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1 I n t r o d u c t i o n  

Recently there has been much interest in parametrized verification, i.e., verifica- 
tion of a family of systems {P~}i=l~ where P~ is a system consisting of i number 
of processes, against a specification given in temporal logic or by an automa- 
ton. Such interest is motivated by the fact that many algorithms in practice are 
designed to work with arbitrary number of processes. 

In general, the problem of determining if a family of networks of similar 
processes satisfies a temporal logic specification is undecidable [AK86]. Never- 
theless, automated and semi-automated methods for verification for restricted 
classes of parametrized systems have been proposed in literature. The works of 
[SG87, GS92, EN96] present fully automated methods for systems composed of 
a single control process and an arbitrary number of identical client processes. 

One of the semi-automated methods is to show that for certain class of prob- 
lems (specifically, rings of arbitrary size or client-server problesm) there exists a 
k such that correctness of families of networks upto size up to k implies the cor- 
rectness of networks of all sizes; this has bee done in the works of [EN95, GS92]. 

An alternate method, which we use, is to use induction on the number of 
processes. Roughly speaking, this method, when applied to a linear network 
composed of an arbitrary number of processes P works as follows. An inductive 
invariant I, specified as another process, is obtained. The induction step is shown 
by establishing that the process I |  < P where | is the composition operator, 
__ is an appropriate monotonic pre-order on processes. The basis step is obtained 
by showing that the system composed of a small number of processes is less 
than or equal to I in the pre-order. The correctness of the family of systems 
is established by showing that I itself satisfies the correctness property. All the 
three steps can be automated if I is a finite state process. The above approach 
has been taken in [WL89, KM89, BCG89]. 

Although the above approach of specifying the invariant as another pro- 
cess is elegant, it has the following drawback. It is difficult to specify invariants 
that involve predicates on global states as well as predicates on communication 
patterns. To overcome this problem, Abstract Transition Systems (ATS) were 
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employed in [CGJ95] to specify the invariaat. An abstract transition system con- 
sists of abstract states and transitions between the abstract states. An abstract 
state is specified by a regular expression or automaton that denotes a predicate 
on the global states of systems with arbitrary number of processes. Thus, ATS 
uses two different formalisms-- the regular expressions to specify properties of 
global states and the transitions in the ATS to specify computation steps. 

In this paper, we propose a unified formalism based on automata on two 
dimensional strings to specify the inductive invariant. Use of such automata is 
based on the observation that the computation of a linear network of n processes 
can be looked as a two dimensional string. One dimension is the time dimension 
which is infinite and the other is the space dimension consisting of the states 
of processes at any particular time. An automaton on two dimensional string 
takes as input the states and transitions of individual processes from the two 
dimensional string where these inputs are generated by scanning the string from 
left to right in the space dimension, and bottom to top in the time dimension. 
The automaton accepts the string by going through a final state infinitely often. 

In our approach, the inductive invariant is specified by a finite state au- 
tomaton A on two dimensional strings. The set of computations accepted by 
the automaton denotes the inductive invariant. We show how to compose an 
automaton with a process P to obtain another automaton A | P. The inductive 
step is proved by showing that L(A | P) is contained in L(A) where L(A) is the 
set of two dimensional strings accepted A. This method is shown to be sound 
and complete for verifying correctness of families of linear networks (as well as 
circular networks) of the form I | pi  | E (for all i > 0) where I, E and P are 
processes. The completeness result we prove is a semantic completeness result. It 
is for the first time that such a completeness result has been given for induction 
based proof systems for parametrized networks. 

In general checking if L(A1) C L(A2) is an undecidable problem. However, 
one can show that L(A1) C_ L(A2) by exhibiting a simulation relation between 
the states of A1 and A2, or by showing that s C_ s where s is 
the set of one dimensional strings accepted by Ai. While automatically checking 
for the existence of simulation relations can be done efficiently, the problem of 
checking if L(A1) C s can be done in exponential time using traditional 
automata theoretic approaches. We illustrate our approach by simple examples. 

