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Abstract.  Bisimulations that abstract from internal computation have 
proven to be useful for verification of compositionally defined transition 
system. In the literature of probabilistic extensions of such transition 
systems, similar bisimulations are rare. In this paper, we introduce weak 
bisimulation and branching bisimulation for transition systems where 
nondeterministic branching is replaced by probabilistic branching. In 
contrast to the nondeterministic case, both relations coincide. We give an 
algorithm to decide weak bisimulation with a time complexity cubic in 
the number of states of the transition system. This meets the worst case 
complexity for deciding branching bisimulation in the nondeterministic 
c a s e .  

1 I n t r o d u c t i o n  

In recent years, the need to formally reason about probabilistic phenomena in 
software and hardware systems has incented the study of probabilistic models of 
computation. A variety of models has been proposed in the literature, most of 
them based on transition systems. These models can be classified with respect 
to their treatment of nondeterminsm. Several approaches replace the concept of 
nondeterministic branching by probabilistic branching, e.g. [9, 19, 26, 13, 36], 
whereas others allow for both, nondeterministic as well as probabilistic branch- 
ing, e.g. [34, 31, 17, 23, 33]. Following [13], the former model can be subdivided 
according to the relationship between occurences of actions and transition proba- 
bilities. In "reactive" systems, transition probability distributions are dependent 
on the occurrences of actions. In contrast, in "generative" (also called "fully prob- 
abilistic") systems (which can be viewed as discrete Markov chains labelled with 
actions), these distributions implicitly assign probabilities also to occurrences of 
actions. "Stratified" systems allow for levelwise probabilistic branching. 

Verification techniques for such models have been inspired by succesful ex- 
periences in the nonprobabilistic case. This includes probabilistic variants of 
temporal logics, e.g. [2, 5, 11, 17, 19, 20, 31, 32, 34, 35]. Another research strand 
focusses on equivalences and preorders used to established that one system "im- 
plements" another, according to some notion of implementation, such as strong 
bisimulation [26], simulation [22, 33], testing preorders [7, 8, 9, 23, 37, 36], trace, 
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failure and ready equivalence [24]. For mechanised verification purposes, the com- 
plexity of deciding such equivalences for finite state systems is a crucial aspect. 
In the nonprobabilistic case, for instance, (strong) bisimulation can be decided in 
time O(m.log n) [30] where n is the number of states and m the number of tran- 
sitions in the underlying transition system. Most of the coarser equivalences are 
PSPACE-complete [25]. In the probabilistic framework, the situation is slightly 
different. Most of the equivalences for probabilistic processes (e.g. strong bisim- 
ulation or trace, failure, ready and testing equivalence) can be decided in time 
polynomial in the size of the probabilistic transition system [8, 21, 3]. 

Several authors mentioned that the definition of a weak bisimulation that ab- 
stracts from internal computation is desirable, but problematic in a probabilistic 
setting [24, 17]. In the nonprobabilistic case, weak bisimulation [29] is fundamen- 
tal for compositional verification methods that exploit abstraction from internal 
computation (see [6] for an impressive example). The time complexity for de- 
ciding weak bisimulation is �9 using the transitive closure operation from 
[10]. Branching bisimulation [14] is a slightly finer relation for the same pur- 
pose, it has time complexity O(n. m) (but a better space complexity than weak 
bisimulation) [15]. To the best of our knowledge, [33] is the only paper that in- 
troduces notions of weak and branching bisimulation for probabilistic transition 
systems. Their model can be seen as a generalization of reactive transition sys- 
tems, since transition probability distributions are dependent on occurences of 
actions, but nondeterministic choices between different distributions are possi- 
ble for the same action. The definition of weak and branching bisimulation ~ la 
[33] replaces Milner's "double arrow relation" (the transitive, reflexive closure of 
internal transitions) by assigning a (possibly infinite) set of distributions to each 
state. For a given state, this set represents the (nondeterministic) alternatives of 
probability distributions on those states that are reachable by sequences of inter- 
nal transitions. In contrast to the nonprobabilistic case, the transitions involved 
form a tree rather than a linear chain. It seems to be hard to adapt this no- 
tion to other types of probabilistic transition systems, such as fully probabilistic 
systems. 

