
Combining Constraint Solving and Symbol ic
Mode l Checking for a Class of Systems wi th

Non- l inear Constraints

William Chan*, Richard Anderson, Paul Beame, David Notkin

Computer Science and Engineering, University of Washington, Box 352350
Seattle, WA 98195-2350, U.S.A.

{wchan, anderson, beame, notkin}�9 ~ashingt on. edu

Abstract. We extend the conventional BDD-based model checking al-
gorithms to verify systems with non-linear arithmetic constraints. We
represent each constraint as a BDD variable, using the information from
a constraint solver to prune the BDDs by removing paths that corre-
spond to infeasible constraints. We illustrate our technique with a simple
example, which has been analyzed with our prototype implementation.

1 Introduction

Although symbolic model checking [BCM+90] based on Binary Decision Dia-
grams [Bry86], or BDDs, has been remarkably successful for verifying finite state
systems, it fails when complex arithmetic constraints are present. For example,
if the bits of the integers x, y and z are represented as BDD variables, the BDD
for the non-linear constraint xy = z has exponential size [LSS1]. In this paper,
we tightly couple a constraint solver with a BDD-based model checker to verify
systems with possibly non-linear arithmetic constraints.

A large class of embedded, reactive systems consist of a finite-state control
component together with numeric data inputs that measure quantities such as
velocity, temperature, etc. In these systems, state transitions depend on predi-
cates, or constraints, on these numerical values.

We have been studying the practicality of model checking for specifications
of large and complex reactive software systems of this type. Our major effort
has been directed at the preliminary requirements of one such system, TCAS II,
an airborne collision avoidance system used on many commercial aircraft. In
[ABB+96] we applied BDD-based model checking to about one third of the
TCAS II specification, discovering a number of violations of desirable properties.
The full specification--expressed in RSML [LHHR94], a dialect of Statecharts
[Har87]--comprises about 400 pages.

Our approach for handling constraints exploited finiteness of the data input
domains, representing each bit of data input as a BDD variable and constraints
by BDDs in these variables. This worked well when dealing with purely linear

* Supported by a Microsoft Graduate Fellowship

317

constraints but did not extend efficiently to non-linear constraints, such as those
found in the remaining portions of TCAS II.

In this paper, we propose to represent each (linear or non-linear) constraint,
instead of each bit, as a BDD variable. For soundness and completeness, in-
feasible combinations of constraints have to be detected, which we do using an
auxiliary constraint solver.

The class of systems we consider is defined by a restriction on the updates
to data values: a transition must either set all new data values based only on
absolute properties of their current values, or else leave them unchanged. A key
property of such systems is that the decision to take a transition depends on the
current data only via Boolean combinations of the constraints originally present
in the specification. This restriction was also partly motivated by the semantics
of RSML and, although it cannot handle all of TCAS II, it does allow modeling
of a significant portion of it. We define our system model and show the key
property of the restrictions on the transitions in Sect. 2.

Given the key property, a simple approach to combining the model checker
and constraint solver is to test all combinations of constraints for feasibility
before applying model checking. We develop a potentially more efficient approach
whereby we prune the infeasible paths from the BDDs on the fly. We present our
model checking algorithms in Sect. 3. and give a simple example that has been
analyzed with our prototype implementation in Sect. 4.

Re la ted Work. We have opted to augment BDD-based model checking to deal
with non-linear constraints. The main reason is that we are interested in systems
with large and complex control logic, for which only BDD-based model check-
ing has proven to work well. The high dependence between control and data
paths also prevents us from separating them for verification, a technique that is
sometimes used in microprocessor verification.

Most work on handling non-linearity in verification has been focused on
arithmetic circuits. One approach is to use BMDs or *BMDs [BC95] and their
variants, such as HDDs [CFZ95]. Although they can represent the product x y

concisely, representing the constraint x y =- z still requires exponential size. In
fact, Thathachar [Tha96] shows that small variations of these representations
are not likely to solve the problem. Our approach can deal with not only inte-
gral multiplicative constraints but also arbitrarily complex (e.g. trigonometric)
constraints over finite or infinite domains, provided an appropriate constraint
solver is available.