The above approach is extended for verifying correctness under fairness as 
well. For this we use generalized Buchi automata [GW91] and define fair compo- 
sition of such an automaton with a process. The inductive invariants are specified 
by generalized Buchi automata. We show that this induction based approach for 
verifying correctness under fairness is sound. However, we do not have a com- 
pleteness theorem for this case. To the best of our knowledge, all the earlier 
induction based approaches did not consider fairness. 

Our paper is organized as follows. Section 2 defines the automata that we plan 
to use and the composition of an automata with a process. Section 3 presents the 
inductive approach for linear and circular networks. It also presents the induction 
based approach for correctness under fairness. It contains examples illustrating 
the approach. Section 4 contains concluding remarks. 
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2 D e f i n i t i o n s  

A u t o m a t a .  A Buchi automaton on two dimensional strings is defined exactly 
simita~ to the way a Bnchi automaton on infinite strings is defined. The only 
difference is that  the input alphabet to the two dimensional automaton has a 
special structure. Each input symbol to the automaton is of the form (u, a, d, u I) 
where u and u I are process states, a is an action symbol which can be an element 
from A U {e, i% cv} and d is an indicator denoting if the process is an internal 
process or a boundary process (if so which). Here u denotes the current local 
state of the process being scanned by the automaton and u' is the state of the 
same process in the next global state. If the action symbol a is e then it indicates 
that  the process does not make any transition in the current computational  step; 
if a is iT then it indicates that  the process makes an internal transition (i.e., no 
communication) in the current computational step; if a is cr  then it denotes a 
synchronized communication with a neighboring process in the current computa- 
tional step; if a is in A then it indicates tha t  the process offers a communication 
denoted by a to the external world and only boundary processes can offer such 
communication. 

Throughout  this section, we assume that  S is a set of process states and the 
states ofal t  the processes are drawn from this set. We also assume that  A ,  A '  are  

communication alphabets that  do not contain the symbols e, iv, c% and that  they 
contain complementary act ion/communicat ion symbols; for an action symbol a, 
we let ~ denote the complement of a; furthermore, if b = ~ then b = a. 

Formally, an automaton A over A, is a 5-tuple (Q0, Z ,  Q, 6, F )  where Z = 
S x (A U {iT, c~-,e}) x { le f t ,  right,  i n t e r n a l }  x S is the set of input symbols as 
indicated above, Q is the set of automaton states, Qo is the set of initial states, 
5 C Q x Z x Q is the next state relation and F C_ Q is the set of final states. 

Let n be a positive integer. A two-dimensional string c~ of width n over an 
alphabet A is an infinite alternating sequence So, ao, s l  , a l  , ..., s i ,  ai ,  ... where si  = 

(si,o, si,1..., si,n-1) is an n-tuple of process states and ai = (ai,0, ai,1,..., a i ,n -~ )  
is an n-tuple of process actions where each ai,i E A U {e, iv ,  c'r} (Note tha t  the 
representation we used here is a row major representation of a 2-d string; this 
representation does not cause any loss of information). Each such string denotes 
a computation in which s i j  denotes the local state of process j in the global 
state si, and a i j  denotes the action taken by process j in the computational 
step from s~ to si+l.  

A linearization of a 2-d string is obtained by scanning the 2-d string row 
by row, left to right, bot tom to top, and output t ing all quadruples of the form 
(s, a, d, s s) where s and s ~ are the current and next states of the process being 
scanned, a is the action executed by the process and d is an indicator denoting 
the position of the process. Formally, a linearization l ( a )  of a 2-d string a = 
so, a0, s l ,  a l ,  . . .s i ,  ai ,  ..., as given above, is the infinite sequence 
u0,0, Uo, 1, ..., u o , n -  1 , . . . ,  ui,o, u~, 1 , . . . ,  u~, j , . . ,  where ui j = ( s i , j ,  a~,j, d~j, si+ 1 j ) and 
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for 0 < i < c~, d~,o = left, di,,~-i = right, and for 0 < j < n - l ,  di,j = internal. 
Here di,j denotes whether j is the left boundary  process ,  right boundary  process 
or an internal process. 

