we discuss how to verify families of circular networks of processes. Let A
and A t be as defined above. Let P0, ... ,P~-I be processes over the alphabet A ~.
For each i, 0 _< i < n, let P[~ denote the process where actions of the form left .a,
right.a are renamed to a(i_l)modn and ai respectively. Note that, we are also
renaming lef t .a in Po and right.a in Pn-I- We define a circular network, denoted
P0 | P1 @ ...P,~-I, to be the composition of the CCS processes P~, ..., P~t_l, i.e.,
P~ o p~r o ... o P~ 1- The set of computations of such a circular network, denoted
C(Po @ ... @ Pn-1), is defined as a set of 2-d strings over the alphabet {e, iT, cr}
as before.

Let I ,E and P be processes over A'. We define Gi to be the circular network
I@ pc+s@ E where pi denotes the expressions P@... @ P containing c+ i number
of Ps. The following theorem tells us how to use induction for verification of
families of circular networks. As before we define what it means for a circular
network to satisfy a specification given by an automaton.

Theorem4 (Soundness and Comple teness) . Let ~ = I @ pc+i @ E, for
i = O, 1..., denote a family of circular networks. Let r be an automaton over
{~, iT, eT}. Then, Vi >__ 0 ~i satisfies the specification r iff there exists a finite
state automaton A over A ~ satisfying the following properties.

1. C(I 6) P~) C_ L(A);
2. L((c4[a/right.a]) | P[a/left.a]) C_ L(A);
3. L(A[a/right.a][a'/teft.a] | E[a/left .a,][a'/right.a]) C L(r

It is to be noted that, unlike in Theorem 2, the automaton r in the above
theorem is over A'. Also, we use the | operator in step 3. We can prove a sound-
ness theorem, similar to Theorem 3, for correctness under fairness for circular
networks as well.

Now we discuss how- to automate the different steps in the above two theo-
rems. All the three steps require checking language containment of automata on
2-d strings. Step 1 can be done by obtaining the automaton corresponding to
I | P~ and then checking language containment. In steps 2 and 3, we need to
compute the composition of an automata with a process, and this can be done
using the method given in the previous section. The complexity of this algorithm
is proportional to the product of the sizes of the automaton and the process.

3.4 Language Containment Problem

The language containment problem for generalized 2-d Buchi automata (and
even for 2-d Buchi automata) is undecidable. However, the following lemma gives
us a sufficient condition for language containment that is decidable. It states that,
for automata At and A2, if the set of one-dimensional strings accepted by A1 is
contained in the set accepted by A2 then L(A1) C_ L(A2).

420

L e m m a 5 . Let A1 and A2 be generalized Buehi automata on A. I f f~(Az) C_
s then n (d l) C_ L(A2).

The condition/:(A1) C /:(A2) can be checked by complementing A1 using
the methods of [SVW85]. However this will have exponential complexity. Now,
we give another condition that is easily checkable. This method uses simulation
relations.

Let A1 = (Q0, Z, Q, 6, F) and A2 = (Q~, Z , Q', 6', F ') be generalized 2-d
Buchi automata. (Note that F and F ' are collections of subsets of states). A
simulation relation R C Q1 x Q2 is a binary relation satisfying the following
properties.

- For every q E Q0 there exists a q' E Q~ such that (q, q') E R.
- If (q, x, r) E 6 then for every q' such that (q, q') E R there exists an r ' E Q'

such that (q', x, r ~) E R.
- There exists a on-to function f from F to F' such that the following property

is satisfied:
For every subset C E F and for every q E C and every qt E QI if q E C and
(q, q') E R then q' E f (C).

The temma given below follows from known results.

L e m m a 6. If there exists a simulation relation between A1 and A2 then L(A1) C
L(A2).

Checking if there exists a simulation relation can be done efficiently for the
case when the automata are Bcuhi automata.

E x a m p l e s . We first consider a simple token passing aJgorithm for circular net-
works considered in [CG87]. Here we have circular network of identical processes
that communicate by passing a token around in the anti-clockwise direction. The
diagram denoting such a process is given in figure 1. A process P is initially in
the state N and receives a token from the left by executing the action left .t?
and enters the critical region C (here, left and right are defined with respect
to a person facing the center of the circle). In state C, it executes an internal
transition and stays in the same state, or it executes the action right.t! and goes
to state N. Let I be the same process as P excepting that its initial state is C,
and E be same as P. Let r be the automaton on 2-d strings, given in figure 2,
that states that exactly one process is in state C at any time.

To verify this property for all circular networks of the type I @ p~+Z @ E for
all i _> 0, we use the invariant automaton given in figure 3. The transitions of
this automaton are oblivious to the last component in each input symbol (i.e.,
the component denoting the next state of a process); for this reason each input
symbol is given as a triple; a value * in an input symbol should be taken as a
wild card; a value of 1 or r or i appearing as the last component indicates the
automaton is scanning the left most, right most and internal processes respec-
tively. States a and g denote the occurrance of a sequence of global states in

421

right.t! left.t?