Abstracting a constraint as a single Boolean variable is not a new idea (e.g.,
[CDV96]). However, since infeasible combinations of constraints are not auto-
matically detected, either the approach is incomplete for safety properties, or
it requires substantial manual abstraction. Wang et al. [WME93] also represent
certain timing constraints in distributed real-time systems as BDD variables.
However, to ensure soundness and completeness, their method requires building
a BDD in exponential time before running the fixed-point algorithm. We try to
avoid a similar preprocessing by restricting the class of systems that we deal
with and by filtering the BDDs on the fly.

318

Note that the work on nonlinear hybrid systems [HH95] differs from ours
since it is concerned with constraints that are non-linear differential equations.

2 M o d e l s

We first give the definitions of basic transition systems, bisimulation equivalence,
and quotient systems. Then we present our system model, whose semantics can
be defined in terms of a basic transition system, and then show that certain
restrictions on the transitions give rise to a natural bisimulation.

2.1 Basic Transition Systems

A reactive system can be modeled as a basic transition system (Q, Q0,-% z , L),
where Q is a set of states, Q0 c_ Q is a set of initial states, -+ c Q • Q is the
transition relation, Z is a set of atomic propositions, and L: Q H 2 z labels each
state with the set of atomic propositions in Z that are true in that state. If we
have q -~ q'~ then the state q~ is called a successor of q.

Intuitively, an observer sees the label of the current state, but not the state
itself. Two states are indistinguishable if their labels are the same and their
successors are again indistinguishable. Formally, we say that an equivalence re-
lation ~ of Q is a bisimulation (cf. [MilS0, pp. 42]) if for all states ql and q2, we
have that ql ~ q2 implies (1) L(ql) equals L(q2) and (2) for all q~ in Q with
ql ~ q~, there exists a q~ in Q with q2 -+ q~ and q~ ~ q~.

The quotient system of (Q, Q0, 4 , Z, L) with respect to a bisimulation ~ is
a basic transition system (Q~, Q~, ~ , Z, L~). The quotient state space Q~ is
the set of equivalence classes induced by ~. For all S and S ~ in Q~, we have
S --*~ E ~ if and only if there exist an s in S and an s ~ in S' with s -~ # . We
define L=(S) = L(s) for any s in S, and Qo = {S e Q~ 1 S A Q0 r 0}. We say
that ~ is finite if Q~ is finite.

Many properties of (Q, Qo, ~ , z , L) can be expressed in the temporal logic
CTL* [EH86] as formulas whose atomic propositions are taken from Z. CTL* is
strictly more expressive than CTL and LTL, commonly used in model checking.
For our methods we need the following theorem (see, for example, [BCG88] for
a proof of a similar theorem):

Theorem 1. Any CTL *]ormula f is true in a basic transition system M i/ and
only if] is true in the quotient system o] M with respect to any bisimulation.

2.2 S y s t e m M o d e l

We are interested in reactive systems with a finite control component and a finite
or infinite numeric data component. The control component is represented by
a finite set N of control nodes. The data component is represented by a finite
vector x of data variables, and the domain of each variable is a finite or infinite
subset of lR, the set of reals. Let D be the Cartesian product of the domains of

319

the data variables. An assignment to x denotes a point in D, and a constraint
on x denotes a subset of D. More explicitly, a constraint c(x) is a predicate of
the form g(x) ~ 0 with g: D H]R and ~ is one of {<, <, =, 5,->, >}- If we have
g(x) _= a . x + b for some vector a and constant b, then the constraint is linear.
We are interested in both linear and non-linear constraints. We also call any
finite Boolean combination of constraints a constraint. We denote by [c(x)] the
set of points in D that satisfy c(x). The constraint c(x) is feasible if and only if
[c(x)] is not empty. We write c for c(x) when there is no ambiguity.

Our system model is a tuple (N, N o , x , D , A , C) , where N, x, and D are
defined as above, No C_ N is a set of initial control nodes, A is a mapping from
N 2 to 2 ~ xD and C is a finite set of constraints on x. The system model defines a
basic transition system (Q, Q0, 4 , E , L) as follows. The state space Q is N x D.
The set of initial states Q0 is No x D. We define L(v, a) = {v} U {c E C I a �9 ~c]}
and Z = N U C. Intuitively, this choice of labeling implies that the control
nodes are fully observable, while data points are only distinguishable through
the constraints in C.