In this paper, we propose notions of weak bisimulation and branching bisimu- 
lation for fully probabilistic transition systems that appear to be rather natural 
extensions of the corresponding relations in the nonprobabilistic case. We re- 
place Milner's "double arrow relation" by the probabilities to reach states via 
sequences of internal transitions. In contrast to the nonprobabilistic case where 
branching bisimulation is strictly finer than weak bisimulation, these two rela- 
tions coincide in the fully probabilistic case. We present an algorithm to compute 
the weak bisimulation equivalence classes in time O(n 3) where n is the number 
of states in the underlying probabilistic transition system. It is worth noting that 
this is the same worst case complexity as computing the branching bisimulation 
equivalence classes of a nonprobabilistic transition system [15]. 

The paper is organized as follows. In Section 2 we introduce basic notations 
and properties of fully probabilistic transition systems. Section 3 introduces weak 
and branching bisimulation and shows that both coincide. Section 4 is devoted 
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to an algorithm to compute weak bisimulation equivalence classes. Section 5 
indicates directions for further work. Due to space constraints we only provide 
sketches of proofs. The complete proofs are contained in [4]. 

2 F u l l y  p r o b a b i l i s t i c  t r a n s i t i o n  s y s t e m s  

In this section we introduce fully probabilistic transition systems together with 
some definitions and notations that  will be useful in the sequel. 

A fully probabilistic transition system is a tuple (S, Act, P) where S is a 
finite set of states, Act a set of actions that  contains the internal action ~- (which 
represents any invisible computation) and P : S x Act x S --4 [0, 1] a function 
such that E(a,t)EActxS P(s ,a , t )  = 1 for all s E S. In what follows, we use 
arabic letters a, b, . . .  to denote (internal or non-internal) actions, greek letters 
a, f l , . . ,  to denote non-internal actions. For C C_ S, we define P(s ,a ,C)  = 
~ t e c  P(s,  a, t). An execution fragment is a finite "sequence" a = so -% sl -~ 

s2 -~ . . .  ~ Sk such that  So, s l , . . . ,  Sk E S, a l , . . . ,  ak E Act and P(si-1,  ai, si) > 
0, i = 1 , . . . ,  k. We define last(a) = Sk, f i rs t (a)  = so, length(a) = k, trace(a) = 
ala2 �9 �9 �9 ak and 

Prob(a) = P(so, al, 8 1 ) "  P(Sl,  a2, s 2 )  �9 �9 . �9 �9 P(Sk-1, ak, 8k). 

An execution in (S, Act, P) is an infinite "sequence" 7c = So 25 Sl -~ 

s2 -~ . . .  where s 0 , s l , . . . , E  S, a l , a 2 , . . .  E Act and P(s i - l , a i ,  si) > 0, 

i = 1 ,2 , . . . .  We define first(Tr) = so, and ~r(k) = sk. 7r (k) = so 25 Sl -~ 

. . .  L~ Sk is called the k-th prefix of 7r. For a to be an execution fragment 
with length(a) = k, let a ~ be the set of executions 7r with ~r (k) = a. 

Example 1. A fully probabilistic transition sys- 8 0 ~ 1  ~-~84_ ~ 
tam with 8 states and Act = {a, fl, T}. If 0.5 . 4 ,  c8 
P(s ,a , t )  is different from zero, its value is ~o'.fT ~  
annotated to an a-transition joining s and t .  v ' v ~ d . ~  3'4 ~ ~G. 7 

To illustrate the above definitions, we calculate ~ 2 ~ . 4  ~ o.~@~ 
P(s2, fl, {sa, s4, ss}) = 0.9. Concerning the exe- 

cution 7r = So -Y+ sl 4 s3 ~ s6 4 s5 ~4 s5 _24 . . . ,  - -  a ~  
we have Prob(r (3)) = 0.5 �9 0.6 �9 0.1 = 0.003 and o.1 t~r~ - 
trace( Tr (3)) = Tza. .Jo.~ 

