
Containment of Regular Languages in
Non-Regular Timing Diagram Languages is

Decidable

Kathi Fisler*

Department of Computer Science
Rice University

6100 S. Main MS 132
Houston TX 77005-1892

kfisler@cs.rice.edu

Abstract, Parametric timing constraints are expressed naturally in tim-
ing diagram logics. Algorithmic verification of parametrically constrained
timing properties is a difficult problem known to be undecidable in most
general cases. This paper establishes that a class of parametrically con-
strained timing properties can be verified algorithmically against finite-
state systems; alternatively stated containment by a regular language
is shown decidable for a class of language properties (regular and non-
regular) expressible in our timing diagram logic.

1 I n t r o d u c t i o n

Timing diagrams provide a linear-time temporal logic that is well suited to ex-
pressing timing constraints. When variables can appear in timing constraints the
resulting timing diagram logic can express context-free and context-sensitive lan-
guage properties. Algorithmic verification of such non-regular properties against
finite-state system specifications is generally known to be undecidable. Tim-
ing diagrams however can only express non-regular languages with particular
structural characteristics. This raises the question of whether the class of timing
diagram languages is amenable to algorithmic verification. This paper establishes
that containment by a regular language is decidable for a class of timing diagram
languages implying that certain non-regular language properties expressible as
timing diagrams can be algorithmically tested against finite-state systems.

Timing diagrams have been used formally in a variety of hardware reasoning
tasks. Brzozowski Gahlinger and Mavaddat provided algorithms for testing
consistency and satisfiability of timing specifications given as timing diagrams
in the context of interfacing components [3]; similar efforts have been undertaken
by Cerny and Khordoc [4]. Several researchers have proposed using algebras of
timing diagrams annotated with various programming language constructs for

* This research was conducted while the author was a graduate student at Indiana
University with financial support from AT&T Bell Laboratories under the PhD
Fellowship Program.

156

the behavioral specification of designs [6 9 10]. Algorithmic verification has
been applied to requirements expressed as timing diagrams by translating the
diagrams into existing formalisms such as VHDL [11] and timed automata [2].
Although some of these efforts support quantitative timing constraints (those
using numeric constants) none support parametric timing constraints (those
allowing variables over numerals).

Alur Henzinger and Vardi have studied parametric timing constraints for
real-time systems [1]. They defined a theory of parametric timed automata with
multiple clocks for tracking parametric values and established that language
emptiness is decidable when one clock is constrained by parameters undecidable
when three or more clocks are constrained by parameters and an open problem
when two clocks are so constrained. The timing diagrams considered in this work
can correspond to problems that would require multiple parameterized clocks.
We do not solve the general question of decidability of language emptiness for
two clock systems. Rather this work shows that timing diagrams correspond to
a class of parameterized timing problems potentially requiring multiple clocks
for which containment by a regular language is decidable.

2 T i m i n g D i a g r a m s a n d T h e i r L a n g u a g e s

This work uses a formal logic of timing diagrams (called TDL) developed as part
of our study of diagrammatic representations as formal specification languages
for design and verification [5]. Starting from fairly common timing diagram no-
tations we define timing diagram semantics relative to formal languages. TDL is
expressively incomparable to existing temporal logics such as LTL. In particular
LTL cannot express parametric timing constraints while TDL cannot express
properties such as Fp and G(p --+ q); reasons for this are given in Section 2.2.

2.1 Syntax

Waveforms depict transitions between low and high voltage levels; timing dia-
grams depict relations over the levels and transitions appearing within a set
of waveforms. TDL supports two relations: synchronization and temporal order-
ing. Temporal ordering relationships may be constrained with discrete-time lower
and upper bounds. We allow these bounds to contain variables that range over
the natural numbers; these variables introduce parametric timing constraints as
shown in the following example.