Let s  denote the set of all strings from Z ~ accepted by the Buchi au- 
tomaton  A when A is considered as an au tomaton  over infinite strings. We say 
tha t  a 2-d string a is accepted by the au tomaton  A if l(a) C s  i.e., the 
linearization of a is accepted by the au tomaton  A when A is considered as an 
au tomaton  on infinite strings. For an au tomaton  A, we let L(A) denote the set 
of all 2-d strings accepted by A. 

C o m p o s i t i o n  o f  a 2 -d  s t r i n g  a n d  a P r o c e s s .  Now, we define the composition 
of a 2-d string with a process. This is needed in order to define a composition 
of an au tomaton  with a process. A process over an alphabet  of actions A is a 
triple (S, R, S0) where S is a set of states, R c S • (A U {iT}) • S is a set of 
transitions and So is the set of initial states. 

Let a be a 2-d string of width n over an alphabet  A and P be a process 
over the alphabet  A ~. Let A" = (A U A ~) - (A N A~). Now, we define the right 
composition of a and P,  denoted as a | P ,  to be a set of 2-d strings of width 
n + 1 over the alphabet  A" as follows. Intuitively, a 2-d string 5 is in a | P if 
it is obtained by fusing the 2-d string a with with a computat ion of P where 
the fusion is carried out by synchronizing on complementary  actions. The formal 
definition of a | P is is given in the full paper  [Si97]. 

C o m p o s i t i o n  o f  an  A u t o m a t o n  w i t h  a P r o c e s s .  Let A be an au tomaton  
over A and P = (S, R, So) be a process over A'. We define an au tomaton  A | P 
over (S, A ' ) ,  where A" = A U A ~ -- A N A t as follows. We call A | P to be the 
right composition of A with P.  As we will show later L(A  | P) will be equal to 
the union of a | P where the union is taken over all a E L(A). 

Intuitively, A |  works as follows. When it runs on a two dimensional string, 
as it goes from left to right, it behaves like A until it reaches the right end, at 
the right end it will model possible synchronization of action with P and move 
one more position to the right and possibly simulate a transit ion of P,  after this 
it will move to the left of the next top row and repeat  this process. It  knows 
tha t  it is at the right end if it gets an input symbol of the form (t, a, right, #) 
where right denotes the right end. 

Formally, A |  = (Q0 ~, Z t, Q',  5', F t) and Z t = S x  A ' •  {left, right, internal} x 
S where A" is as given above. Each state in Q~ is a 5-tuple of the form (q, s, flagl, 
flag2, flag3, a) where q, s are the states of A and P respectively, flag1, flag2, flag3 
are binary flags and a is an action symbol. Here flag1= 1 indicates tha t  the 
next computat ional  step will be caused by a transit ion of P which is either an 
internal transit ion or a transit ion offering an action in (A t - A). If flag1= 1 then 
all first n processes in the computat ional  step will not change states and only 
process P which is the (n + 1)st process will make the above type of transition. 
flag2= 1 indicates that  the au tomaton  has scanned the first n states in the 
current row; this implies tha t  the next state scanned will be tha t  of the right 
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most  process which is process P.  When flag3= 1 at tha t  t ime flag2 will also have 
value 1; this case indicates tha t  the right most process, i.e., process P ,  should 
make a transit ion offering action a; in this case a E A N A ~ and this occurs when 
synchronization on complementary action occurs between P and the n th process. 
The formal and complete definition of the A | P can be found in [Si97]. 

T h e o r e m  1. A 2-d string 5 of width (n + 1) over the alphabet A"  is accepted by 
the automaton A 63 P iff there exists a 2-d string a of width n over A such that 
5 �9 a | P,  i.e., L(A 63 P)  = U~rEL(A) O" 63 P.  