The transition relation ~ is defined so that for all (v,a) and (v ' ,a ') in
N x D, (v, a) -+ (v', a') if and only if (a, a') is in A(v, v'). If we define x ' =

! ! ! (xl, x2, . . . , Xm) , the "next-state" version of x = (Xl, x 2 , . . . , xm), then we can
think of A as specifying as a mapping from pairs of nodes to joint constraints
on x and x' . Tha t is, for any v and v' in N, we have A(v, v j) = [a(x, x ')] for
some constraint a(x , x ') . For example, if A(v, v') is Ix1 > 0 A x~ = xl + 1]
and the domain of Xl is JR, then (1, 2) �9 A(v, v t) so (v, 1) ~ (v ~, 2) is a possible
transition.

2 .3 R e s t r i c t i o n s o n T r a n s i t i o n s

The system model defined above is very general and contains classes of systems
that are undecidable or intractable for model checking. We restrict our at tention
to system models with the following property on A.

P r o p e r t y 2. For all (v, v') in N 2, A(v, v') is either

1. ^ or
2. (tl(X) A a2(x') A x'----x]

where al (x) and a2 (x) are some Boolean combinations of constraints from C.

In the above definition, a2 (x') is the renaming of a2 (x) with the occurrences
of x replaced by x ~. We call the first kind of transition above data-memoryless.
The idea is that the value of x ~ is independent of x. For example, A(v, v') =
Ix1 < 3 h x~ > 5] satisfies the property (if the constraints xl < 3 and xl > 5
are in C). The second kind of transition is called data-invariant since the values
of all the data variables remain unchanged after the transition.

Proper ty 2 may seem quite restrictive. Even the simple constraint x~ = Xl + 1
mentioned earlier is ruled out. However, it does allow complex "guarding condi-
tions", like XlX2 < x3 or xl > sinx2, etc. As we will see in Sect. 4, this property

320

is naturally exhibited by certain Statecharts machines whose internal steps, while
responding to particular changes in their environment, may be modeled as data-
invariant transitions and whose environment may be modeled conservatively via
data-memoryless transitions.

The key observation is that for any system model with the above property,
the equivalence relation induced by the labeling is a bisimulation. ~ r t h e r m o r e ,
the bisimulation is finite even if D is infinite.

T h e o r e m 3. Given a system model with state space N • D and labeling function
L, let .~ be the equivalence relation of N • D such that for all (vl, al) and (v2, a2)
in N • D, we have (v l , a t) ~ (v2,a2) /~ and only i/ L (v l , a l) equals L(v2,a2).
The relation ~ is a finite bisimulation for system models that satisfy Property 2.

3 M o d e l C h e c k i n g

As a result of Theorems 1 and 3, given a system model with Proper ty 2 and a
CTL* formula, it is sufficient to verify the quotient system with respect to --~.
In this section, we first describe a Boolean encoding of the quotient system, and
give a straightforward model checking algorithm which requires an exponential-
time preprocessing stage to build a special BDD. Then we explain how that
may be avoided by an operation we call filtering. Although the worst-case time
complexity of filtering BDDs is also exponential, the hope is that the actual time
required is less than the worst case.

We assume that we have a constraint solver that given a set of constraints can
determine whether their conjunction is feasible. This problem has been studied
by the constraint logic programming (CLP) community to extend CLP languages
for non-linear constraints, and also by the operations research community to
solve constrained optimization problems by first finding a feasible point.

3.1 A B o o l e a n E n c o d i n g for M o d e l C h e c k i n g

Given a system model (N, No, x, D, A, C), the quotient state space with respect
to ~, i.e. the set of equivalence classes of N • D induced by .-% is of the form
N • D ~ where D ~ is a collection of disjoint subsets of D, which we call regions,
defined by the set of constraints in C that are true on those data points.

Our goal is to encode the quotient system symbolically by a set of Boolean
variables so that BDDs can be used. The control part is encoded in a conventional
manner: we encode the node v E N in some convenient way as an assignment
Cg(v) to a vector v of n Boolean variables with n _> [log INI], e.g. as the binary
encoding of a number between 1 and INI.

