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Abstract, Parametric timing constraints are expressed naturally in tim- 
ing diagram logics. Algorithmic verification of parametrically constrained 
timing properties is a difficult problem known to be undecidable in most 
general cases. This paper establishes that a class of parametrically con- 
strained timing properties can be verified algorithmically against finite- 
state systems; alternatively stated containment by a regular language 
is shown decidable for a class of language properties (regular and non- 
regular) expressible in our timing diagram logic. 

1 I n t r o d u c t i o n  

Timing diagrams provide a linear-time temporal logic that is well suited to ex- 
pressing timing constraints. When variables can appear in timing constraints the 
resulting timing diagram logic can express context-free and context-sensitive lan- 
guage properties. Algorithmic verification of such non-regular properties against 
finite-state system specifications is generally known to be undecidable. Tim- 
ing diagrams however can only express non-regular languages with particular 
structural characteristics. This raises the question of whether the class of timing 
diagram languages is amenable to algorithmic verification. This paper establishes 
that containment by a regular language is decidable for a class of timing diagram 
languages implying that certain non-regular language properties expressible as 
timing diagrams can be algorithmically tested against finite-state systems. 

Timing diagrams have been used formally in a variety of hardware reasoning 
tasks. Brzozowski Gahlinger and Mavaddat provided algorithms for testing 
consistency and satisfiability of timing specifications given as timing diagrams 
in the context of interfacing components [3]; similar efforts have been undertaken 
by Cerny and Khordoc [4]. Several researchers have proposed using algebras of 
timing diagrams annotated with various programming language constructs for 
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the behavioral specification of designs [6 9 10]. Algorithmic verification has 
been applied to requirements expressed as timing diagrams by translating the 
diagrams into existing formalisms such as VHDL [11] and timed automata [2]. 
Although some of these efforts support quantitative timing constraints (those 
using numeric constants) none support parametric timing constraints (those 
allowing variables over numerals). 

Alur Henzinger and Vardi have studied parametric timing constraints for 
real-time systems [1]. They defined a theory of parametric timed automata with 
multiple clocks for tracking parametric values and established that language 
emptiness is decidable when one clock is constrained by parameters undecidable 
when three or more clocks are constrained by parameters and an open problem 
when two clocks are so constrained. The timing diagrams considered in this work 
can correspond to problems that would require multiple parameterized clocks. 
We do not solve the general question of decidability of language emptiness for 
two clock systems. Rather this work shows that timing diagrams correspond to 
a class of parameterized timing problems potentially requiring multiple clocks 
for which containment by a regular language is decidable. 

2 T i m i n g  D i a g r a m s  a n d  T h e i r  L a n g u a g e s  

This work uses a formal logic of timing diagrams (called TDL) developed as part 
of our study of diagrammatic representations as formal specification languages 
for design and verification [5]. Starting from fairly common timing diagram no- 
tations we define timing diagram semantics relative to formal languages. TDL is 
expressively incomparable to existing temporal logics such as LTL. In particular 
LTL cannot express parametric timing constraints while TDL cannot express 
properties such as Fp and G(p --+ q); reasons for this are given in Section 2.2. 

2.1 Syntax 

Waveforms depict transitions between low and high voltage levels; timing dia- 
grams depict relations over the levels and transitions appearing within a set 
of waveforms. TDL supports two relations: synchronization and temporal order- 
ing. Temporal ordering relationships may be constrained with discrete-time lower 
and upper bounds. We allow these bounds to contain variables that range over 
the natural numbers; these variables introduce parametric timing constraints as 
shown in the following example. 

