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Abstract 

Hybrid Decision Diagrams (HDD) have been proven in Intel to be an important enabler for 
the formal verification of datapath intensive circuits and in particular the verification of 
arithmetic units. However, extensive user interaction with the formal verification tool was 
required in order to use the HDD technology efficiently. The user had to analyze the circuit 
and its specification and manually partition the signals and operations into control and 
datapath. 

In this paper, we will demonstrate how we have made use of the automatic datapath 
extraction techniques widely used in the synthesis world in order to efficiently integrate 
HDDs to an SMV-based formal verification system. The intention of this paper is to illustrate 
how existing technology can help improve the usability and productivity of the formal 
verification process and enable efficient integration of new technology, in our case HDDs. 

The system described in this paper, Prover, statically analyzes the model to be verified and 
partitions the representation of the logic to HDDs and Binary Decision Diagrams (BDDs). 
Moreover, the partitioning algorithm decides which vector operations will be represented 
more efficiently as word-level (i.e. using HDD) versus bit-level (i.e using BDD). 

The new methodology of integrating HDD into the formal verification process increases the 
productivity of the verification process. At the same time, experiments with Prover show that 
verification is (both computation and memory usage wise) as efficient as the previously 
known manual method. 

1 Introduction 

The Binary Decision Diagram (BDD) technology is a key enabler to several VLSI- 
CAD solutions. However, since BDDs are inefficient in dealing with datapath 
intensive circuits, the synthesis and formal verification of these circuits still 
challenge the VLSI-CAD community. 

BDD-based approaches cannot handle, particularly, the verification of arithmetic 
functions such as multiplication and division, mainly because the BDD 
representations for these functions grow exponentially relative to the bit size. 
Bryant and Chen [1] have addressed the limitation of BDDs by introducing Binary 
Moment Diagrams (BMDs). BMDs and their extensions, e.g.*BMDs, enable 
compact word-level representation of arithmetic functions including multipliers. 
Although BMDs can represent datapath portion of the logic efficiently, the control 
portion of the logic can still be represented more efficiently using BDD or MTBDD 
(multi-terminal BDD). 

Clarke and Zhao [2] have introduced Hybrid Decision Diagrams (HDDs) which 
represent logic as a combination of MTBDDs and BMDs. Previous applications of 
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HDDs in Intel's tools [3] required the user to manually provide the information on 
how to partition HDDs into MTBDDs and BMDs. In most cases, a design and a 
verification expert had to manually extract the datapath. This approach was time- 
consuming, unproductive and often involved a third party's understanding of the 
design. Therefore, we believe that automatic identification and partitioning of 
datapath and control logic is essential for the efficient embedding of HDDs in the 
industrial formal verification tools. 

State-of-the-art architectural and datapath synthesis systems automatically identify 
the Hardware Design Language (HDL) statements describing datapath and replace 
the corresponding logic with optimized predefined macros that fit the description. 
The encapsulation of datapath functions in the synthesis tools is mainly done to 
optimize the datapath portion of the logic taking into consideration timing and area 
constraints. In this paper, we demonstrate how we have made use of the automatic 
datapath extraction techniques widely used in the synthesis world to efficiently 
integrate HDDs to an SMV-based [16] formal verification tool. Our intention is to 
illustrate how existing technology can help improve the usability and productivity 
of the formal verification process and enable efficient integration of new 
technology, in our case HDDs. 

This paper presents two capabilities of Intel's formal verification tool, Prover : the 
automatic encapsulation of datapath and HDD partitioning. The HDD partitioning 
algorithm decides which datapath bits will be encoded as BMDs and which as 
BDDs. This decision is not trivial since some of the datapath bits are still more 
efficiently represented as BDDs. Prover accepts as input a high-level hardware 
specification language and generates an hierarchical intermediate netlist. The 
intermediate representation contains an additional layer of hierarchy for datapath 
operations. The partitioning algorithm of Prover when fed the intermediate netlist 
builds and analyzes a two-level Data Flow Graph (DFG) of the circuit. One level of 
the DFG represents the bit-level connectivity of the model and the second level 
represents the word-level connectivity. The algorithm decides which components 
of the circuit will be more efficiently represented using BMD and which using 
MTBDDs and BDDS and generates word-level Symbolic Model Language (SML) 
for both the model and its specification. Using Prover we have successfully verified 
circuits for division and square root computation that are based on SRT algorithm 
used by Intel's Pentium| microprocessor. The novelty of Prover is that it reduces 
the required user expertise and intervention compared to other formal verification 
systems. 