The way we handle the data part, D ~, distinguishes our approach from
others. For C = { c l , . . . , Cm}, each region is of the form ~[a]] with a - At<i<m li
where l~ is either ci or -~ci. This suggests a natural embedding CD of D ~ into
{0, 1} m in which an assignment to a vector k of m Boolean variables kl, k2, . . . ,
km encodes a region la] if ki is set to 1 exactly when ci occurs positively in

321

a. We also define a Boolean function Feas(k) such that Feas(-k) = 1 if only if
E ImCn, i.e. k encodes a feasible constraint.

A state in the quotient system is encoded as an assignment to (v, k), and a set
of states can be represented in the standard way as a Boolean function S(v, k),
such that a state (~, k) is in the set if and only if S(~, k) -- 1. (As is usual, we will
think of S as a function and as a set interchangeably.) In general an arbitrary S
may contain infeasible states - - assignments to (v, k) with Feas(k) = 0 - - that
we can remove by computing S A Feas.

We now define a transition relation R on {0, 1} n+m that encodes the transi-
tions of the quotient system on N x D ~. That is, we define a Boolean function
R(v, k, v' , k~), where k t -- (k~, k~ , . . . , k~m) and v ~ are the next-state versions of
k and v respectively, that represents the transition relation of the quotient sys-
tem. A natural condition in doing this would be to restrict R(~, k,v', k') to be
1 only if (~,k) and (v ~, k ~) each encode elements of N x D~; however this may
lead to a very large BDD for R if the BDD for Feas is large. Instead, we permit
R to be 1 for values of k and k -7 that encode infeasible constraints and rely on
manipulation of the state representations to eliminate infeasible states.

More precisely, let A(v, v') be ~av,v,(x, x')~ for some constraint ~v,~, (x, x')
which satisfies Property 2. If we replace each ci(x) and ci(x I) in av,v, (x, x I) with
ki and k~ respectively (just as in our encoding of quotient states) and conjoin
ki = k~ for i = 1 , . . . , m if the transition is data-invariant, we obtain a Boolean
function X,,v,(k,k'). It can be shown that if (~,k) and (v~,k0 encode states
(v, [~]),(v, Icy'I) E Y • D ~, then (v',k') is a successor of (~,k) if and only if
Xv,v' (k, k') = 1. The relation R(v, k, v ' , k') is then

V(v,v,)eg2 (v = Cg(v) A v' = Cy(v ') A Xv,~,(k,k')).

The BDD for R is easy to build from the system model description and thus
conventional model checking algorithms can now be used to compute in the
quotient system, provided that we also conjoin each set of states encountered
with Feas to remove infeasible states.

However, even if the BDD for Fens is small, in general there may be no
efficient way of computing it. T h e naive method enumerates all 2 m assignments
to k and invokes the constraint solver to check the feasibility of each case. This
method may work well if the number of constraints m is small.

3.2 Filtering

We can avoid building the BDD for Fens if we have some other way of removing
infeasible states. One solution is filtering the functions on the fly. We represent
an arbitrary function S by a BDD in the implementation which, to simplify
the terminology when explaining filtering, we think of as simply a DNF formula
representing S, consisting of the disjunction of all the paths from the root to the
leaf 1. The idea of filtering is that, instead of computing S h Feas, we remove
every disjunct d of S with d A Fens - O. We denote the resulting function as
FilterFeasS. (Note that the value of FilterFeasS depends on the particular DNF
representation for S.)

322

Since every disjunct d is a conjunction, we can determine whether d is fea-
sible using the constraint solver, without computing Feas(k). Note also that
FilterFeasS and S A _Peas are not necessarily the same function. For example,
let S be the constant function 1, which can also be its DNF representation.
Then, we have S A Feas = Feas but FilterFe~sS - 1. In general, we have
(S A Feas) C_ FilterFeasS c S (the inclusion is referring to the sets represented
by the Boolean functions). Although FilterFe~S still contains some infeasible
states, we will show that it is sufficient for model checking.