We suppose the reader to be familiar with basic notions of probability theory 
(see e. g. [16]). For fixed s E S, we define a probability space on the executions 
starting in s: Let Exec(s) be the set of executions starting in s (i.e. the set of 
executions ~r with first(Tr) = s), ExecFrag(s)  the set of execution fragments 
a with f i rs t (a)  = s. Let Z(s)  be the smallest sigma field on Exec(s) which 
contains the basic cylinders a ~, a E ExecFrag(s) ,  and let 5 ~ be the unique 
probability measure on ~(s )  with 50(a t) = Prob(a). For A C Act*, C C_ S, we 
define Exec(A, C) to be the set of executions 7r that  lead from first(~r) to a state 

in C via a sequence of actions belonging to A. Formally, if Ir = So ~4 sl -~ . . .  is 
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an execution then r E Exec(A, C) iff there is some k > 0 with trace(re (k)) E A 
and sk E C. Let Exec(s, A, C) = Exec(A, C) n Exec(s). Clearly, Exec(s, A, C) 
is measurable in Z(s)  as Exec(s, A, C) -- U~ a $ where a ranges over all 
execution fragments starting in s such that  trace(a) E A and last(a) E C. The 
probabilities P(s,  A, C) = :P(Exec(s, A, C)) solve the equation system: 

P ( s , A , C ) = I  i f s E C a n d E E A  

P(s, A, C) = E P(s, a, t). 7)(t, A/a, C) otherwise 
(a,t)EAct• 

where A/a = {;~ : a)~ E A}. Here, s denotes the empty word in Act*. If t E S 
then we write P(s ,  A, t) rather than P(s,  A, {t}). In what follows, we identify a 
regular expression (e.g. ~-*, ~-*a or 7"*aT*) with the corresponding set of traces. 
For instance, P(s ,  T*, C) denotes the probability to reach C from s via internal 
actions. 

Example 2. For the fully probabilistic transition system of Example 1, we calcu- 
late P(Sl,  ~-*~-*, {ss, s6, sT}) = 0.4.0.8-  1 + 0.6. (0.4- 1 + 0 .5 .0 .8 .1 )  = 0.8. 

3 W e a k  a n d  b r a n c h i n g  b i s i m u l a t i o n  

In this section we define weak and branching bisimulation for fully probabilistic 
transition systems. While in the nonprobabilistic case branching bisimulation is 
strictly finer than weak bisimulation, these two relations coincide in the fully 
probabilistic case. 

For the definition of weak bisimulation, we replace Milner's "double arrow" 
relation ~ (the transitive, reflexive closure of ~ )  by the function ~)(S,T*,t), 
which assigns to each pair (s, t) of states the probability to reach state t from s 
via internal actions. Similarly, for (~ E Act \ {T}, we deal with the probabilities 
P(s,T*a~-*,t) rather than Milners weak transition relations ~ 2 ~ .  In what 
follows, we fix a fully probabilistic transition system (S, Act, P). 

Def in i t i on  1. A weak bisimulation on (S, Act, P) is an equivalence relation R 
on S such that  for all (s, s') E R, A E (Act\ {~-})U {s} and all equivalence classes 
C e S/R: 

c)  = c) .  

(Note that  r denotes the empty trace and that  ~-*sT* = ~-*.) Two states s, s ~ 
are called weakly bisimulation equivalent (denoted by s ~ s') iff (s, s') E R for 
some weak bisimulation R. 

Example3. For the system of Example 1, the smallest equivalence relation 
R which identifies the states s5,s6,s7 and sl,s3,s4 is a weak bisimula- 
tion. To illustrate this, we compute, for instance, P(s4,T*aT*,C567) = 0.2, 
as well as 7)(s3,'r*~7*,C~6~) = 0.5-P(s~,T*a~-*,C567)+ 0.1 = 0.2 and 
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P(s l ,  r*a~-*, C567) = 0.4 �9 P(s4, 7-*aT*, C~6~) + 0.6 �9 P(s3, T'aT-*, C56T) = 0.2 
where C56r = {ss, s6, st}. As a whole, we obtain the following values of ;o (where 
Cla4 = {Sl, s~, s4}) indicating that  the states ss, s6, s7 and Sl, s3, s4 are weakly 
bisimulation equivalent. 