We define similarly left composition P | a of a process P with a 2-d string 
a, and the left composition P 63 A of a process P with an au tomaton  A. We also 
define left-right composition of a process P with a 2-d string a and also with a 
process P ,  denoted by P | a and P @ A respectively. In this case both  P and 
a and also A should be on the same action alphabet.  P | a forces every action 
of P to be synchronized with a complementary  action in a and vice versa; thus, 
the resulting set of 2-d strings do not offer any communication to the external 
world. P | A is defined similarly. The input alphabet  of the resulting au tomaton  
P | A has only input symbols of the form (s, a, d, s') where a �9 {e, iT, CT} and 
d = internal. The au tomata  P 63 A and P | A satisfy similar properties as given 
by Theorem 1. 

3 Verification of  Linear Networks  Us ing  Induct ion  

We consider linear networks of processes in which adjacent processes communi-  
cate using CCS/CSP  type of actions. We assume tha t  the communicat ion actions 
of processes are drawn from a set A which consists of actions of the from a? and 
a! which are called complemented pair of actions. Communicat ion occurs when 
two adjacent processes execute complementary actions. In this section, we show 
how we can verify the correctness of such linear networks and circular networks 
using au toma ta  as invariants. Let A be an action alphabet.  

3.1 Linear Networks  

In a linear network, each process can communicate  only with its left and right 
neighbors. To model this, we assume tha t  the actions a process uses are of the 
form left.a and right.a where a C A. Let A' = {left.a, right.a : a C A}. 

Let Po, P1, . . ,  Pn-1 be a set of processes with action symbols taken from A ~. 
We define the linear composition P0 | P1 | ... | P,~-I, called a linear chain, by 
using CCS composition operator  as follows. For each i, such tha t  0 _< i < ( n -  1), 
we rename all actions of the form right.a in P~ to ai, and for each i such tha t  
0 < i _< n - 1, we rename all actions of the form left.a in Pi to a i - t .  Note tha t  
actions of the form left.a in P0 and actions of the form right.a in Pn-1 are not 
renamed. Let the resulting processes be P~, P~, ..., P ~ - I  (Note tha t  the ~ is the 
complement of ai). Now we define the linear chain Po | P1 | ...Pn-1 to be same 
as P~ o P~... o P ~ - I  where o is the tradit ional C CS/CSP  composition operator.  
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The set of infinite computations of the chain of processes, denoted as C(Po | 
�9 .. | Pn-1) is the set of 2-d strings a -- uo,ao,ul ,al ,  ...us,as, ... of width n over 
the alphabet A ~ satisfying the following properties: for each j ,  u0,j is an initial 
state of process Pj  and for each i > 0, the computational step (ui, ai, ui+l) 
either involves an internal transition of process j ,  for some 0 ~ j < n, and 
in this case ai,j is iT, or it involves synchronized communication involving two 
adjacent processes j and j + 1 and in this case ai,j and ai,j+l are both m-. If 
a process j is not involved in the computational step (ui, ai, Ui+l) then as,j is 
and us+l,j = u i , j .  

Let P, I and E be a processes over the alphabet A ~ such that  all the actions 
in I are of the form right.a and all the actions in E are of the form left.a where 
a E A, i.e., I and E do not offer communication to the left and right respectively. 
Consider a computation of a linear chain of the form I | p i  | E for some i > 0, 
where p i  denotes the composition P | ... | P taken i times. All the action 
symbols appearing in such a computation are from the set {e, iT, CT}. This is due 
to the fact that  the left most process I does not offer any communication to the 
left, and E does offer any communication to the right. Let r be an automaton 
over the alphabet {e, iT, CT}. We say that  the linear chain I | pS | E satisfies 
the property specified by r if C(I | pS | E) C L(r 

Let ~-i be be the linear chain I | pc+i | E. Now, consider the family of 
linear chains ~-i for i = 0, 1 .... For an automaton A over the alphabet A ~, let 
A[a/right.a] denote the automaton obtained by renaming all actions of the form 
right.a to a in ,4. Similarly, A[a/left.a] and A[a/left.a][a/right.a] are defined. In 
the last case, both type of actions left.a and right.a are renamed to a. For a 
process P,  we let P[a/left.a], P[a/right.a] and P[a/left.a][a/right.a] denote pro- 
cesses obtained by similar renaming. Let A" = {right.a : a E A}.  The following 
theorem presents a method for verification of the correctness of a family of linear 
networks. 