:~: , : , , : : . :  : :,: : ~ : : :  : =  :::~::~:::,:::::: ~ :  :::4, ~,~., ~:.:~::.:: ::: ::, ~.,.:.:, ~ ~ : , , ~ , ~ , . ~ : : ~ :  ::~,:,,~,::~::,:~:,: 
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Vertical parallel lines indicate synchronization of the levels or transitions on 
which the circles appear. The term event refers to a transition on a waveform or 
a synchronization. The arrows indicate temporal ordering while the annotations 
on the arrows indicate the lower and upper bounds on the time passing between 
the related events: annotation "=n" (shorthand for [nn]) indicates that  the lower 
and upper bounds are the same while annotation "> 3" (shorthand for [3 oe]) 
indicates a lower bound of 3 but no upper bound. Unannotated arrows have time 
bound [1 c~] by default. Valid bound expressions consist of natural numbers 
variables and arbitrary addition and subtraction expressions over them as well 
as the symbol ee. The labels in the shaded area are for explanatory purposes 
only and are not part of the timing diagram. 

Formally a timing diagram contains three components: (1) an ordered se- 
quence P of time points which are abstract moments of time at which events 
occur; (2) a function N from names to waveforms defined as functions from P 
to voltage level designators of type H (for high level) L (for low level) F (for 
falling transition) and R (for rising transition); and (3) a ternary relation O 
on N x P x B capturing temporal ordering synchronization and time bounds 
where B consists of time bound expressions of the form [l, u] such that l is a 
non-co valid bound expression and u is any valid bound expression. 

As an example we construct tuple (P, N, O} to capture the above timing 
diagram. P contains time points {Pl,P2,P3,P4,P~,p6} as shown in the shaded 
area. N is constructed from the levels on each waveform at each time point. 

N = {(a, {(Pl, _R), (P2, F) ,  (P3, L), (P4, L), (Ps, R), (P6, H)}),  
(b, {(Pl, L), (P2, L), (P3, R), (P4, F) ,  (P5, n), (P6, L)}), 
(c, {(Pl, L), (P2, n), (P3, L), (P4, n), (Ps, R), (p~, F)})  

Relation O contains five elements the first four corresponding to the arrows and 
the fifth to the synchronization line: 

0 = {((a,pl) ,  (a,p2), [n, n]), ((a,p2), (b, p3), [1, oo]), ((b,p4), (a,ps), [3, oo]), 
((e, ps), (c, p6), [n, n + 5]), ((a, ps), (c, ps), [0, 0])} 

Although we have provided only an example here the process of representing 
a timing diagram in this tuple form can be formalized as a straightforward 
parsing procedure. In the remainder of the paper the term "timing diagram" 
refers to the tuple form rather than the original picture. 

2.2 S e m a n t i c s  

Timing diagrams are modeled by (finite or infinite) words over an alphabet con- 
taining all possible assignments of boolean values to the names labeling wave- 
forms. Intuitively a word models a timing diagram when the transition patterns 
in the diagram reflect the changes in values assigned to names in the word. One 
difficulty in formalizing timing diagrams is that their intended meanings differ 
widely between contexts and among users. Rather than fix one interpretation 
TDL has been parameterized to allow user customization of the semantics. These 
parameters are illustrated using the following timing diagram and word. 
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[ 3 6 ] ~ ,  ~ ~ " '  !l 0 0 0 a 1 0 0  
0 0 0  

b 1 0 1 2  

c pl 

1 1 0  1 1 0 1  1 1 
0 1 0  0 1 0 0 0  1 
0 0 1  0 1 0 0  0 1 
3 4 5  6 

P2 P4 P3 
Pl P2 P3, P4 

7 8 9  10 11 

pl p2 p3 p4 Pl P2 P3,P4 

The word is presented in tabular form: the rows are labeled with waveform names 
and the columns with the indices into the word. The three lines containing time 
points beneath the table indicate three separate assignments of indices to time 
points as explained in the example below. 

We allow timing diagrams to specify assume-guarantee relationships between 
their events. One parameter indicates those time points that comprise the "as- 
sume" portion. For purposes of this example take p 1 as the only such time point. 
Semantically we will begin to match the word against the timing diagram start- 
ing at the first index that matches the events in the assumed portion in this 
case index 0. Next we walk the word looking fbr the smallest indices that match 
any events that can immediately follow the falling transition on b in this case 
the first synchronization line (p~). 