~]~ {80}1{82}IC1341 C567 
T* 

s5 (also s6, s~) 0 0 0 1 
sl (also s3, s4) 0 0 1 0 

s2 0 1 0 0 
so 1 0.5 0.5 0 

T* OZT* 

0 0 0 0 
0 0 0 0.2 
0 0 0 0.1 
0 0 0 0.15 

T* /~T* 

0 0 0 0 
0 0 0 0.8 
0 0 0.5 0.4 
0 0 0.25 0.6 

It can be shown that  ~ is a weak bisimulation. In the nonprobabilistic case, 
it holds for weakly bisimulation equivalent states s, s' that  if s a ~  t then 
s' a ~ k  t '  such that  t and t '  are weakly bisimulation equivalent. Here, a ~  
denotes ~ = *  . . .  ~ - ~ .  This result carries over to the probabilistic case. 

T h e o r e m  2. Let A be a regular expression of the form 7 - * a l T - * a 2 7 - *  . . .  T*Ol k or 
T*OL1T*OL27-* . . . T * O l k T * .  T h e n :  

If  s ~ s' then ?:'(s, A, C) = P(s',  A, C) for all C E S~ ~. 

Proof. by induction on k. The basis of induction (k = 1) follows by the fact 
that,-for each state s, the vector (T'(s, ~-*a, C))ccs/~ is the unique solution of 
the linear equation system x .  A = a where A = (7)(C, 7", C'))c,c, es/~ and a = 
(7)([s],7-*aT- *, C')c, es/~. Here, [s] denotes the weak bisimulation equivalence 
class of s and 5o(C, 7-*A7-*,C ') = ~ 2 ~ ( t , T * ) ~ T * , C ' )  for some (all) t E C. The 
induction step follows by the induction hypothesis, the basis of induction and 
the fact that  

C) = 

AES/~ 

and P(S,7-*alT-*. . .T*akT*,C) = 

7)(A, 7-*, C). 

P( s, 7-*al, A ) . P( A, 7-*a27-*... 7-*ak, C) 

~ "  T* T * a  * * A )  " A~S/ , ,~  P ' [ S ,  Oz 1 2 7- . . . T OLk, 

[] 

Van Glabbeek & Weijland [14] introduces branching bisimulation which is 
strictly finer than weak bisimulation. The basic idea of branching bisimulation is 

8 I that  in order to simulate a step s -~ t by an equivalent state s', is allowed to 
perform arbitrary many internal actions leading to a state which is still equiva- 
lent to s (i.e. the intermediate states before s' also fall in the equivalence class 
of s and s') and then to perform a reaching a state t' which is equivalent to t. In 
the probabilistic case, we require that  for equivalent states s, s', the probabilities 
for s and s' to perform internal actions inside the equivalence class of s and s' 
and then to perform a visible action a leading to state of a certain equivalence 
class C are the same. 
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D e f i n i t i o n  3. A branching bisimulation on (S, Act, P) is an equivalence relation 
R on S such that  

PR(s, ~*~, C) = PR(s', ~*~, C) 

for all (s,s') e R, C e S / R  and A e ( A c t \  {T})U {e}. Here, PR(s,~'*A,C) = 
P(Execn(s ,  7*A, C)) and Execn(s ,  T'A, C) is the set of executions zr e Exee(s) 
such that  there is some k > 0 with (s, Tr(i)) E R, i = 1 . . . .  ,k  - 1, trace(~r (k)) C 
T*A and 7r(k) E C. 

Two states s, s t are called branching bisimulation equivalent (denoted s ~b~ 
s') iff (s, s') �9 R for some branching bisimulation R. 

It can be shown that  ~'~br is a branching bisimulation. In contrast to the non- 
probabilistic case, branching and weak bisimulation coincide: 

T h e o r e m 4 .  s ~ s' iff s ~br s I. 