T h e o r e m  2 ( S o u n d n e s s  a n d  C o m p l e t e n e s s  T h e o r e m ) .  For i = 0, 1..., let 
iTi = I | pc+i | E be a family of linear networks and r be an automaton over 
{~, iT, CT}. Then, Vi > O, J:i satisfies the specification given by r iff there exists 
a finite state automaton Jt over A" satisfying the following properties. 

1. C(I | pc) C_ L(A);  
2. L(A[a/right.a] | P[a/left.a]) C_ L(A);  
3. L(A[a/right.a] | E[a/left.a]) C_ L(r  

Soundness part  of the above theorem, given by the "if" part,  is shown by 
proving that ,  Vi _> 0, L(A) contains all the computations of I| this follows 
from part  1 of the theorem and the property of the composition operator  of an 
automaton with a process. The completeness, specified by the "only if" part ,  
is shown by obtaining an automaton .A with the property that  the set of 2-d 
strings accepted by .4 is exactly the computations of a linear network of the 
form I | pc+i; the automaton ,4 moves on the 2-d string and ensures that  the 
string is according to the transitions of the individual processes. 
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In the above theorem `4 is the automaton that  specifies the inductive invari- 
ant, step (1) is the basis of the induction, step (2) is the induction step, and step 
(3) is the step that  checks the correctness with respect to r 

3.2 Linear Networks  w i th  Fairness 

In this subsection, we present an induction based method for verification of 
correctness under fairness. The fairness that  we consider here is the classical 
weak fairness; roughly speaking, a computation is said to be weakly fair if every 
process is infinitely often disabled or infinitely often executed. 

The set of fair computations of a linear chain P0 | ..- | Pn-1 , denoted 
by :TC(Po | ... | Pn-1), is defined to be the set of computations that  satisfy 
the fairness requirements for all the processes excepting the boundary process 
Pn-1 (the boundary process Pn-~ is open and its fairness will be taken into 
consideration when we compose the chain with another process on the right 
side). 

In order to specify invariants, we use generalized Buchi automata  [GW91] on 
2-d strings. A generalized Buchi automata is almost same as a Buchi automata  
defined earlier excepting that  the acceptance condition is a collection of subsets 
of states; formally, a generalized Buchi automata A is a 5-tuple (Q0, Z,  Q, 5, F)  
where F is a collection {F1, ..., Fk} of subsets of Q; Q0, Z,  Q, 5 are defined as 
before. An input string in ~ is accepted by Jt if there exists a run of A on the 
input such that  for each i = 1, ..., k some state in Fi appears infinitely often in 
the run. The languages ~(A) and L(A) are defined as before. 

Now we define the fair right composition of a generalized Buchi automaton A 
and a process P,  denoted as A|  as follows. The construction of the automaton 
.4 |  P is similar to A | P excepting that  it uses an additional flag to capture 
the fairness condition on the previous right most process; note that  after the 
composition the new right most process will be P. If F and F ~, respectively, are 
the acceptance conditions in A and ,4 | P then the number of subsets in F '  is 
one more than that  in F; the additional subset in F I captures the weak fairness 
requirement on the previous right most process, and the remaining subsets of F ~ 
correspond with those of F.  Details of the construction of A | P will be given 
in the full paper. 

Let I,  P and E be processes as defined in the previous subsection and r be a 
generalized Buchi automaton over the alphabet {c, iT, c~-}. As usual we say that  
the the linear chain I | p i  | E satifies r under fairness if all fair computations 
of the chain are accepted by r Now, we have the following soundness theorem 
for verifying correctness under fairness. 