The algorithms for symbolic model checking [BCM+90] involve four types of
operations on sets of states: Boolean operations, emptiness checking, image (or
pre-image) computation, and finding elements in non-empty sets (for counterex-
ample traces). The lemma below is easy to prove and implies that for Boolean
operations we can delay the removal of infeasible states until the end (S and T
are arbitrary Boolean functions).

L e m m a 4. We have the following equalities:

(i) (S A Feas) A (T A Feas) ==_ (S A T) A Feas.
(ii) (S A Feas) V (T A Feas) -- (S V T) A Feas.

(i i i) ^ Feas)) A Feas - A Feas.

The functions on the left hand side are the straightforward way of doing the
operations. On the right hand side, we do the same operations but remove in-
feasible states only in the final result. The next lemma implies that if we only
care whether the set is empty, then even the final result does not need to be
intersected with Feas; instead, we can check the emptiness of the filtered result.

L e m m a 5 . S A Feas - 0 if and only if FilterFeasS - O.

The next lemma gives a way of computing the image (i.e., successors) of a set
of states without using Feas (pre-image computation is similar).

L e m m a 6. We have the following equality:

3v. 3k. (Feas(k) A S(v ,k) A R (v , k , v ' , k t))

- 3v. 3k. (FilterF~as(k) (S(v,k) A R(v ,k , v ' , k '))) .

As a result of the above three lemmas, the only necessary change to the con-
ventional symbolic model checking algorithms is to use the right hand sides of
Lemmas 5 and 6 to detect convergence and compute images respectively. Finally,
the following lemma implies a way of finding a feasible state in a set.

L e m m a T . If we have FilterFeasS ~ O, then for each disjunet d of Fi l terF~S,
there exists an assignment to the input variables of S with d A Feas = 1.

So to find a feasible state in S, we compute FilterFeasS and pick an arbitrary
disjunct d, which corresponds to a partial assignment to the variables. To get a
complete assignment, the unassigned variables not in k can be set arbitrarily.
For the unassigned variables in k, we can set them one by one using information

FILTER(B: BDD): BDD
LABEL(B ,true)
r e t u r n PRUNE(B)

PRUNE(B: BDD): BDD
if B = 0 or B = 1 t h e n r e t u r n B
l e t yj = B. Var
if j > I t h e n r e t u r n B
if (B, B ~) is in cache, r e t u rn B'
if B.Ledge = T

t h e n Bo ~- PRUNE(B.Lehild)
e l s e Bo *- 0

if B.Redge = T
t h e n B1 ~-- PRUNE(B.Rehild)
e l s e B1 ~- 0

B p ~-- ITE-BDD(B . Var, Bo, B1)
insert (B, B') and (B', B') in cache
r e t u r n B ~

323

LABEL(B: BDD, c~: Constraint): {T,_l_}
i f B = 0 t h e n r e t u r n 3-
if B = 1 t h e n r e t u r n ~'g.4S(a)
l e t yj = B. Vat
case

j < u: (case 1: upper layer)
if B.Ledge = ? t h e n

ro ~-- LABEL(B.Lchild, o~)
B.Ledge ~-- ro

e l s e ro ~- B.Ledge
if B.Redge = ? t h e n

rl ~ LABEL(B.Rchild, ol)
B.Redge ~-- rl

e l s e rl ~- B.1:ledge
u < j < l: ... (case 2: middle layer)

ro ~-- LABEL(B.Lchild, a A :T(--,yj))
if r0 = T t h en B.Ledge ~ T
rl ~-- LABEL(B.Rchild, o~ A I (y j))
i f rl = T t h en B.Redge ~-- T

j > l: (case 3: lower layer)
r e t u r n .~"EAS (a)

e n d c a s e
i f ro = q- o r r l = T t h e n r e t u r n T
e l s e r e t u r n 3_

Fig. 1. A BDD filtering algorithm

from the constraint solver: pick an unassigned variable and arbitrarily set it to 0,
and if the extended assignment is not feasible, revert it to 1 (the new extended
assignment is guaranteed to be feasible). Repeat until all the variables are set.