Proof. It is easy to see that  ~br is a weak bisimulation. Hence, ~br C_ ~.  For the 
converse, we show that  ~ is a branching bisimulation where we use the charac- 
terization of branching bisimulations that  we give in the next section (Lemma 
5). Condition (2) is an easy verification. For condition (1), one first shows that,  
for all C E S~ ~ and s E S \ C, 

P(s ,T* ,C)  = E P ' ( s 'T 'A) '7~(A 'T* 'C)  
ACS/~ 

where 7)(A,T*AT*,C) = 7)(t,~-*),~-*,C) for some (all) t E A, P ' ( s , a ,A )  = 
P ( s , a ,A ) / (1  - P(s, f ,[s]))  if s • d or a r ~- and P'(s,  T, [s]) = 0 (Again, 
Is] denotes the weak bisimulation equivalence class of s.). Thus, the vec- 
tor (P'(s ,~,A))A~S/~ is a solution of the linear equation system X[s] = 0, 
~ A c S / ~  XA" 7)(A, T*, C) = P([s], 7, C). The matrix (P(A, T*, C))A,CeS/~ can 
be shown to be regular. Hence, the above equation system has a unique solu- 
tion. This yields P'(s ,T ,A)  = P ' (s ' ,%A)  for all s, s' E S with s ~ s'. For all 

E Act, s E S and C E S~ ~ we have: 

P(S,T*aT*,C) = E P'([s] ,T,A) 'T)(A,T*C~T*,C)q-P'(s ,a ,C)  
AeS/~ 

where P'([s], T, A) = P'(s,  T, A). This yields P'(s,  a, C) = P'(s' ,  a, C) for all s, 
s ' E S w i t h s  ~ s ~. 

[] 

4 Computing weak bisimulation equivalence classes 

In this section we develop an algorithm to compute weak (and branching) bisim- 
ulation equivalence classes. The general idea is to use a parti t ioning/spli t ter-  
technique similar to the ones proposed by Kanellakis & Smolka [25] resp. Paige 
& Tarjan [30] for deciding strong bisimulation in the nonprobabilistic case. The 
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algorithm starts with the trivial partition X = {S} and then successively refines 
the given partition X (with the help of a "splitter" of X), eventually resulting 
in the set of weak bisimulation equivalence classes. 

A partition of S is a set X containing pairwise disjoint subsets of S such that  
each element s �9 S is contained in some C E X. Let [six refer to the (unique) 
element of X with s �9 [s]x. For a partition X, let Tx = {s �9 S : P(S,T, IS]x) < 
1}. Tx contains all states that  with nonzero probability can perform something 
visible or silently step into a different class. If s �9 Tx then we define 

P(s, a, C) 
Px(s ,a ,C)  = 1-- P(s,T,[s]x)" 

A partition X of S is called a branching bisimulation iff the induced equiv- 
alence relation R x  := [-JcEx C x C is a branching bisimulation. A possi- 
ble candidate for a "splitter" of a partition X is a pair (a, C) (or a pair 
(T, C)) that  violates the condition for X to be a branching bisimulation, i.e. 
PRx(S,T*a,C) ~ PRx(S',T*a,C) (PRx(S,'r*,C) # PRx(S',T*,C), respec- 
tively) for some B e X and s, s ~ �9 B. The following characterization of branching 
bisimulations yields a simpler condition for splitters as it does not require the 
computation of the probabilities 7)Rx . 

L e m m a  5. A partition X is a branching bisimulation iff the following conditions 
(1) are (2) are satisfied: 

(1) For all A �9 X ,  s, s' �9 A MTx: Px (s, T, C) = Px (s J, "r, C) for all C �9 X \ {A}, 
and Px  (s, ~, C) = Px (s', a, C) for all C �9 X ,  a �9 Act \ {~-}. 

(2) For alt A �9 X either AMTx = ~ or for each So �9 A \ Tx there is an execution 
fragment so ~ .. .  ~ s~ with s o , . . . ,  sk-1 �9 A \ Tx ,  sk E A n Tx .  