This paper is organized as follows: Section 2 contains a brief overview of Intel's 
formal verification tool, Prover. Section 3 describes how the datapath statements in 
the model and specification languages are automatically extracted. Section 4 
discusses the efficiency and deficiency of HDDs and especially BMDs to represent 
logic. In Section 5, we describe the partitioning algorithm used to partition the logic 
into BDDS and HDDs and HDDs into MTBDDs and BMDs. Section 6 presents 
results obtained using Prover to verify complex real-life arithmetic properties 
including the floating-point division (FDIV) in Pentium| processor. We compare 
our results to the manual datapath extraction experiments~ 



97 

2 The System 

Prover, Intel's formal verification tool, is based on two major components: the 
formal specification language and the symbolic model checking engine. Our 
specification language, called Formal Specification Language (FSL), is a linear- 
time temporal language that allows the specification of a complex behavior as a 
series of timed expressions. The model building stage of Prover synthesizes the 
register-transfer-level (RTL) model and the specification to a gate-level 
intermediate format [8]. Prover performs property-specific model extraction to 
prune the parts of the model that are irrelevant to the property and automatically 
generates extended SML as input to its SMV-based [16] model checking core. The 
temporal properties expressed in FSL are translated internally to SML checkers and 
simple CTL formulas. 

Prover's model checking core implements the word-level model-checking 
algorithm of Clarke and Zhou [2]. However, we allow word-level expressions both 
in the model description and in the specification. As a result, the intermediate 
functions needed for the construction of the transition relation and the specification 
are represented using HDD while the final representation of the transition relation 
and the specification are in BDDs. 

Embedding HDDs 1 in Prover's verification engine [3] made it possible to handle 
circuits containing both control logic and wide datapaths. Recently, we have 
automated the use of HDDs in Prover by integrating an automatic datapath 
extraction mechanism to the model building stage of the tool. The synthesizer 
automatically encapsulates arithmetic functions in the model and the specification. 
A partitioning algorithm decides which signals and which operations will be more 
efficiently implemented using BDDs and which using HDDs. Moreover, within the 
HDD representation, the algorithm decides on the partitioning between the 
MTBDDs and the BMDs. 

3 Encapsulation of Datapath O p e r a t o r s  

The logic of a hardware system can be classified as (pure) control, (pure) datapath, 
or (mixed) control/datapath. The control portion of a hardware system consists of a 
set of interacting FSM's which depending on data values and states, produce a set 
of control signals for the datapath. The datapath consists of functions and registers 
which, based on control signals, operate on data. The data often consists of 

1. The reader is referred to Section 4 and [1, 2, 3, 5, 12] for detailed description of 
BDDs, MTBDDs, BMDs and HDDs. 
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integers. The memory acts as a container for values, and communicates with 
datapath. 

HDL FSL~ 
Prover 

Model Builder 

I Synthesizer I 
Intermediate format 

[ SML generator I 

~ Extended SML 

i Model Verifier 'HDD-based SMV [ I 
~ Proof 

Figure 1 : Overview of the modules of Prover 

The BDD-based approaches fail to represent efficiently wide datapath operators. 
BMDs and extensions to BMDs, e.g. *BMDs, enable very compact word-level 
representation of arithmetic functions including multipliers. The symbolic model 
checking engine of Prover is HDD-based. The model under test can be represented 
as a combination of MTBDDs and BMDs. The motivation is to represent control 
logic as BDD/MTBDDs and datapath logic as BMDs. The automatic extraction of 
datapath [7] and control logic is essential for the success of the hybrid approach 
taken in HDD where MTBDDs and BMDs coexist. 