3 . 3 F i l t e r i n g B D D s

Filtering a BDD amounts to removing all paths from the root to the leaf 1 that
correspond to infeasible constraints. Figure 1 shows a BDD filtering algorithm
FILTER. We assume that the given BDD is a function of v and k, which is being
filtered with respect to Feas(k) . (What we will describe can be easily generalized
to handle functions of (v, k, v ~, k ~) and filtering with respect to Feas(k~).) The
algorithm consists of two phases: in the labeling phase, it labels the edges along
all feasible paths with T, and in the pruning phase, it redirects the edges not
labeled with T to the leaf 0.

Each non-leaf BDD node has five fields. The Vat field stores the BDD vari-
able. The Lchild field points to the 0-child BDD. The Ledge field is the label
of the left edge, which is either T (feasible), _L (infeasible), or ? (unknown, the
initial value). The Rchild and Redge fields are symmetric. Suppose the BDD
variables in order are y l , y 2 , . . . , Y u , . . . , Y t , . . . ,Ym+n, where Yu and yt are the

324

first and last variables in k. We call the part of the BDD with variables yl
through Yu-1 the upper layer, yu through Yl the middle layer, and Yl+l through
Ym+~ the lower layer. Therefore, only the middle layer contains variables in k.

The routine LABEL traverses the paths in a depth-first manner, keeping track
of the corresponding constraint a as it walks down a path. Case 2 is important
for correctness, while cases 1 and 3 are for optimizations--each node in the upper
layer is not visited more than once (case 1), and nodes in the lower layer are not
explored at all (case 3). The constraint solver .TgA,S takes a constraint a, and
returns T if a is feasible, or _L otherwise. The function 27 "interprets" the BDD
variables as data constraints. For each vi in v, we have 27(-~vi) = Z(vi) = true,
and for each k~ in k, we have 27(k~) = ci and 27(~ki) = -~ci. The routine PRUNE
performs the pruning phase. The function ITE-BDD takes a BDD variable y
and two BDDs B0 and B1, and returns a BDD with top variable y, 0-child B0
and 1-child B1.

Assuming that J'g.A,S takes constant time, the time complexity of FILTER is
linear in the number of nodes in the upper layer, and in the number of paths in
the middle layer (which is the major bottleneck of the algorithm).

A R e f i n e m e n t . It makes sense to filter the BDDs instead of building Feas only
if the number of paths checked is smaller than 2 m. Unfortunately, filtering S A R
as suggested by Lemma 6 may be very expensive. To see this let R(v, k, v ~, k ~) be
R l (v , k , v ' , k ') V (R 2 (v , k , v ' , k ') A k ' = k) , where R1 and R2 A k ' = k represent
the data-memoryless and data-invariant transitions respectively. The constraint
k ' = k conjoined with R2 introduces a path for each possible assignment to k, so
there may be 2 m paths to check. However, the observation is that we can rename
each k~ in R2 to k~ without changing the function R2 A k ~ = k, thus eliminating
k t from R2. We have the following lemma.

Lemma 8. The following equality holds:

(3v.3k. (FilterFeas(k) (S (v ,k)A R (v , k , v ' , k ')))) A F e a s (k ')

_= (U(v', k') V Y(v', k')) A Feas(k')

with

U(v', k') = 3v. 3k. FilterF~a~(k) (S(v, k) A Rl(v, k, v ' , k'))

Y(v', k) = 3v. FilterF~as(k) (S(v, k) h R2(v, k, v ')) .

So we compute U V V, handling the constraint k = k' implicitly.

4 Implementation and Example

We implemented the above algorithms in SMV [McM93]. The constraint solver
used was QUAD-CLP(IR) [PB94], a less incomplete solver than CLP(]R) for
quadratic constraints. We had access only to the executable of the solver, so it
was integrated with SMV through interprocess communication.