T h e o r e m 3  (Soundnes s  T h e o r e m ) .  Let ~i = I|174 for i = 0, 1..., be 
a family of linear networks and r be an automaton over {c, iT, CT}. Then, Vi >_ O, 
Yi satisfies the specification given by r under fairness if there exists a finite state 
generalized Buchi automaton A over A" satisfying the following properties. 

1. ~ d ( I ( 3 P ~ )  C_ L(A); 
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2. L(A[a/right.a] | P[a/left.a]) C L(A); 
3. L(,4[a/right.a] |  E[a/left.a]) C_ L(r 

3.3 Circular Networks 

Now, we discuss how to verify families of circular networks of processes. Let A 
and A t be as defined above. Let P0, ... ,P~-I be processes over the alphabet A ~. 
For each i, 0 _< i < n, let P[~ denote the process where actions of the form left .a, 
right.a are renamed to a(i_l)modn and ai respectively. Note that, we are also 
renaming lef t .a in Po and right.a in Pn-I- We define a circular network, denoted 
P0 | P1 @ ...P,~-I, to be the composition of the CCS processes P~, ..., P~t_l, i.e., 
P~ o p~r o ... o P~ 1- The set of computations of such a circular network, denoted 
C(Po @ ... @ Pn-1), is defined as a set of 2-d strings over the alphabet {e, iT, cr} 
as before. 

Let I ,E  and P be processes over A'. We define Gi to be the circular network 
I@ pc+s@ E where pi denotes the expressions P@... @ P containing c+ i number 
of Ps. The following theorem tells us how to use induction for verification of 
families of circular networks. As before we define what it means for a circular 
network to satisfy a specification given by an automaton. 

Theorem4 (Soundness and Comple teness) .  Let ~ = I @ pc+i @ E, for 
i = O, 1..., denote a family of circular networks. Let r be an automaton over 
{~, iT, eT}. Then, Vi >__ 0 ~i satisfies the specification r iff there exists a finite 
state automaton A over A ~ satisfying the following properties. 

1. C(I 6) P~) C_ L(A); 
2. L((c4[a/right.a]) | P[a/left.a]) C_ L(A); 
3. L(A[a/right.a][a'/teft.a] | E[a/left .a,  ][a'/right.a]) C L(r 

It is to be noted that, unlike in Theorem 2, the automaton r in the above 
theorem is over A'. Also, we use the | operator in step 3. We can prove a sound- 
ness theorem, similar to Theorem 3, for correctness under fairness for circular 
networks as well. 

Now we discuss how- to automate the different steps in the above two theo- 
rems. All the three steps require checking language containment of automata on 
2-d strings. Step 1 can be done by obtaining the automaton corresponding to 
I | P~ and then checking language containment. In steps 2 and 3, we need to 
compute the composition of an automata with a process, and this can be done 
using the method given in the previous section. The complexity of this algorithm 
is proportional to the product of the sizes of the automaton and the process. 

3.4 Language Containment Problem 

The language containment problem for generalized 2-d Buchi automata (and 
even for 2-d Buchi automata) is undecidable. However, the following lemma gives 
us a sufficient condition for language containment that is decidable. It states that, 
for automata At and A2, if the set of one-dimensional strings accepted by A1 is 
contained in the set accepted by A2 then L(A1) C_ L(A2). 
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L e m m a 5 .  Let A1 and A2 be generalized Buehi automata on A. I f  f~(Az) C_ 
s then n ( d l )  C_ L(A2). 

The condition/:(A1) C /:(A2) can be checked by complementing A1 using 
the methods of [SVW85]. However this will have exponential complexity. Now, 
we give another condition that  is easily checkable. This method uses simulation 
relations. 

Let A1 = (Q0, Z,  Q, 6, F )  and A2 = (Q~, Z ,  Q', 6', F ' )  be generalized 2-d 
Buchi automata.  (Note that  F and F '  are collections of subsets of states). A 
simulation relation R C Q1 x Q2 is a binary relation satisfying the following 
properties. 