In the model-building stage, Prover encapsulates the HDL and FSL operators 
related with datapath and maps the isolated operators to generic predefined 
subcircuits. The predefined subcircuits are genetic in the sense that all the 
subcircuits that describe a plus operation of any width will have only two inputs 
and one output. The bit-width of the input and output signals varies depending on 
the size of the operation. In other words, the generic parameter of the predefined 
subcircuits is the bit-width of the operation. 

Prover, currently automatically encapsulates the arithmetic operations, e.g. 
multiplication. In addition to the arithmetic operators, the relational operations, i.e. 
comparison, equality and inequality operations, and other vector operations, e.g. 
concatenation, are automatically identified. Furthermore, the automatic 
encapsulation mechanism in Prover extracts memories, and control logic, e.g. 
multiplexers, that controls the datapath. For example, "if", and "case" expressions 
in HDL and FSL are preserved by mapping them to predefined generic multiplexer 
templates of the respective width. 

The encapsulated operators generate an extra hierarchy in the intermediate netlist 
generated by the synthesizer of the model builder (See Figure 1). Information on 
the functionality (e.g. addition, subtraction) of these implicit tool-generated 
subcircuits is stored as attributes. The SML netlist generator of Prover, when fed 
the intermediate netlist, decides which isolated operators can be more efficiently 
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represented by BMDs and generates an extended SML netlist which is fed to the 
verification core. The partitioning algorithm used in the SML generator is 
explained in more detail in Section 5. The SML netlist contains information on 
which signals are to be represented as BMDs by means of the new constructs that 
have been added to the language. The verification core of Prover identifies the 
datapath circuitry in the SML netlist and represents the relevant portions of the 
logic as BMDs. 

The benefits of a datapath extraction mechanism are numerous. The idea of 
automatically extracting the datapath operators and mapping them to predefined 
generic modules can be extended. For example, it would be quite reasonable to 
create a library of optimized standard arithmetic functions (addition, multiplication, 
relational operators) and re-use the size-wise optimized (BDD or extensions to 
BDD) modules, The portion of the logic (e.g. memory) which cannot be 
represented efficiently neither by BDDs nor by BMDs can be treated as a black 
box. 

4 Efficiencies and Deficiencies of BMDs versus BDDs 

Ordered binary decision diagrams (BDDs) [5, 12] are a canonical efficient 
representation for Boolean formulas. A BDD representing a formula is a directed 
acyclic graph (DAG) with a unique order on the occurrence of variables from root 
to leaf. Multi-terminal BDDs (MTBDDs) have a similar structure; however instead 
of having boolean leaves they have integer leaves~ Both BDD and MTBDD 
representation of certain arithmetic functions such as multiplier requires 
exponential resources. Bryant and Chen [1] have shown that BMD can represent 
compactly certain arithmetic functions which have exponential MTBDD 
representation. 

HDDs (BMDs and MTBDDs) can represent functions that map boolean bit vectors 
to integers; whereas BDDs can represent only boolean functions. An array or bit 
vector of state variables represented as a HDD is referred to as a word [1, 2, 3]. The 
value of the word is the value of the integer represented by the bit vector. BMD 
representation is more compact for some arithmetic functions which have 
exponential size if represented as MTBDDs. In general, BMDs and BDDs have 
comparable size for boolean functions, however, our experience shows that BMDs 
are less compact in these cases. Similar results were reported for some boolean 
functions in [15]. 

The method of building BMD from an arithmetic expression, e.g. multiplication, 
can blow up exponentially in the building phase of a single bit [6]. Therefore, two 
verification methods for multipliers based on Multiplicative Binary Moment 
Diagrams (*BMDs) have been introduced. Bryant has proposed a hierarchical 
approach in which the building blocks of the multiplier being verified, for instance 
a carry-save adder, are checked against their word-level specification. Once the 
individual sub-blocks have been verified, they are composed to yield the function 
of the entire block. The shortcoming of this approach is that it assumes that the 
specification has the same hierarchy as the implementation, and that the 
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corresponding blocks in the specification and the implementation are equivalent 
which is not always the case. Hamaguchi [9] proposed a method to overcome this 
limitation which is a non-hierarchical variation of Bryant's scheme which compute 
BMD from outputs to inputs instead of inputs to outputs and verify successfully 
wide-size, e.g. 64-bit, multipliers. However, if there are errors in the circuits, BMD 
can easily blow up and the verification program may not terminate, since these 
circuits represent different logic functions from multiplier which can have 
exponential sizes of BMD. In [10, 11], BDD-based techniques that overcome this 
limitation of the BMD-based methods are presented. 