325

(Own_vel So_>25 Sensitivity

Sen=High I
(Own_vel = High

^
, { Front vel = Low)

. i Front_vel sf,225 ~ ,
: Sen=Low ^

~1# High
t / i ~ / , Front_vel ~ Low)

s/-<l 5
i

Cruise_Control
Power on

Powo _off , - r r -
" l P tiwtellA wt~

l ~ s ~ wer-~ lo

[OverrideJ - , (Cmisej
Resume ^ 7 Power_off

Inputs
So E]R Power_On : boolean
s f E]R Power_Off : boolean

d E lR, d _> 0 Activate : boolean
Sen : {High, Low} Deactivate : boolean
Brake : boolean Resume : boolean

Abbreviation Low
too_close - ~) < 2,
where s = So - s / a n d

K / 1 when Sensitivity --
I = ~, 10 when Sensitivity High

Fig. 2. A hypothetical automobile cruise control system with collision avoidance

Because a motivation of this work is to analyze the TCAS II requirements,
we illustrate our technique with a simple Statecharts-like system shown in Fig. 2.
It is a hypothetical automobile cruise control system with collision avoidance.
The idea is that when the automobile is too close to the vehicle in front, the
cruise control system will automatically deactivate itself. (In addition to TCAS,
the example was influenced by the one used by Atlee and Gannon [AG93].)

Three inputs to the system are so, the velocity of the vehicle; sf , the velocity
of the front vehicle; and d _> 0, the distance between the vehicles. (In reality,
s f may be estimated from the current and previous values of So and d.) The
closeness of the two vehicles is based on time rather than distance. Let s be
So - s f . The estimated time to collision is d / s . If this quantity is less than some
threshold t, the two vehicles may be considered too close. However, if s is positive
but small, the two vehicles can get very close without triggering the condition.
To fix this problem, the following condition can be used instead:

d - K / d
< t .

max(e, s)

The max function is for avoiding division-by-zero. Subtracting K i d from the
numerator makes the inequality true when d is tiny, regardless of the value of
s. The positive value K depends on the "sensitivity level" (large K for high
sensitivity). Although this example is naive, the inequality is exactly the one
used in TCAS II for threat detection. We arbitrarily chose e = 1 and t = 2.

As shown in Fig. 2, the system is divided into four components. In Statecharts
and RSML, different components are synchronized by events (signals). We omit

326

this mechanism in the figure and assume the components execute in the follow-
ing order: in the first micro-step, Own_vel and Front_vel execute concurrently
(i.e., each takes one enabled transition, or stays unchanged if none is enabled);
in the second and third micro-steps, Sensitivity and Cruise_Control execute re-
spectively. The three micro-steps together form a super-step. Transitions in a
component are guarded by assertions on the inputs and/or other components. It
should be clear that we can construct the product system of the components in
the usual manner and represent it with a system model (Sect. 2.2). The values
of all the inputs are nondeterministic at the beginning of a super-step, but dur-
ing a super-step they are assumed to be unchanged by the so-called synchrony
hypothesis. Therefore this system satisfies Property 2: micro-step transitions are
data-invariant, while transitions across super-steps are data-memoryless.

We verified several safety properties of a model of this system using our proto-
type implementation. In the model, there are (at least) six Boolean variables rep-
resenting constraints: so _> 25, so < 15, sf > 25, s / < 15, ((d - 1 / d) / m a x (l , so -
s])) < 2, ((d - lO/d) /max(l , So - s/)) < 2. Additional Boolean variables are
used when the property being verified contains other constraints. We focused
on verifying that Cruise_Control is never in the Cruise node under certain con-
ditions, for example, when d is less than 2, (That is, in CTL, AG !(d < 2

Cruise_Control = Cruise).) This property is false because the two transitions
into the Cruise node are not guarded by -~too_close. The model checker correctly
showed a counterexample. After strengthening the guards on the two transitions,
the property was verified true. Two other related properties were Mso success-
fully verified: Cruise_Control is never in the Cruise node when either (1) d is
less than 4 and Sensitivity is High, or (2) d is less than 20, Sensitivity is High,
and Sen is Low. Each of the above specifications was evaluated within a second
by our prototype implementation. The numbers of calls made to the constraint
solver were at most about 30% of the number of calls required to construct Fens.

5 C o n c l u s i o n

The technique described in this paper can be generalized in various ways. The
idea can be applied to systems with transitions annotated by assertions in any
theory, if a decision procedure for the theory is available. Allowing transitions
that are not data-memoryless or data-invariant can make the technique more
useful, but that would probably require computing a bisimulation before apply-
ing model checking, or approximating one on the fly. Doing so may blow up the
number of BDD variables. There are also many open questions for the short
term. We need to experiment with larger systems like TCAS II to see whether
the technique is practical. The choice of variable ordering also needs investigation
because it affects both the BDD size and the number of paths traversed.