A second parameter is motivated by the attempt to assign an index to the 
first synchronization line. The line itself requires that b be low when a rises; 
however is b required to be low until a rises? The desirability of the "until" 
interpretation is heavily context-dependent. Therefore the user may indicate 
segments of waveforms that should be matched exactly within words. Such seg- 
ments are called fixed-level constraints and have the form ( n , p , # )  where n is a 
waveform name and p and p~ are time points such that the waveform correspond- 
ing to n shows a single voltage level between p and pt. For this example assume 
we have only one such constraint: (a, p2, p3). Then the first synchronization line 
is matched at index 2 while the rising transition on b is matched at index 3 and 
the second synchronization line at index 4: t:his assignment appears in the first 
line below the table. Note that despite the appearance that the rising transition 
on b must follow the one on c the semantics does not enforce this since the 
relationship was not indicated explicitly using an arrow. 

TDL requires timing diagrams to be matched repeatedly in a word. Two 
notions of repetition appear useful: one in which the next repetition starts after 
the previous one has been completed and the other in which a new repetition 
starts in any index satisfying the "assume" portion of the diagram. We therefore 
define two semantic relationships: ~Iter (for iterative) and ~Inv (for invariant) 
respectively. Under the invariant semantics the next match would begin at index 
4 while under the iterative semantics the next match would begin at index 5; 
these matches are shown in the next two lines beneath the table. Note that the 
match attempted from index 4 is not valid since the assigned indices violate the 
bounds on the arrow. This word would therefore model the diagram under the 
iterative semantics but not under the invariant semantics. 
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This example provides insight into the expressive nature of TDL. For exam- 
ple TDL can express context-sensitive languages such as (a ~b~c'~) * (taking a n 
to mean (a = 1, b = 0, c = 0) with similar interpretations of b ~ and c~). TDL 
can not express more general non-regular languages such as "the number of a's 
equals the number of b's ' .  Relative to temporal logic TDL can not express LTL 
formula Fp because there is no way to stop the repeated searches at a partic- 
ular point. TDL can not express G(p -+ q) because it is not possible to make 
disjunctive statements within a TDL timing diagram. In separate work we are 
investigating calculi over timing diagrams that  would relax these restrictions [5]. 

Due to space constraints only the invariant semantics is defined in the re- 
mainder of this section. The iterative semantics is defined formally in [5]. Tuples 
(T, S, X} capture a timing diagram its set of assumed time points and its fixed- 
level constraints; the term "timing diagram" is henceforth overloaded to also 
refer to one of these tuples. 

Given a timing diagram we can derive a partial order on its time points from 
the ordering of events within individual waveforms and the temporal ordering 
relationships. For a time point p the enabling points of p are those time points 
# such that  pr precedes p in this partial order. If the order is total the timing 
diagram is called temporally unambiguous. 

An index assignment is a partial function I from time points to natural num- 
bers indexing a word; if I is not total the time points on which it is defined must 
form a prefix of the partial order on time points. Defn. 1 details the conditions 
an index assignment must meet in order to satisfy the requirements of a prefix 
of time points. Intuitively the assigned indices must satisfy the events occurring 
at each time point while respecting the fixed-level constraints and time bounds 
on all events defined within those time points. For index i into a word W W~(n) 
denotes the value of W on the signal named n at index i. 

De f in i t i on  1 Let D = ((P, N, O), S, X) be a timing diagram. Let U be a prefix 
of the partial order of P and let I be an index assignment for U over a word W. 
I satisfies the constraints of U relative to D iff 

1. For each time point p C U I(p) satisfies p; i.e. for every waveform name 
n in N Wi(p)(n) = 0 (resp. 1) and Wr(p)+l(n) = 1 (resp. 0) if n has a 
rising (resp. falling) transition at p and ~ ( p ) ( n )  = 0 (resp. t) if n has a low 
(resp. high) level at p and there is a synchronization line through n at p. 