In Prover, the decision on which HDL and FSL operations are to be translated to 
word-level SML operators and consequently to be represented as HDD by the 
verification core is based on mainly the efficiency of HDD in comparison with 
BDD to represent these operations. As mentioned above, the BMD representation 
of single bit/bits of an arithmetic expression may be huge, even when the BMD 
representation of the whole expression is very compact. Therefore, expressions 
involving relations among single bits of arithmetic sub-expressions are not good 
candidates to be represented as BMD. 

Moreover, the relational operations, e.g., inequalities, equalities, can be represented 
more efficiently by BDD than BMD. Clarke and Zhao [2] present an algorithm that 
can substantially reduce the cost of computing arithmetic relations between word- 
level functions. However, our experience shows that the BDD representation of the 
relational operations is more efficient than the BMD representation. 

In Section 5, we will present the algorithm currently used by Prover in order to 
decide which portion of the logic will be represented as BDD and which portion of 
the logic will be represented as BMD. 

5 Automatic Partitioning 
The algorithm for partitioning the logic into BDD (bit-level) and BMD (word-level) 
representations within the HDD is mainly based on the efficiency of HDD (BMD/ 
MTBDD) compared to BDD for representing datapath operations. 

The partitioning algorithm in the first stage decides which vectors will be 
represented as words and which operations will be represented as word-level 
operators. These vectors and operations will be represented as HDD. The rest of 
the logic will be represented as BDD. The BMD/MTBDD partitioning within HDD 
is performed by marking the datapath variables in HDD as data variables; thus, 
causing the datapath operations to be represented as BMD. 

Based on the encapsulation of the datapath operators described in Section 3, a two- 
level Data Flow Graph (DFG) of the model is built. One level of the DFG 
represents the bit-level connectivity of the entire model. That is, given a signal bit 
sig one can extract from the DFG information on the signals in the fan-in and fan- 
out of sig. The second level of the DFG represents the word-level connectivity of 
the model. That is, given a word (vector) vec one can extract from the DFG the fan- 
in and fan-out information on vec. The word-level connectivity graph also contains 
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information on the fan-in and fan-out of each vector operation: the operands are the 
fan-in and the result is the fan-out. 

The bit-level and word-level connectivity graphs are used to detect the case where a 
single bit is extracted from the result of a vector operation. In other words, if we 
compute an intermediate word-level expression and represent it using BMD it will 
be inefficient to extract from it the BDD/BMD representation of one of its bits. For 
example, the intermediate expression temp below 

temp := wordl + word2; 

sig := temp[3] ; 

will be represented as BDD instead of BMD since we need to extract bit 3 out of 
temp. On the other hand, we may choose to represent an operation using BMD even 
in the case this operation is more efficiently represented using BDD. The reason for 
such a decision lays again in the context of the operation. 

The BDD representation of some bit vector operations, e.g. concatenation, is more 
efficient than the BMD representation. Bit vector operators and relational operators, 
e.g. <=, >=, are mapped to their corresponding word-level SML operators if and 
only if the operators in the fan-in cone of these operators are arithmetic operators 
(+,-,*). For example, the concatenation operation (&) in the assignment below has 
to be represented at word-level, in order to represent the multiplication operation 
(*) at word-level. 

c[3n+2:0] := (a[n:O] * b[n:O]) & d[n:O]; 

In other words, to represent the multiplication expression (a [ n : 0 ]  * 
b I n : 0 ]  ) as a BMD, we choose to perform the concatenation operation (&) on 
BMDs even though it is more efficient to perform it on BDDs. 