References

[ABB+96] R. J. Anderson, P. Beame, S. Burns, W. Chan, F. Modugno, D. Notkin,
and J. D. Reese. Model checking large software specifications. In Pro-

327

[AG931

[BC95]

[BCG88]

[BCM+90]

[Bry86]

[CDV961

[CFZ95]

[EH86]

[Har87]

[HH951

[LHHR94]

[LS81]

[McM93]
[Mil80]
[PB941

[Tha96]

[WME93]

cecdings of the Fourth ACM SIGSOFT Symposium on the Foundations of
Software Engineering, pages 156-166, October 1996.
J. M. Atlee and J. Gannon. State-based model checking of event-driven
system requirements. IEEE Transactions on Software Engineering, SE-
19(1):24-40, January 1993.
R. E. Bryant and Y.-A. Chen. Verification of arithmetic circuits with Bi-
nary Moment Diagrams. In Proceedings of the 32nd A CM/IEEE Design
Automation Conference, pages 535-541, June 1995.
M.C. Browne, E.M. Clarke, and O. Grfimberg. Characterizing finite
Kripke structures in propositional temporal logic. Theoretical Computer
Science, 59:115-131, 1988.
J. R. Burch, E. M. Clarke, K. L. McMitlan, D. L. Dill, and L. J. Hwang.

Symbolic model checking: 10 ~~ states and beyond. In Proceedings of the
Fifth Annual Symposium on Logic in Computer Science, pages 428-439.
IEEE Computer Society Press, June 1990.
R. E. Bryant. Graph-based algorithms for boolean function manipulation.
IEEE Transactions on Computers, C-35(6):677-691, August 1986.
J. Crow and B. L. Di Vito. Formalizing space shuttle software require-
ments. In Proceedings of the ACM SIGSOFT Workshop on Formal Methods
in Software Practice, pages 40-48, January 1996.
E. M. Clarke, M. Fujita, and X. Zhao. Hybrid Decision Diagrams overcom-
ing the limitations of MTBDDs and BMDs. In 1995 IEEE/ACM Interna-
tional Conference on Computer-Aided Design, Digest of Technical Papers,
pages 159-163. IEEE Computer Society Press, November 1995.
E. A. Emerson and J. Y. Halpern. "Sometimes" and "Not Never" revis-
ited: On branching versus linear time temporal logic. Journal of the ACM,
33(1):151-178, 1986.
D. Harel. Statecharts: A visual formalism for complex systems. Science of
Computer Programming, 8:231-274, 1987.
T. A. Henzinger and P.-H. Ho. Algorithmic analysis of nonlinear hybrid
systems. In Proceedings of the 7th International Conference on Computer
Aided Verification, pages 225-238. Springer-Verlag, July 1995.
N. G. Leveson, M. P. E. Heimdahl, H. Hildreth, and J. D. Reese. Require-
ments specification for process-control systems. IEEE Transactions on Soft-
ware Engineering, SE-20(9), September 1994.
R. J. Lipton and R. Sedgewick. Lower bounds for VLSI. In Conference
Proceedings of the Thirteenth Annual ACId Symposium on Theory of Com-
puting, pages 300-307, May 1981.
K. L. McMillan. Symbolic Model Checking. Kluwer, 1993.
R. Milner. A Calculus of Communicating Systems. Springer-Verlag~ 1980.
G. Pesant and M. Boyer. QUAD-CLP(]R): Adding the power of quadratic
constraints. In Second International Workshop, Principles and Practice of
Constraint Programming, pages 95-108. Springer-Verlag, May 1994.
J. S. Thathachar. On the limitations of ordered representations of functions.
Technical Report CSE-96-09-03, University of Washington, September 1996.
F. Wang, A. Mok, and E. A. Emerson. Symbolic model checking for dis-
tributed real-time systems. In Proceedings of the First International Sym-
posium of Formal Methods Europe, pages 632-651, April 1993.