Moreover, if X is a branching bisimulation then P Rx (s, T'A, C) = Px ( A, ~, C) 
for all A, C E X,  s �9 A. Here, Px(A,  )~, C) denotes Px (t, ~, C) ]or arbitrary 
t �9 A M T x  u n l e s s A N T x  = 0. I f A M T x  = 0 t h e n P x ( A , 7 , A )  =- 1 and 
Px  ( A, a, C) = 0  if a ~ ~- or A ~ C. 

Def in i t i on  6. A splitter of a partition X is a tuple (a, C) consisting of an action 
a E Act and some C c X such that  there exists some B E X (with B ~ C if 
a = 7) and Pz(s ,a ,C)  ~ Px(s ' ,a ,C)  for some states s, s' E B M T x .  

The main idea for refining a given partition X via a splitter (a, C) is to isolate 
in each B E X (with B ~ C if a = T) those states s, s' C B M Tx  where 
Px (s, a, C) = Px(s' ,  a, C). By condition (2), each such equivalence class A of 
B M Tx has to be enriched with exactly those states s E B \ Tx that  can reach 
A via internal actions and that  cannot reach any other equivalence class A J of 
B M Tx  without passing A. 

Def in i t i on  7. For (a, C) to be a splitter of a partition X and B E X (with 
B ~ C i f a  = ~-), we define Spli t(B,a,C) = ( B M T x ) /  = where s = s' iff 
Px (s, a, C) = Px  (s', a, C). If A E Split(B, a, C) then we define the closure 
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of A in X with respect to (a, C) to be the largest set V C_ B which contains A 
and such that  for all s E V \ A: P(s, T, V) = 1 and there exists an execution 
fragment s = so 4 . . . .5+ sk with so, . . . ,sk-1 E V and Sk E A. We define 
Refine(B, r, B) = {B} and, if a ~ 7- or B ~ C, 

Refine(B, a, C) = {-A : A C Spli t(B, a, C)} U Res(B,  a, C), 
Refine(X, a, C) = UBex Refine(B, a, C), 

where Res(B, a, C) = {B \ UAeSpUt(B,~,C) A} \ {0}. 

It is easy to see that  for each partition X which is coarser than S~ ~br and each 
splitter (a, C) of X,  the partition Refine(X, a, C) is coarser than S~ ~b,. and 
strictly finer than X. If there is no splitter for X and X is coarser than S/~br 
then X = S/ ~ r =  S~ ~. 

Algorithm for computing the weak bisimulation equivalence c/asses 

Input: fully probabilistic transition system (S, Act, P )  
Output: S~ 
Method: X := {S}; 

While X c o n t a i n s  a s p l i t t e r  (a,C) do X := Re fine( X, a, C) ; 
Return  X .  

Example 4. Partitioning the transition system from Example 1 proceeds as fol- 
lows. For the initial partition {S}, we consider the set T{s} = {s2,sa,s4}. 
(a,S) and (/3, S) are splitters, since, for example, P{s}(s2,a,S) = 0.1 7~ 
0.2 = P{s}(s3, a,S). Split(S,a,S) refines S A T{s} into {s2} and {s3,s4}. 

The closure in {S} yields {s2} = {s2} and {s3, s4} = {sl,s3,s4}, which 
leads to Res(S,a,S) = {{so,sh, s6,sT}}. We have Refine({S},a,S) = 
{{So, Sh,S6, sT}, {sl, s3,s4}, {s2}}. This new partition Z contains a splitter 
(%{s2}), because Px(so,7,{s2}) = 0.5 ~ 0 = Px(sh,7,{s2}). The sub- 
sequent refinement step merely seperates So from its former partition, i.e. 
Refine(X, a, {s2}) = ((so}, {Sh, s~, sT}, {sl, s3, s4}, {s2}}. This partition does 
not contain further splitters, it thus represents the weak bisimulation equiva- 
lence classes. 

In what follows, n = IS I. We suppose that  the alphabet Act is fixed. 