The partitioning algorithm first analyzes the DFG and marks every vector and 
every datapath operator as either bit-level or word-level. After the preliminary 
marking of all vectors and operations as bit-level or word-level, the DFG is scanned 
again and a final decision on which vectors to represent as words (HDDs) and 
which as BDDs is made. The outcome of the algorithm is a list of vectors and 
operations that need to be represented at word-level and a list of signal bits that 
need to be specified as data variables. 

The partitioning algorithm is depicted below. In summary, initially (Step 1) the 
algorithm marks as many vectors and operators as possible as word-level. Then 
(Step 2), the algorithm reclassifies the word-level vectors and operators by 
propagating backwards the need to represent some vectors at bit-level instead of 
word-level and the need to represent datapath operators at bit-level instead of word- 
level. Finally (Step 3), marks all bit-vector and relational operators as bit-level, if it 
is not necessary for them to be word-leveL 
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The Partitioning Algorithm: 
Step 1 (Initial marking): 

Step i.i (Mark datapath operators): 

For each datapath operator op, 

If no single bit of fan-out vectors of op is 

referenced (read) by other expressions, then mark 

opasb~veL 
Otherwise~ mark op as b ~ v e l .  

Step 1.2 (Mark datapath vectors - words): 

For each vector vec, 

If the fan-out of every bit of vec is equal to the 

fan-out of vec, then mark vec as word-~ve l .  

O t h e r w i s e ,  m a r k  vec a s  b ~ v e l .  

Step 2 (Propagating backward): 

For each datapath operator op marked as bit-level, 

For each datapath vector vec in the fan-in of op, 

Mark vec as bit.level 

For each datapath operator op' in the 

fan-in of vec, 

Mark op'  as bit.level 

Step 3 (If necessary, mark bit-vector and relational 

operations as bit.level - correction): 

For each word-level bit-vector and relational operation op 

Recursively mark op as bit-level if none of its 

fan-in vectors is word-level 

If the fan-out vector vec of op is word-level,  

then mark vec as bit.level and recursively apply 

step 3 on all operations op' which are in the 

fan-out of vec 

6 Experimental Results 

Intel's new generation microprocessors are being massively verified using the 
automatic datapath extraction algorithm integrated into Prover. Below is a simple 
example that demonstrates Prover's capability to verify complex arithmetic 
specifications, 

The division and square-root algorithms similar to the ones in Pentium| processor 
that we have re-verified are described in several published papers [2, 3, 4, 13]. For 
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the completeness and readability of this paper we include below the description of 
the division algorithm adopted from [3]. The square-root operation shares common 
datapath with the division operation; thus, we only illustrate here the capability of 
our system to verify complex arithmetic algorithms by concentrating mainly on the 
division algorithm. The number of state variables after the property-specific 
extraction in P r o v e r  is in the order of 300-400. During the re-verification process 
we did not exceed the memory requirements to verify these properties. On a HP or 
IBM machine with about 100MB, these properties have been verified. The 
verification of all the properties took less than 30 minutes. 

M2 add/subtract 

E l l  I " -  

M ~  square root E2 multiply "- I 
M1 divide 

compare 

round 

Figure 2: Block Diagram of FPU 

Mout 

Eout 

The floating-point unit (FPU) of the processor under test uses a radix-4 SRT 
division algorithm. Since the SRT division algorithm is iterative, the loop invariant 
verification technique described in [3] is used. 1 Given the mantissa d (from M1 in 
Figure 2) of the dividend and the mantissa b (from M2 in Figure 2), the radix-4 SRT 
algorithm iteratively computes a partial remainder r i and a quotient digit qi. T h e  

partial remainder r o is initialized to d/4 and the quotient digit qo is initialized to 
zero. Each iteration the algorithm gets the quotient digit from the lookup table and 
subtracts qi o b from the partial remainder r i that has been shifted left by 2 bits. In 
other words, ri+ 1 = 4 . r  i - qi  .b. T h e  algorithm terminates when enough quotient bits 
have been computed. Suppose that the quotient digits are within the range {-n, - 
n+l . . . . .  -1 , 0, 1 . . . . .  n-l, n} for some positive n. Then a radix-4 SRT division 
algorithm is guaranteed to be correct if both of the following properties are true in 
each division loop [14]: 

ri+ 1 = 4. r i -qi-b 

[ril<= n.b/3 

The loop invariant INV i that we want to verify is the conjunction of the two 
properties above. We want to verify that the invariant INV o is true initially and also 
INV i =>INVi+ 1. 