- For every q E Q0 there exists a q' E Q~ such that  (q, q') E R. 
- If (q, x, r) E 6 then for every q' such that  (q, q') E R there exists an r '  E Q' 

such that  (q', x, r ~) E R. 
- There exists a on-to function f from F to F' such that  the following property 

is satisfied: 
For every subset C E F and for every q E C and every qt E QI if q E C and 
(q, q') E R then q' E f (C).  

The temma given below follows from known results. 

L e m m a  6. If  there exists a simulation relation between A1 and A2 then L( A1) C 
L(A2). 

Checking if there exists a simulation relation can be done efficiently for the 
case when the automata are Bcuhi automata. 

E x a m p l e s .  We first consider a simple token passing aJgorithm for circular net- 
works considered in [CG87]. Here we have circular network of identical processes 
that  communicate by passing a token around in the anti-clockwise direction. The 
diagram denoting such a process is given in figure 1. A process P is initially in 
the state N and receives a token from the left by executing the action left .t? 
and enters the critical region C (here, left and right are defined with respect 
to a person facing the center of the circle). In state C, it executes an internal 
transition and stays in the same state, or it executes the action right.t! and goes 
to state N. Let I be the same process as P excepting that  its initial state is C, 
and E be same as P.  Let r be the automaton on 2-d strings, given in figure 2, 
that  states that  exactly one process is in state C at any time. 

To verify this property for all circular networks of the type I @ p~+Z @ E for 
all i _> 0, we use the invariant automaton given in figure 3. The transitions of 
this automaton are oblivious to the last component in each input symbol (i.e., 
the component denoting the next state of a process); for this reason each input 
symbol is given as a triple; a value * in an input symbol should be taken as a 
wild card; a value of 1 or r or i appearing as the last component indicates the 
automaton is scanning the left most, right most and internal processes respec- 
tively. States a and g denote the occurrance of a sequence of global states in 
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right.t! left.t? 

Fig. 1. Process P 

C 
(N, *, r) (C, *, l) , ) (N, *, i) 

//((c, e,i) 

- - )  (N, i) 

Fig. 2. Automaton 

which the left most process has the token and is in the critical section. (State 
f denotes the situation where a global state has more than one token; this is 
an error state). States e, c and d denote a sequence of global states in which an 
inner process has the token and is in critical section. States b and h denote a 
sequence of global states in which the right most process is in critical section. 
The transition from h to i occurs when the right most process gives the token 
to the external world. The transition from i to j denotes the case where the left 
most process gets the token from the external world. 

It can be shown that the above invariant automaton satisfies all the three 
conditions given in Theorem 4. This can be shown by exhibiting simulation 
relations. 

Now, we show how the same invariant automaton, given in figure 3, can be 
changed to verify the liveness property that process I enters the critical section 
infinitely often. The change to the invariant automaton is the addition of the 
following acceptance condition F which makes it in to a generalized Buchi au- 
tomaton. F consists of two sets F1 and F2. F1 consists of all states other than a 
and g, F2 consists of all states other than c, d~ e. 

We can also prove the safety and liveness properties of the more complex 
token ring example considered in [CGJ95]. Details are left out due to lack of 
space. 

4 C o n c l u s i o n s  

In this paper we proposed a formalism based on automata on two dimensional 
strings for specifying inductive invariants for proving correctness of families of 
linear and circular networks. We proved our inductive approach to be sound and 
complete (semantical completeness). We have illustrated our approach by simple 
examples. 

We have also given the inductive approach for verification of parametrized 
systems under fairness. In this case, we use generalized Buchi automata (or 



422 

Streett  automata)  as inductive invariants. For this case, we have proved the 
soundness theorem. 

As part  of future work, it will be interesting to automate the different parts 
of the induction based approach and apply them to real practical examples. It 
will also be interesting to extend our approach to networks defined by context 
free grammars [SG89]. Further more, it will also be interesting to investigate 
logic based approaches for specification of the invariants. 
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