:~: , : , , : : . : : :,: : ~ : : : : = :::~::~:::,:::::: ~ : :::4, ~,~., ~:.:~::.:: ::: ::, ~.,.:.:, ~ ~ : , , ~ , ~ , . ~ : : ~ : ::~,:,,~,::~::,:~:,:

157

Vertical parallel lines indicate synchronization of the levels or transitions on
which the circles appear. The term event refers to a transition on a waveform or
a synchronization. The arrows indicate temporal ordering while the annotations
on the arrows indicate the lower and upper bounds on the time passing between
the related events: annotation "=n" (shorthand for [nn]) indicates that the lower
and upper bounds are the same while annotation "> 3" (shorthand for [3 oe])
indicates a lower bound of 3 but no upper bound. Unannotated arrows have time
bound [1 c~] by default. Valid bound expressions consist of natural numbers
variables and arbitrary addition and subtraction expressions over them as well
as the symbol ee. The labels in the shaded area are for explanatory purposes
only and are not part of the timing diagram.

Formally a timing diagram contains three components: (1) an ordered se-
quence P of time points which are abstract moments of time at which events
occur; (2) a function N from names to waveforms defined as functions from P
to voltage level designators of type H (for high level) L (for low level) F (for
falling transition) and R (for rising transition); and (3) a ternary relation O
on N x P x B capturing temporal ordering synchronization and time bounds
where B consists of time bound expressions of the form [l, u] such that l is a
non-co valid bound expression and u is any valid bound expression.

As an example we construct tuple (P, N, O} to capture the above timing
diagram. P contains time points {Pl,P2,P3,P4,P~,p6} as shown in the shaded
area. N is constructed from the levels on each waveform at each time point.

N = {(a, {(Pl, _R), (P2, F) , (P3, L), (P4, L), (Ps, R), (P6, H)}),
(b, {(Pl, L), (P2, L), (P3, R), (P4, F) , (P5, n), (P6, L)}),
(c, {(Pl, L), (P2, n), (P3, L), (P4, n), (Ps, R), (p~, F)})

Relation O contains five elements the first four corresponding to the arrows and
the fifth to the synchronization line:

0 = {((a,pl) , (a,p2), [n, n]), ((a,p2), (b, p3), [1, oo]), ((b,p4), (a,ps), [3, oo]),
((e, ps), (c, p6), [n, n + 5]), ((a, ps), (c, ps), [0, 0])}

Although we have provided only an example here the process of representing
a timing diagram in this tuple form can be formalized as a straightforward
parsing procedure. In the remainder of the paper the term "timing diagram"
refers to the tuple form rather than the original picture.

2.2 S e m a n t i c s

Timing diagrams are modeled by (finite or infinite) words over an alphabet con-
taining all possible assignments of boolean values to the names labeling wave-
forms. Intuitively a word models a timing diagram when the transition patterns
in the diagram reflect the changes in values assigned to names in the word. One
difficulty in formalizing timing diagrams is that their intended meanings differ
widely between contexts and among users. Rather than fix one interpretation
TDL has been parameterized to allow user customization of the semantics. These
parameters are illustrated using the following timing diagram and word.

158

[3 6] ~ , ~ ~ " ' !l 0 0 0 a 1 0 0
0 0 0

b 1 0 1 2

c pl

1 1 0 1 1 0 1 1 1
0 1 0 0 1 0 0 0 1
0 0 1 0 1 0 0 0 1
3 4 5 6

P2 P4 P3
Pl P2 P3, P4

7 8 9 10 11

pl p2 p3 p4 Pl P2 P3,P4

The word is presented in tabular form: the rows are labeled with waveform names
and the columns with the indices into the word. The three lines containing time
points beneath the table indicate three separate assignments of indices to time
points as explained in the example below.

We allow timing diagrams to specify assume-guarantee relationships between
their events. One parameter indicates those time points that comprise the "as-
sume" portion. For purposes of this example take p 1 as the only such time point.
Semantically we will begin to match the word against the timing diagram start-
ing at the first index that matches the events in the assumed portion in this
case index 0. Next we walk the word looking fbr the smallest indices that match
any events that can immediately follow the falling transition on b in this case
the first synchronization line (p~).