2. Each variable appearing in a time-bound expression in O can be replaced by 
a natural number such that  for each ((a, p), (a ~, p'), If, u]) in O if p and p '  
are both in U then l <_ I(p ') - I(p) ~_ u. 

3. For each fixed-level constraint (n ,p ,# )  in X i fp  and p ~ are both in U then 
for each index i such that  I(p) < i < I(p') Wi (n )  = 0 (resp. 1) if n has a 
low (resp. high) level between p and pq 

It follows from part 2 of this definition that  variables in t iming constraints 
are treated as existentially quantified within a single index assignment. However 
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the instantiations of variables need not be consistent across the many index 
assignments produced while repeatedly matching the diagram against the word. 

Starting from a given index there are potentially many index assignments 
satisfying Det'n. 1. The semantic definitions must rely on a particular such index 
assignment. We have chosen to use the one that assigns to each time point the 
smallest index that satisfies it while respecting the partial order among the time 
points; this index assignment will be called minimal. 

Defini t ion 2 Let D = ((P, N, 0), S, X) be a timing diagram W be a word i be 
an index into W and U be a prefix of the partial order on P. Index assignment 
I is minimal for D W i and U iff I satisfies the constraints of U relative to D 
and for each time point p E U l(p) >_ i and I(p) is the smallest index of W that 
satisfies p and is larger than all indices assigned to the enabling points of p. 

The semantics places one other restriction on index assignments in addition 
to minimality: they must be defined on as large a prefix of the time point partial 
order as possible. An index assignment is called fully minimal if it is minimal and 
cannot be extended to a minimal index assignment for the same timing diagram 
word and starting index but with a larger prefix of time points. Fully minimal 
index assignments are unique for temporally unambiguous timing diagrams. 

Given a timing diagram (T, S, X} and a word W the invariant semantics 
starts from each index of W in turn and locates the fully :minimal index as- 
signment. If that assignment is defined for all time points in S the semantics 
requires that it be defined for all time points in T. If this property fails for some 
index of W then W fails to model (T, S, X). 

Defini t ion 3 Let D = (T, S, X} be a timing diagram and let W be a word. 
D invariantly describes W (denoted W ~Inv D) iff for all indices i into W 
whenever the fully minimal index assignment for D W i and S is defined tbr 
all time points in S it is defined for all time points in T. Given a language 
L D invariantly describes L (denoted L ~ Inv D) iff for every word W E L 
W ~In. D. The set, of all words that invariantty describe D is denoted/2(D) Inv. 

3 D e c i d a b i l i t y  

This section establishes that containment of a regular language in a temporally 
unambiguous timing diagram language is decidable; we refer to the general prob- 
lem of containment by a regular language as the regular containment problem. 
Formally a timing diagram language is any language that can model a timing 
diagram under either the iterative or the invariant semantics. The proof for the 
invariant semantics is discussed in detail; the proof for the iterative semantics is 
outlined. Our decision procedures are based on a correspondence between tem- 
porally unambiguous timing diagram languages and the languages accepted by 
deterministic two-way 1-counter machines (1-2DCM). Given a temporally un- 
ambiguous timing diagram our algorithm creates one 1-2DCM if the diagram is 
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interpreted invariantly and two such machines if the diagram is interpreted it- 
eratively. Then given a finite automaton we determine whether the language of 
the automaton models the timing diagram by computing relations on the states 
of the automaton using the counter machine(s). The algorithms discussed here 
operate on finite-state au tomata  accepting by final state. With a slight modifica- 
tion they can be tailored to operate on Biichi automata;  the Biichi construction 
is not presented here for lack of space. 

A 1-2DCM has a finite-state control a two-way read-only head over a finite 
bounded-length input tape and one counter which can store any natural number. 
Transitions are based on the current state the letter being read and whether 
the counter contains zero; the transition indicates a next state which direction 
if any to move the input head and whether to increment decrement or hold 
the value of the counter. The following formal definition is adapted from [7]. 