Fig. 1. Process P

C
(N, *, r) (C, *, l) ,) (N, *, i)

//((c, e,i)

- -) (N, i)

Fig. 2. Automaton

which the left most process has the token and is in the critical section. (State
f denotes the situation where a global state has more than one token; this is
an error state). States e, c and d denote a sequence of global states in which an
inner process has the token and is in critical section. States b and h denote a
sequence of global states in which the right most process is in critical section.
The transition from h to i occurs when the right most process gives the token
to the external world. The transition from i to j denotes the case where the left
most process gets the token from the external world.

It can be shown that the above invariant automaton satisfies all the three
conditions given in Theorem 4. This can be shown by exhibiting simulation
relations.

Now, we show how the same invariant automaton, given in figure 3, can be
changed to verify the liveness property that process I enters the critical section
infinitely often. The change to the invariant automaton is the addition of the
following acceptance condition F which makes it in to a generalized Buchi au-
tomaton. F consists of two sets F1 and F2. F1 consists of all states other than a
and g, F2 consists of all states other than c, d~ e.

We can also prove the safety and liveness properties of the more complex
token ring example considered in [CGJ95]. Details are left out due to lack of
space.

4 C o n c l u s i o n s

In this paper we proposed a formalism based on automata on two dimensional
strings for specifying inductive invariants for proving correctness of families of
linear and circular networks. We proved our inductive approach to be sound and
complete (semantical completeness). We have illustrated our approach by simple
examples.

We have also given the inductive approach for verification of parametrized
systems under fairness. In this case, we use generalized Buchi automata (or

422

Streett automata) as inductive invariants. For this case, we have proved the
soundness theorem.

As part of future work, it will be interesting to automate the different parts
of the induction based approach and apply them to real practical examples. It
will also be interesting to extend our approach to networks defined by context
free grammars [SG89]. Further more, it will also be interesting to investigate
logic based approaches for specification of the invariants.

R e f e r e n c e s

[AK86]

[BCG89]

[CGJ95]

[cG87]

[EN95]

[EN96]

[GS92]

[GW91]

[KM89]

[sa89]

[Si97]

[SVW85]

[SG87]
[WLSg]

K. R. Apt and D. Kozen: Limits to Automatic Program Verification. Infor-
mation Processing Letters, 22.6 (1986), 307-309.
M. Browne, E. M. Clarke and O. Grumberg: Reasoning About Networks
with Many Identical Finite State Processes. Inf. and Computation, 81(1):13-
31, Apr. 1989.
E. M. Clarke, O. Grumberg and S. Jha: Verifying Parametrized Networks
Using Abstraction and Regular Languages. CONCUR 95.
E. M. Clarke, and O. Grumberg: Avoiding the State Explosion Problem in
Temporal Logic Modelchecking Problem. In Proceedings of ACM Sympo-
sium on Principles of Distributed Computing 1987.
E. A. Emerson and K. S. Namjoshi: Reasoning About Rings, Proceedings
of 22nd POPL conferece, Jan 1995.
E. A. Emerson and K. S. Namjoshi: Automatic Verification of Parametrized
Synchronous Systems. Proceeding of the International Conference on Com-
puter Aide Verification 1996.
S. M. German and A. P. Sistla: Reasoning About Systems with many Pro-
cesses. JACM, July 1992, Vol 39, No. 3, pp 675-735.
P~ Godefroid and P. Wolper: Using Partial Approach to Modelcheckiug.
Proc 6th IEEE Symposium on Logic in Computer Science, pp 406-415,
Amsterdam, July 1991.
R. P. Kurshan and K. McMillan: A Structural Induction Theorem for Pro-
cesses. ACM Sym. on Principles of Distributed Computing, Aug. 1989.
Z. Shtadler and O. Grumberg: Network Grammars, Communication Be-
haviors and Automatic Verififcation. Proc. of International Workshop on
Automatic Verification Methods for Finite State Systems, June 1989.
A. P. Sistla: Parametrized Verification of Linear Networks Using Automata
as Invariants. Technical report, University of Illinois at Chicago 1997.
A. P. Sistla, M. Vardi and P. Wolper: The Complementation Problem for
Buchi Automata and Applications to Temporal Logics. Proceedings Of The
12th International Colloquium On Automata, Languages And Program-
ming, Greece, August 1985; The journal version of the paper appeared in
Theoretical Computer Science, 49, No 2,3 1987, pp 217-237.
A. P. Sistla and S. M. German: Reasoning About many Processes. LICS 87.
P. Wolper and V. Lovinfosse: Verifying Properties of Large Sets of Processes
with Network Invariants. Proc. 1989 Intl Wokshop on Automatic Verifica-
tion Methods for Finite State Systems 1989.

423

~ , (N, E, r)

~ . ~ c , ~, t>

' l (N' E ' r > ~) <N,E,i>
<C, right.t., r)] / ~ z]

C " C, n ht t v r

<N, left.t., l>

~<N, e, l>

<N, left.t?, l)

<N, E, r)l @
~ C , ~, i) (N, e, i)

@ ,) (N, E, i)

~ (N , E,r)

<c, e,~>Jl<~r e,l>

C<N, e,i-)@" <C, right.t!, r>

Fig. 3. The invariant automaton A

CD
(N, E, i>

(N, left.t?, l)