A second parameter is motivated by the attempt to assign an index to the
first synchronization line. The line itself requires that b be low when a rises;
however is b required to be low until a rises? The desirability of the "until"
interpretation is heavily context-dependent. Therefore the user may indicate
segments of waveforms that should be matched exactly within words. Such seg-
ments are called fixed-level constraints and have the form (n , p , #) where n is a
waveform name and p and p~ are time points such that the waveform correspond-
ing to n shows a single voltage level between p and pt. For this example assume
we have only one such constraint: (a, p2, p3). Then the first synchronization line
is matched at index 2 while the rising transition on b is matched at index 3 and
the second synchronization line at index 4: t:his assignment appears in the first
line below the table. Note that despite the appearance that the rising transition
on b must follow the one on c the semantics does not enforce this since the
relationship was not indicated explicitly using an arrow.

TDL requires timing diagrams to be matched repeatedly in a word. Two
notions of repetition appear useful: one in which the next repetition starts after
the previous one has been completed and the other in which a new repetition
starts in any index satisfying the "assume" portion of the diagram. We therefore
define two semantic relationships: ~Iter (for iterative) and ~Inv (for invariant)
respectively. Under the invariant semantics the next match would begin at index
4 while under the iterative semantics the next match would begin at index 5;
these matches are shown in the next two lines beneath the table. Note that the
match attempted from index 4 is not valid since the assigned indices violate the
bounds on the arrow. This word would therefore model the diagram under the
iterative semantics but not under the invariant semantics.

159

This example provides insight into the expressive nature of TDL. For exam-
ple TDL can express context-sensitive languages such as (a ~b~c'~) * (taking a n
to mean (a = 1, b = 0, c = 0) with similar interpretations of b ~ and c~). TDL
can not express more general non-regular languages such as "the number of a's
equals the number of b's ' . Relative to temporal logic TDL can not express LTL
formula Fp because there is no way to stop the repeated searches at a partic-
ular point. TDL can not express G(p -+ q) because it is not possible to make
disjunctive statements within a TDL timing diagram. In separate work we are
investigating calculi over timing diagrams that would relax these restrictions [5].

Due to space constraints only the invariant semantics is defined in the re-
mainder of this section. The iterative semantics is defined formally in [5]. Tuples
(T, S, X} capture a timing diagram its set of assumed time points and its fixed-
level constraints; the term "timing diagram" is henceforth overloaded to also
refer to one of these tuples.

Given a timing diagram we can derive a partial order on its time points from
the ordering of events within individual waveforms and the temporal ordering
relationships. For a time point p the enabling points of p are those time points
such that pr precedes p in this partial order. If the order is total the timing
diagram is called temporally unambiguous.

An index assignment is a partial function I from time points to natural num-
bers indexing a word; if I is not total the time points on which it is defined must
form a prefix of the partial order on time points. Defn. 1 details the conditions
an index assignment must meet in order to satisfy the requirements of a prefix
of time points. Intuitively the assigned indices must satisfy the events occurring
at each time point while respecting the fixed-level constraints and time bounds
on all events defined within those time points. For index i into a word W W~(n)
denotes the value of W on the signal named n at index i.

De f in i t i on 1 Let D = ((P, N, O), S, X) be a timing diagram. Let U be a prefix
of the partial order of P and let I be an index assignment for U over a word W.
I satisfies the constraints of U relative to D iff

1. For each time point p C U I(p) satisfies p; i.e. for every waveform name
n in N Wi(p)(n) = 0 (resp. 1) and Wr(p)+l(n) = 1 (resp. 0) if n has a
rising (resp. falling) transition at p and ~ (p) (n) = 0 (resp. t) if n has a low
(resp. high) level at p and there is a synchronization line through n at p.

2. Each variable appearing in a time-bound expression in O can be replaced by
a natural number such that for each ((a, p), (a ~, p'), If, u]) in O if p and p '
are both in U then l <_ I(p ') - I(p) ~_ u.

3. For each fixed-level constraint (n ,p ,#) in X i fp and p ~ are both in U then
for each index i such that I(p) < i < I(p') Wi (n) = 0 (resp. 1) if n has a
low (resp. high) level between p and pq

It follows from part 2 of this definition that variables in t iming constraints
are treated as existentially quantified within a single index assignment. However

160

the instantiations of variables need not be consistent across the many index
assignments produced while repeatedly matching the diagram against the word.

Starting from a given index there are potentially many index assignments
satisfying Det'n. 1. The semantic definitions must rely on a particular such index
assignment. We have chosen to use the one that assigns to each time point the
smallest index that satisfies it while respecting the partial order among the time
points; this index assignment will be called minimal.