D e f i n i t i o n  4 

1. A two-way 1-counter machine M is a tuple (K, 27, <~, D, 5, q0, F )  where K 
<3 t> q 0 and F are the states inputs left and right endmarkers initial state 
and accepting states respectively. 5 is a mapping from K x (Z  U {<~, D}) x 
{0,1} into K x { - 1 , 0 ,  1} x { - 1 , 0 ,  1}. 

2. A configuration of M on an input <1xD for x E Z * is given by a tuple 
(q, <~xt>,i, c) denoting the fact that  M is in state q with the input head 
reading the i th symbol of <~xD and value c is in the counter. 

3. Relation ::~ is defined between configurations as follows: (q, <1xC>, i, c) 
(p, <lxD, i + d, c + de) if a is the ira symbol of <1xD and 5(q, a, ,k(c)) contains 
(p,d, dc) where )~(c) = 0 if c = 0 and A(c) = 1 if c • 0. ~ *  denotes the 
transitive closure of ~ .  

4. A string x E Z* is accepted by M if (q0,<lxt>,l,0) ~ *  (q,<~xD, i ,c) for 
some q C F 1 < i < I <~ x ~> I and non-negative integer c. The set of strings 
accepted by M form the language of M and will be denoted s  

Languages accepted by 1-2DCM can be characterized by the number of times 
the counter changes between incrementing and decrementing while reading the 
input tape. Denoting this parameter by r the following results about 1-2DCM(r) 
are due to Ibarra et aI. [8]: 

T h e o r e m  1 ( I b a r r a  et al. 1993) 

- The emptiness problem for 1-2DCM(r) is decidable for every r >_ 1. 
- Ur 1-2DCM(r) is effectively closed under complementation intersection and 

union. 
- The containment and equivalence problems for Ur I -2DCM(r)  are decidable. 

This result indicates that  we can use 1-2DCM in decision procedures if we can 
bound the number of counter reversals made while processing any input. Such 
machines are called reversal bounded. 
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Given a timing diagram (T, S, X} we construct a 1-2DCM called M FAIL 
that  accepts exactly those words for which the fully minimal index assignment 
starting from the first position of the word is defined for all the t ime points in 
S but undefined for some time point in T. Intuitively the machine walks the 
word from the starting index looking for indices to assign to time points; the 
transitions used to search for each time point 's index also check for violations 
of the fixed-level constraints. If an  index satisfying the time point is found the 
machine tests any time-bounds on temporal  ordering arrows whose target is 
at the recently matched time point. Constraints are tested one at a time by 
repeatedly sweeping over the input word. MFAIL moves into an accepting state 
as soon as a violation of either the fixed-level constraints or the t ime-bound 
requirements is found. If indices corresponding to all of the t ime points are 
located M FAIL moves into a looping state from which nothing is accepted. 

By construction M FAIL rejects certain words that do not model <T, S, X) .  In 
particular this applies to words for which the fully minimal index assignment 
from position 0 is defined for all time points in T but the fully minimal index 
assignment from some later starting position is undefined for some time point 
in T. The restriction of MFAIL to accepting only words failing on the index as- 
signment from the first position is important  for the decidability of the problem. 
Based on the syntax of T we can bound the number of counter reversals required 
for a 1-2DCM to test the time bound constraints of T over an arbitrary word; 
this follows from results in [5]. Therefore we can bound the number of counter 
reversals required in a test of some fixed number of index assignment searches 
over a given timing diagram. As there is no fixed upper bound for the number of 
searches required in testing an entire word our algorithm must perform searches 
only in finite increments. The restriction to single searches is sufficient for either 
semantics since it follows from the definitions that  any word failing to model a 
timing diagram has a suffix accepted by MFAIL. 