1. The correctness of this property decomposition was only manually proved. 
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In the previous experiments, the loop invariants INV i were expressed in extended 
SML. For example, for any constant n, the second property of INV i was specified as 
follows. 

AG(3.r i <= n.b) & (0 <= 3r i + n.b) 

Additionally, in order to represent the arithmetic expressions (e.g. 3. ri) internally as 
words, the bit-level signals had to be grouped to form an array. The grouping had to 
be specified explicitly in extended SML. In order to represent the words that will be 
represented as HDD in the formal verification engine as BMD instead of MTBDD, 
the state variables in the fan-in cone of the operands of the expression (e.g. ri) had 
to be specified as data variables. In the case of the property above, if the state 
variables in the fan-in cone of r i are not specified as data variables, the expression 
3.r i will be represented as an MTBDD instead of a BMD. Since the MTBDD 
representation of multiplication operation has exponential size relative to the bit 
size and the bit size of r i exceeds 64, this expression is not representable as 
MTBDD. In short, a failure in the specification of data variables and the grouping 
of bits to words may cause the system to blow up, and a lot of user expertise, and 
knowledge on BMD and MTBDD technology were required to manually specify 
the properties in extended SML 

Prover,  in order to prevent the generation of inefficient SML and reduce the work 
that needs to be performed by the user, automates the process of extended SML 
generation. The user is required to write the specifications in FSL. In the case of the 
CTL property specified above, the user instead of writing an extended CTL/SML 
property writes the semantically equivalent FSL correspondent of the property 
above, The user will not need to decide which operations and which vectors will be 
represented at word-level .  The decision to represent vectors as BMD/MTBDD is 
done internally in the model builder stage of Prover  (See Figure 1). The model 
builder automatically generates for the FSL checkers extended SML checkers. 

The experimental results demonstrate that the verification of these properties by 
Prover  is as efficient (with respect to the computation time and memory usage) as 
the method that requires extensive user guidance. 

7 Conclusions 

In this paper, we have illustrated how automatic datapath extraction techniques can 
help improve the productivity of the formal verification process by reducing the 
need for user intervention and expertise required in the current HDD-based 
applications. Furthermore, in order to prove the efficiency and applicability of this 
technique to verify arithmetic circuits of industrial size and complexity, we have re- 
verified some of the selected floating-point operations (e.g. FDIV, FSQRT) in the 
floating point unit (FPU) of Intel's Pen t ium|  microprocessor. The division and 
square-root algorithms of the FPU have been verified using manual extraction of 
datapath in [3]. Our system reduces extensively the user intervention and expertise 
that was needed to verify these operations by integrating an automatic datapath 
extraction mechanism to Intel's formal verification system, Prover.  The 
experimental results demonstrate that the verification of these properties by Prover  
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is as efficient (with respect to the computation time and memory usage) as the 
method that requires extensive user guidance. 

By automating the process of extended SML generation, we have broadened the 
usage of the HDD technology. The manual specification and identification of all 
the datapath operations in industrial size models is not humanly possible. 
Therefore, Prover automatically detects the datapath operations in the model, in 
addition to the specification, that can be more efficiently represented by HDD. 
Additionally, the specification of the properties in a high-level linear-time 
language, FSL, that is more close to the hardware than CTL, reduces the risk of 
verifying specifications that do not specify exactly what the user meant to verify. In 
other words, Prover by enabling the user to specify the properties in a high-level 
specification language ensures that he/she specifies what he/she really meant to 
verify. 

Prover with the new high-level specification entry and automatic datapath 
extraction mechanism is being successfully used to verify Intel's new generation 
microprocessors. Lately, complex arithmetic operations in an Intet's next 
generation micro-processor have been successfully verified using Prover. The 
techniques specified in this paper promote the mass usage of formal verification in 
Intel's design environment. 
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