Defini t ion 2 Let D = ((P, N, 0), S, X) be a timing diagram W be a word i be
an index into W and U be a prefix of the partial order on P. Index assignment
I is minimal for D W i and U iff I satisfies the constraints of U relative to D
and for each time point p E U l(p) >_ i and I(p) is the smallest index of W that
satisfies p and is larger than all indices assigned to the enabling points of p.

The semantics places one other restriction on index assignments in addition
to minimality: they must be defined on as large a prefix of the time point partial
order as possible. An index assignment is called fully minimal if it is minimal and
cannot be extended to a minimal index assignment for the same timing diagram
word and starting index but with a larger prefix of time points. Fully minimal
index assignments are unique for temporally unambiguous timing diagrams.

Given a timing diagram (T, S, X} and a word W the invariant semantics
starts from each index of W in turn and locates the fully :minimal index as-
signment. If that assignment is defined for all time points in S the semantics
requires that it be defined for all time points in T. If this property fails for some
index of W then W fails to model (T, S, X).

Defini t ion 3 Let D = (T, S, X} be a timing diagram and let W be a word.
D invariantly describes W (denoted W ~Inv D) iff for all indices i into W
whenever the fully minimal index assignment for D W i and S is defined tbr
all time points in S it is defined for all time points in T. Given a language
L D invariantly describes L (denoted L ~ Inv D) iff for every word W E L
W ~In. D. The set, of all words that invariantty describe D is denoted/2(D) Inv.

3 D e c i d a b i l i t y

This section establishes that containment of a regular language in a temporally
unambiguous timing diagram language is decidable; we refer to the general prob-
lem of containment by a regular language as the regular containment problem.
Formally a timing diagram language is any language that can model a timing
diagram under either the iterative or the invariant semantics. The proof for the
invariant semantics is discussed in detail; the proof for the iterative semantics is
outlined. Our decision procedures are based on a correspondence between tem-
porally unambiguous timing diagram languages and the languages accepted by
deterministic two-way 1-counter machines (1-2DCM). Given a temporally un-
ambiguous timing diagram our algorithm creates one 1-2DCM if the diagram is

161

interpreted invariantly and two such machines if the diagram is interpreted it-
eratively. Then given a finite automaton we determine whether the language of
the automaton models the timing diagram by computing relations on the states
of the automaton using the counter machine(s). The algorithms discussed here
operate on finite-state au tomata accepting by final state. With a slight modifica-
tion they can be tailored to operate on Biichi automata; the Biichi construction
is not presented here for lack of space.

A 1-2DCM has a finite-state control a two-way read-only head over a finite
bounded-length input tape and one counter which can store any natural number.
Transitions are based on the current state the letter being read and whether
the counter contains zero; the transition indicates a next state which direction
if any to move the input head and whether to increment decrement or hold
the value of the counter. The following formal definition is adapted from [7].

D e f i n i t i o n 4

1. A two-way 1-counter machine M is a tuple (K, 27, <~, D, 5, q0, F) where K
<3 t> q 0 and F are the states inputs left and right endmarkers initial state
and accepting states respectively. 5 is a mapping from K x (Z U {<~, D}) x
{0,1} into K x { - 1 , 0 , 1} x { - 1 , 0 , 1}.

2. A configuration of M on an input <1xD for x E Z * is given by a tuple
(q, <~xt>,i, c) denoting the fact that M is in state q with the input head
reading the i th symbol of <~xD and value c is in the counter.

3. Relation ::~ is defined between configurations as follows: (q, <1xC>, i, c)
(p, <lxD, i + d, c + de) if a is the ira symbol of <1xD and 5(q, a, ,k(c)) contains
(p,d, dc) where)~(c) = 0 if c = 0 and A(c) = 1 if c • 0. ~ * denotes the
transitive closure of ~ .