The decision procedure for the invariant semantics is fairly simple: the lan- 
guage generated by DFA A is contained in the language of timing diagram 
(T, S, X> iff no reachable state of A can generate a word accepted by MFAIL. 
Formally let A = (Q, Z,  5, q 0, QF} be a DFA that accepts by final state. Nota- 
tion A](q,q,) denotes A modified to have q as the only start  state and q~ as the 
only final state where q and q i are both in Q. We define a set Avoid containing 
exactly those states of A from which a word in MFAIL is accepted as follows: 

Avoid =d~f {q e Q I 3q/e QF : ,C(Al(q,q~)) n s # O} 

Theorei  2 Let X = <q, q0, QF> be a finite automaton and D = <T, S, X> 
be a timing diagram. Let MFAIL be the machine constructed for D as described 
above. Let Avoid be computed as defined above for A. s  C_ L:(D) Inv iff no 
state reachable from qo under 5 is in Avoid. 

P r o o f  

1. Assume s C Z(D) Inv. From Defn. 3 every suffix of every word accepted 
by A invariantly describes D. Hence there does not exist a state of A reach- 
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able from q0 from which a word can be generated such that  the fully minimal 
index assignment for S is defined for all t ime points in S but for which the 
fully minimal index assignment for all t ime points in T is undefined for some 
time point. By construction any states in Avoid cannot be reachable from 
q0 so Theorem 2 holds. 

2. Assume/ : (A)  ~ / : ( D )  Inv. From Defn. 3 there must exist some index i into 
W from which the fully minimal index assignment for S is defined for all 
time points in S but undefined for some time point in T. By construction 
the suffix of W starting at index i is accepted by MFAIL. Let qi be the state 
A was in when it processed index i; qi must be in Avoid by construction. 
Thee existence of W proves that qi is reachable from q0 so containment is 
correctly determined to fail. [] 

Theorem 2 suggests a decision procedure. Both MFAIL and the set Avoid 
are constructible. Any DFA can be converted into a 1-2DCM by augmenting 
the transitions of the DFA with a counter whose value is never changed. The 
intersection of two reversal-bounded 1-2DCMs is effectively constructible and 
is also a reversal-bounded 1-2DCM by Theorem 1. The emptiness test on the 
intersection machine is decidable by Theorem l. 

We outline the decision procedure for the iterative semantics via an example. 
The set Avoid is also used in deciding containment under the iterative semantics. 
However the procedure for the iterative semantics is harder because the exis- 
tence of a reachable state of A from which a word in MFAIL is generated is not 
sufficient. The iterative semantics only starts a test in an index if the previous 
test ended in the preceding index. The decision procedure therefore needs a way 
to track which states in Avoid can serve as starting states for tests under the 
iterative semantics. We accomplish this by constructing a second 1-2DCM called 
MEXACT which accepts those words meeting two conditions: (1) the fully min- 
imal index assignment constructed from the first position in the word is either 
undefined for some time point in S or it is defined for all t ime points in T; (2) 
the last index of the word is the index in which the subsequent index assignment 
search must start. The justification for the first position search is the same as 
it was for MFAIL. The restriction on the final index of the word is necessary so 
that  we can compose words accepted by MEXACT into longer words iteratively 
modeled by the timing diagram. 

Given DFA A that  accepts by final state we use M EXACT to compute a 
binary relation TD-Reach on the states of A such that  (q, q~) G TD-Reach iff 
Al(q,q, ) accepts some word in MEXAC w. Formally 

TD-Reach =der {(q, q') ] s N s • O} 

Intuitively once TD-Reach and Avoid are computed we decide iterative de- 
scription by checking whether there exists a state q of A such that  q is in Avoid 
and (q0, q) is in the transitive closure of TD-Reach. The language of A models 
(T, S, X) iteratively iff no such state exists, As examples consider the following 
two finite au tomata  A1 (left) and A2 (right) and timing diagram T with the t ime 
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point of the rising transition on a in S and nothing in X. Let D = (T, S, X). 