T h e o r e m 8 .  The algorithm above can be implemented in time O(n 3) and space 
O(n~). 

Proof. In order to avoid multiple computations of the values P(s, a, C) where C 
is a block in X that has not been changed in the last refinement step we replace 
the assignment X := Refine(X, a, C) by Y := Refine(X, a, C); Xne~ := Y \ X; 
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X := Y. (I.e. X n e  w contains the set of blocks tha t  have been modified in the 
last i teration step. Initially, X~ew = {S}.) Initially, Xnew = {S}. 
Initialization of the refine step: Let X be the current partit ion. We compute  
the values P(s, a, C) and Px (s, a, C) for each s E S, a E Act, C E X ~ .  The 
set Tx can be derived from the probabilities P(8,7-,C), 8 E C. For each pair 
(a ,C)  (where a E Act, C E Xnew) and A E X we compute min(A,a ,C)  = 
minseA Px (s, a, C) and max(A, a, C) = maxseA Px (8, a, C). Then, (a, C) is a 
splitter of X iff rain(A, a, C) < max(A, a, C) for some A with a ~ ~- if A = C. 
If  there is no splitter of X then X = S / ~ .  Otherwise we choose some splitter 
(a, C) of X. 
Refinement step: For all B E X with B ~ C if a -- r we compute  the set 
Ref ine(B,a ,  C) as follows. We construct an ordered binary tree Tree(B) by 
successively inserting the values Px (s, a, C), s E BMTx. Each node v of Tree(B) 
is represented as a record with components v.key and v.states, v.key is the key 
value o fv  (i. e. one of the values Px(s, a, C), s E BATx)  such tha t  v.key < w.key 
(v.key > w.key) for all nodes w in the right (left) subtree of v. For each state 
8 E B M Tx we traverse the tree Tree(B) star t ing in the root and search for 
the value Px(s ,a ,C) .  If we reach a node v with v.key = Px(s ,a ,C)  then we 
insert s into v.states. Otherwise, Pz(s,  a, C) is not yet represented in Tree(B) 
and we insert a node v with v.key -- Px(s ,a ,C)  and v.states = {s}. In the 
final tree, v.states is the set of states s E B M Tx with Pz(s ,a ,C)  = v.key. 
Thus, the nodes of the final tree Tree(B) represent the sets A E Split(B, a, C). 
More precisely, Split(B, a, C) consists of the sets v.state8 where v ranges over all 
nodes of Tree(B). We derive Reline(B,  a, C) as follows. Let GB be the directed 
graph (B, EB) where (s, t) E EB iff P(t, T, 8) > 0 and t E B \ Tx.  We compute 
the sets A, A E Split(B, a, C), by a breadth first search like method: We define 
label(s) = A for all s E A and A E Split(B, a, C) and label(s) = _l_ ("undefined" 
or "not yet visited") for all 8 E B \ Tx.  In what  follows, we use label �9 for states 
tha t  are reachable in GB from two or more sets A E Split(B, a, C). Thus, all 
successors of a ,-labelled s tate  in GB are also labelled by *. We use a queue Q 
which initially contains the states s E A, A E Split(B, a, C). While Q is not 
empty  we take the first element s of Q, remove s from Q and, if label(s) ~ �9 
then for all t E B \ Tx with (s, t) E EB we do: 

(1) If label(t) = • then we add t to Q and set label(t) = label(s). 
(2) If label(t) E Split(B, a, C), label(t) ~ label(s), then we set label(u) = �9 for 

u = t and all successors u of t in GB. 