4. A string x E Z* is accepted by M if (q0,<lxt>,l,0) ~ * (q,<~xD, i ,c) for
some q C F 1 < i < I <~ x ~> I and non-negative integer c. The set of strings
accepted by M form the language of M and will be denoted s

Languages accepted by 1-2DCM can be characterized by the number of times
the counter changes between incrementing and decrementing while reading the
input tape. Denoting this parameter by r the following results about 1-2DCM(r)
are due to Ibarra et aI. [8]:

T h e o r e m 1 (I b a r r a et al. 1993)

- The emptiness problem for 1-2DCM(r) is decidable for every r >_ 1.
- Ur 1-2DCM(r) is effectively closed under complementation intersection and

union.
- The containment and equivalence problems for Ur I -2DCM(r) are decidable.

This result indicates that we can use 1-2DCM in decision procedures if we can
bound the number of counter reversals made while processing any input. Such
machines are called reversal bounded.

162

Given a timing diagram (T, S, X} we construct a 1-2DCM called M FAIL
that accepts exactly those words for which the fully minimal index assignment
starting from the first position of the word is defined for all the t ime points in
S but undefined for some time point in T. Intuitively the machine walks the
word from the starting index looking for indices to assign to time points; the
transitions used to search for each time point 's index also check for violations
of the fixed-level constraints. If an index satisfying the time point is found the
machine tests any time-bounds on temporal ordering arrows whose target is
at the recently matched time point. Constraints are tested one at a time by
repeatedly sweeping over the input word. MFAIL moves into an accepting state
as soon as a violation of either the fixed-level constraints or the t ime-bound
requirements is found. If indices corresponding to all of the t ime points are
located M FAIL moves into a looping state from which nothing is accepted.

By construction M FAIL rejects certain words that do not model <T, S, X) . In
particular this applies to words for which the fully minimal index assignment
from position 0 is defined for all time points in T but the fully minimal index
assignment from some later starting position is undefined for some time point
in T. The restriction of MFAIL to accepting only words failing on the index as-
signment from the first position is important for the decidability of the problem.
Based on the syntax of T we can bound the number of counter reversals required
for a 1-2DCM to test the time bound constraints of T over an arbitrary word;
this follows from results in [5]. Therefore we can bound the number of counter
reversals required in a test of some fixed number of index assignment searches
over a given timing diagram. As there is no fixed upper bound for the number of
searches required in testing an entire word our algorithm must perform searches
only in finite increments. The restriction to single searches is sufficient for either
semantics since it follows from the definitions that any word failing to model a
timing diagram has a suffix accepted by MFAIL.

The decision procedure for the invariant semantics is fairly simple: the lan-
guage generated by DFA A is contained in the language of timing diagram
(T, S, X> iff no reachable state of A can generate a word accepted by MFAIL.
Formally let A = (Q, Z, 5, q 0, QF} be a DFA that accepts by final state. Nota-
tion A](q,q,) denotes A modified to have q as the only start state and q~ as the
only final state where q and q i are both in Q. We define a set Avoid containing
exactly those states of A from which a word in MFAIL is accepted as follows:

Avoid =d~f {q e Q I 3q/e QF : ,C(Al(q,q~)) n s # O}

Theorei 2 Let X = <q, q0, QF> be a finite automaton and D = <T, S, X>
be a timing diagram. Let MFAIL be the machine constructed for D as described
above. Let Avoid be computed as defined above for A. s C_ L:(D) Inv iff no
state reachable from qo under 5 is in Avoid.

P r o o f

1. Assume s C Z(D) Inv. From Defn. 3 every suffix of every word accepted
by A invariantly describes D. Hence there does not exist a state of A reach-

163

able from q0 from which a word can be generated such that the fully minimal
index assignment for S is defined for all t ime points in S but for which the
fully minimal index assignment for all t ime points in T is undefined for some
time point. By construction any states in Avoid cannot be reachable from
q0 so Theorem 2 holds.

2. Assume/ : (A) ~ / : (D) Inv. From Defn. 3 there must exist some index i into
W from which the fully minimal index assignment for S is defined for all
time points in S but undefined for some time point in T. By construction
the suffix of W starting at index i is accepted by MFAIL. Let qi be the state
A was in when it processed index i; qi must be in Avoid by construction.
Thee existence of W proves that qi is reachable from q0 so containment is
correctly determined to fail. []

Theorem 2 suggests a decision procedure. Both MFAIL and the set Avoid
are constructible. Any DFA can be converted into a 1-2DCM by augmenting
the transitions of the DFA with a counter whose value is never changed. The
intersection of two reversal-bounded 1-2DCMs is effectively constructible and
is also a reversal-bounded 1-2DCM by Theorem 1. The emptiness test on the
intersection machine is decidable by Theorem l.