else 

<00> 

<00> 

~ ~ " ' x .  else 
. els~< lo:lSe/< ` 0 ~,~elS:o 1> ~ 

<00> 

a 

b 

The language of D is 

(((0, 1) + (1,0) + (1, 1))* (0,0) + (1,0) (1,0) ((0, 1) + (1, 1}))* 

where each pair (x, y) denotes that  a = x and b = y. Furthermore note that  

Z(A1) = ((0, O) (1, O) (1, O) (0, 1))* /~(A2) = ((0, 0)* (1, O) (1, O) (0, 1))* 

The language of A1 is contained in the language of D. By definition Avoid = 
{2, 3, 4} and TD - Reach = {(1, 5), (5, 5), (1, 6), (2, 6), (3, 6), (4, 6), (5, 6), (6, 6)}. 
The only states accessible from the start state (1) in the closure of TD-Reach 
are 5 and 6. As neither of these is in Avoid L;(A 1) C_ s The language of A2 
however is not contained in the language of D. By definition Avoid = {1, 2, 3, 4} 
and TD - Reach = {(1, 4), (4, 4), (1, 5), (2, 5), (3, 5), (4, 5), (5, 5)}. The start state 
is listed in Avoid indicating that  s 2) (g s 

4 F u t u r e  W o r k  

Although we have proven that  the regular containment  problem is decidable for 
temporally unambiguous t iming diagram languages we do not yet have an effi- 
cient decision procedure. Testing containment of a regular language in a 1-2DCM 
language lies in PSPACE. Our decidability proof relied on quadratically many 
such tests with respect to the number  of states in the au tomaton  for the reg- 
ular language. Methods for reducing the number  of containment  tests required 
remains an impor tant  problem for future work as does the empirical analysis 
of the overall procedure. In addition our current restriction to temporally un- 
ambiguous t iming diagrams can likely be removed by altering the construction 
algorithms for MFAIL and MEXACT. 

We are also interested in the general problem of language containment  for 
t iming diagram languages. Although the results presented here could be used to 
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test containment of a regular-language timing diagram in an arbitrary timing di- 
agram they do not decide the general problem since arbitrary 1-2DCM have an 
unbounded number of states. It is possible to build a 1-2DCM that accepts the 
entire language rather than just a single pass of any timing diagram. Intuitively 
the machine is a modification of MEXACT that begins a subsequent check in the 
appropriate index into the word after the previous check has been completed and 
allows the previous pass check to walk off the end of a word. Unfortunately this 
machine is not guaranteed to have bounded counter reversals. Results governing 
the undecidability of language containment for 1-2DCM with unbounded re- 
versals are also inapplicable because there exist 1-counter non-reversal-bounded 
languages that cannot be captured in any timing diagram. Consider the "timing 
diagram" 

b 
or  = k+4  

C 

which is not well-formed in our syntax due to the disjunction in the time-bound 
expression. Although no well-formed timing diagram has exactly the same lan- 
guage as this one a 1-2DCM could be constructed to accept the language of 
this diagram using techniques similar to those used in constructing MFAIL and 
MEXACT. Therefore the undecidability of language containment for 1-counter 
non-reversal bounded languages does not prove the undecidability of contain- 
ment for timing diagram languages. We are investigating this general problem 
as well as possible syntactic characterizations of general timing diagram language 
containment. 

5 C o n c l u s i o n s  

This paper has established that the regular containment problem is decidable 
for any temporally unambiguous timing diagram language regardless of where it 
falls in the Chomsky hierarchy. This result holds for both finite regular languages 
and infinite regular languages accepted by B/ichi automata. We see two main 
implications of this result. First there is the practical implication that certain 
non-regular language properties are amenable to algorithmic verification against 
finite-state systems; an implementation of these ideas would extend the scope 
of algorithmic verification as existing logics such as LTL express only regular 
language properties. 

The second implication is more foundational in nature. The formal meth- 
ods community has largely treated diagrams as interface tools. Diagrammatic 
representations certainly have advantages in this regard as evidenced by their 
popularity. Unfortunately the interface approach to diagrams has lead us to fo- 
cus more on how diagrams can be used to represent existing sentential logics 
rather than on the computational models suggested by the diagrams in their own 
right. This work establishes that the structure naturally imposed by diagram- 
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matic  representations also offers advantages on a theoretical level thus making 
d iagrammat ic  representations worthy of investigation outside of the realm of 
interface design. 
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