(In step (2), we use a depth first search star t ing in t to find all successors of t. 
States tha t  are already labelled by * are ignored.) Then, A = {s E B : label(s) = 
A} and Res(B,a,C)  = {{s E B :  label(8) E {•  \ {0}. 
Complexity: I t  is clear tha t  the method described above can be implemented in 
space (9(n2). We show tha t  the t ime complexity of our method is (9(n3). First, 
we observe tha t  there are at most  n iterations of the refinement step. Thus it 
suffices to show tha t  each refinement step takes t ime (9(n2): I t  is clear tha t  
for each refinement step, the initialization requires (9(n 2) time. (For each tuple 
(8, a, C), one has to calculate the sum ~ t e c  P(s, a, t). Hence, for fixed a and 



128 

ranging over all s E S and C C X we get the time complexity (2(n2). Since we 
suppose Act to be fixed, the values P(s, a, C) can be computed in time (2(n ~).) 
Ranging over all B, the construction of the trees Tree(B) (thus, the computation 
of the sets Split(B, A, C)) takes (2(n-log n) time if one uses some kind of balanced 
trees, e.g. AVL-trees [1]. We show that,  ranging over all B 6 X,  the sets A and 
Res(B, a, C) can be derived in time O(n2): For fixed B 6 X, the directed graph 
GB can be constructed in time O(]B[2). Each state s e B is added to Q at 
most once: (Note that  only states with label • can be added to Q.) Each state t 
which is visited during a depth first search in step (2) is labelled by *. Thus, it 
can never be visited in step (2) once again. As a consequence, each state causes 
time costs (at most) of order 2n in the computation of Refine(B, a, C): as an 
element of Q and as a state with label ~ �9 that  is visited in step (2). Either case 
involves O(n) computations. Summing up over all s 6 B, the computation of 
Refine(B, a, C) has time complexity O(IB ] �9 n). So, we obtain Refine(X, a, C) 
in time (2(n2). Thus, we get the overall time complexity (2(n3). 

[] 

5 F u r t h e r  d i r e c t i o n s  

In this paper we have extended the notions of weak and branching bisimulation 
equivalence to fully probabilistic transition systems. In contrast to the non- 
probabilistic case, both relations coincide. We have described an algorithm that  
computes weak (and branching) bisimulation equivalence classes in time O(n 3) 
and space (9(n2). 

Obviously, our notion of equivalence is coarser than strong bisimulation 
equivalence [26]. In addition, it can be shown that  weak bisimulation equiva- 
lence is finer than the testing equivalences of [7, 8]. It is also finer than the 
testing equivalence of [9, 36] that  considers "r-free tests only but incomparable 
with their test equivalence that  allows for general tests. 

The definition of composition operators for fully probabilistic transition sys- 
tems is an important subject for further work. In the presence of composition 
operators, a proper notion of equality should be preserved; that  is, it is required 
that  weak bisimulation equivalence is a congruence with respect to the oper- 
ators. Indeed, prefixing, hiding, restriction and (guarded) probabilistic choice 
can be easily adopted from the nonprobabilistic to the fully probabilistic setting 
such that  weak bisimulation is a congruence for them, see [4]. Unfortunately it is 
not straightforward to adapt parallel composition to this framework. Other fully 
probabilistic calculi like PCCS [12] and similar calculi [18, 27], are based on syn- 
chronous CCS [28]. In particular, their parallel composition is synchronous. In 
the essence, activities (of different components) that  may happen with nonzero 
probability occur synchronously, with a probability given by the product of the 
individual probabilities. Such synchrony includes internal activities, because they 
do not play a distinguished role in PCCS. This reflects the lack of a notion of 
equivalence that  abstracts from internal computation. In our framework, it seems 
promising to allow internal computation to occur asynchronously, similar to the 
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asynchronous product  in synchronous CCS. However, the shape of this operator  
still has to be settled. 

We restricted ourselves to fully probabilistic transition systems that  are gen- 
erative in nature. This model is not adequate to represent the truly asynchronous 
behaviour of concurrent probabilistic processes [34]. For this purpose, some kind 
of probabilistic transition system is required that  allows for nondeterministic 
branching. As far'as the authors know, the question of decidable notions of weak 
bisimulation is still open in this setting. The weak bisimulation of [33] for such 
a model is based on a "double arrow relation" that  assigns a set of transition 
probability distributions to each state. In general, this set, representing nonde- 
terministic alternatives, is infinite. This substantially differs from the nonproba- 
bilistic and the fully probabilistic case where weak bisimulation equivalence can 
be decided using a finitely branching transition system. 
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