We outline the decision procedure for the iterative semantics via an example.
The set Avoid is also used in deciding containment under the iterative semantics.
However the procedure for the iterative semantics is harder because the exis-
tence of a reachable state of A from which a word in MFAIL is generated is not
sufficient. The iterative semantics only starts a test in an index if the previous
test ended in the preceding index. The decision procedure therefore needs a way
to track which states in Avoid can serve as starting states for tests under the
iterative semantics. We accomplish this by constructing a second 1-2DCM called
MEXACT which accepts those words meeting two conditions: (1) the fully min-
imal index assignment constructed from the first position in the word is either
undefined for some time point in S or it is defined for all t ime points in T; (2)
the last index of the word is the index in which the subsequent index assignment
search must start. The justification for the first position search is the same as
it was for MFAIL. The restriction on the final index of the word is necessary so
that we can compose words accepted by MEXACT into longer words iteratively
modeled by the timing diagram.

Given DFA A that accepts by final state we use M EXACT to compute a
binary relation TD-Reach on the states of A such that (q, q~) G TD-Reach iff
Al(q,q,) accepts some word in MEXAC w. Formally

TD-Reach =der {(q, q')] s N s • O}

Intuitively once TD-Reach and Avoid are computed we decide iterative de-
scription by checking whether there exists a state q of A such that q is in Avoid
and (q0, q) is in the transitive closure of TD-Reach. The language of A models
(T, S, X) iteratively iff no such state exists, As examples consider the following
two finite au tomata A1 (left) and A2 (right) and timing diagram T with the t ime

164

point of the rising transition on a in S and nothing in X. Let D = (T, S, X).

else

<00>

<00>

~ ~ " ' x . else
. els~< lo:lSe/< ` 0 ~,~elS:o 1> ~

<00>

a

b

The language of D is

(((0, 1) + (1,0) + (1, 1))* (0,0) + (1,0) (1,0) ((0, 1) + (1, 1}))*

where each pair (x, y) denotes that a = x and b = y. Furthermore note that

Z(A1) = ((0, O) (1, O) (1, O) (0, 1))* /~(A2) = ((0, 0)* (1, O) (1, O) (0, 1))*

The language of A1 is contained in the language of D. By definition Avoid =
{2, 3, 4} and TD - Reach = {(1, 5), (5, 5), (1, 6), (2, 6), (3, 6), (4, 6), (5, 6), (6, 6)}.
The only states accessible from the start state (1) in the closure of TD-Reach
are 5 and 6. As neither of these is in Avoid L;(A 1) C_ s The language of A2
however is not contained in the language of D. By definition Avoid = {1, 2, 3, 4}
and TD - Reach = {(1, 4), (4, 4), (1, 5), (2, 5), (3, 5), (4, 5), (5, 5)}. The start state
is listed in Avoid indicating that s 2) (g s

4 F u t u r e W o r k

Although we have proven that the regular containment problem is decidable for
temporally unambiguous t iming diagram languages we do not yet have an effi-
cient decision procedure. Testing containment of a regular language in a 1-2DCM
language lies in PSPACE. Our decidability proof relied on quadratically many
such tests with respect to the number of states in the au tomaton for the reg-
ular language. Methods for reducing the number of containment tests required
remains an impor tant problem for future work as does the empirical analysis
of the overall procedure. In addition our current restriction to temporally un-
ambiguous t iming diagrams can likely be removed by altering the construction
algorithms for MFAIL and MEXACT.

We are also interested in the general problem of language containment for
t iming diagram languages. Although the results presented here could be used to

1 6 5

test containment of a regular-language timing diagram in an arbitrary timing di-
agram they do not decide the general problem since arbitrary 1-2DCM have an
unbounded number of states. It is possible to build a 1-2DCM that accepts the
entire language rather than just a single pass of any timing diagram. Intuitively
the machine is a modification of MEXACT that begins a subsequent check in the
appropriate index into the word after the previous check has been completed and
allows the previous pass check to walk off the end of a word. Unfortunately this
machine is not guaranteed to have bounded counter reversals. Results governing
the undecidability of language containment for 1-2DCM with unbounded re-
versals are also inapplicable because there exist 1-counter non-reversal-bounded
languages that cannot be captured in any timing diagram. Consider the "timing
diagram"

b
or = k+4

C

which is not well-formed in our syntax due to the disjunction in the time-bound
expression. Although no well-formed timing diagram has exactly the same lan-
guage as this one a 1-2DCM could be constructed to accept the language of
this diagram using techniques similar to those used in constructing MFAIL and
MEXACT. Therefore the undecidability of language containment for 1-counter
non-reversal bounded languages does not prove the undecidability of contain-
ment for timing diagram languages. We are investigating this general problem
as well as possible syntactic characterizations of general timing diagram language
containment.

5 C o n c l u s i o n s

This paper has established that the regular containment problem is decidable
for any temporally unambiguous timing diagram language regardless of where it
falls in the Chomsky hierarchy. This result holds for both finite regular languages
and infinite regular languages accepted by B/ichi automata. We see two main
implications of this result. First there is the practical implication that certain
non-regular language properties are amenable to algorithmic verification against
finite-state systems; an implementation of these ideas would extend the scope
of algorithmic verification as existing logics such as LTL express only regular
language properties.

The second implication is more foundational in nature. The formal meth-
ods community has largely treated diagrams as interface tools. Diagrammatic
representations certainly have advantages in this regard as evidenced by their
popularity. Unfortunately the interface approach to diagrams has lead us to fo-
cus more on how diagrams can be used to represent existing sentential logics
rather than on the computational models suggested by the diagrams in their own
right. This work establishes that the structure naturally imposed by diagram-

166

matic representations also offers advantages on a theoretical level thus making
d iagrammat ic representations worthy of investigation outside of the realm of
interface design.

Acknowledgements

The author thanks Moshe Vardi and the anonymous reviewers for their helpflfl
comments on this paper.

References

1. Rajeev Alur Thomas A. Henzinger and Moshe Y. Vardi. Parametric real-time
reasoning. In Proc. of the 25th ACM Symposium on the Theory of Computing
pages 592-601 1993.

2, Bachi Berkane Simona Gandrabur and Eduard Cerny. Timing diagrams: seman-
tics and timing analysis. LASSO Laboratory University of Montreal 1996,

3. J.A, Brzozowski T. Gahlinger and F. Mavaddat, Consistency and satisfiability of
waveform timhag specifications. Networks 21:91--107 1991.

4. E. Cerny and K. Khordoc. Interface specifications with conjunctive timing con-
straints: realizability and compatibility. In Second A M A S T Workshop on Real-
Time Systems June 1995.

5. Kathryn Fisler. A Unified Approach to Hardware Verification Through a Hetero-
geneous Logic of Design Diagrams, PhD thesis Indiana University August 1996.

6. Werner Grass et al. Transformation of timing diagram specifications into VHDL
code. In Proc. of Computer Hardware Description Languages and Their Applica-
tions pages 659-668 August 1995.

7. Oscar H, Ibarra. Reversal-bounded multicomlter machines and their decision prob-
lems. Journal of the ACM 25(1):116-133 January 1978.

8. Oscar H, Ibarra Tao Jiang Nicholas Tran mid Hui Wang. New decidability re-
sults conceiving two-way counter machines and applications. In Proc. of the 20th
International Colloquium on Automata Languages and Programming 1993. Lec-
ture Notes in Computer Science 700.

9. K, Khordoc M, Dufresne E, Cerny P. A. Babkine and A. Silburt. Integrating
behavior and timing in executable specifications. In Proc. of Computer Hardware
Description Languages and their Applications pages 385-402 April 1993.

10. Philippe Mooeschler Hans Peter Amann and Pausto Pellandini. High-level mod-
eling using extended timing diagrams. In Proe. of the European Design Automation
Conference pages 494-499 1993.

11. Rainer SchlSr. A prover for VHDL-based hardware design, In Proc. of Computer
Hardware Description Languages and Their Applications August 1995.

