
Using Scenarios to Validate Requirements in a
Plausibility-Centred Approach

D. Filippidou & P. Loucopoulos
Department of Computation, UMIST, Manchester, M60 1QD, U.K.

{despina, pl}@co.umist.ac.uk

Abstract

The situations within which Information Systems Development in general, and
Requirements Engineering in particular are positioned, can be regarded as des ign s i t u a t i o n s .

We subscribe to the view that understanding the problem amounts to solving it. The
implication of this is that RE involves a continuous cycle of p r o b l e m genera t ion -

con jec ture - evaluat ion. This paper is concerned with the evaluation of designs for a given
set of requirements. Our approach is based on a framework that demands a reflective stance
whereby the issues, positions and arguments are clearly visible to all participants and a
rationale behind the design decisions taken is kept for future examination. Within this
context, we are concerned with both the reasoning for the planning of designing the target
artefact, and the alternative specifications in the design 'product' themselves.

1 Introduct ion

Our approach to Requirements Engineering (RE) is centred on a framework for
articulating, modelling and reasoning about knowledge pertinent to problem situations
that can be collectively termed design problem situations. Our approach, known as
Enterprise Requirements Analysis (~ ? /) , encourages stakeholders to address the
problem of requirements in terms of a paradigm whereby,
�9 given a set of objectives to be met by the artefact (the artefact's purpose)
�9 some design is proposed such that if this design were to materialise then the

artefact would satisfy the originally stated objectives.
In other words, ER~ is based on the premise that dealing with requirements cannot

be divorced from the form of the required artifact. This close interplay between
requirements and designs is essential in attempting to validate requirements.

Goals acquisition and operationalisation deals with the informal aspects of
articulating, documenting and agreeing about high-level goals. Such goals are refined
into plans that eventually lead to design models. Design generation decisions
concentrate on generating such models, the purpose of which is to describe the form of
the artefact. Ultimately, design validation decisions are utilised to ensure and assess the
suitability of the generated designs. They are concerned with evaluating both the
hypotheses chosen to plan the design process, and the competing designs, each one
being potentially realisable and leading to the implementation of the artefact. These
four decision classes are carded out within a design rationale framework that captures,
documents and uses the reasons behind the decisions taken (see Figure 1).

48

Goal

Acquisitio�9

t
- 1 Operationalisatiou

Figure 1: ERA Framework

The purpose of this paper is to describe the techniques used to capture and use
validation decisions within the EPv~I framework. The paper is organised as follows:

Section 2 presents background of different validation and scenario-based techniques
because validation is crucial in E~I . ; Section 3 overviews the way-of-working within
the validation layers, namely elaboration, experimentation and evaluation, described in
Sections 4, 5, and 6, respectively; Section 7 describes implementation issues, and
Section 8 presents conclusions and further work.

2 Background

In this section we introduce the concerns of validation, and give a brief overview
of current practice within two areas: (a) the diversity of the validation approaches, and
(b) how scenarios have been used in design situations.

2 . 1 V a l i d a t i o n P r o c e s s e s

Validation has been closely related to verification and quality measurement.
Verification has more to do with ensuring that the design products really fulfil the
stated requirements [12], while quality measurement is more concerned with
measuring, in a meaningful way, the quality attributes of the design product [15].

Validation is more about "... certifying the requirements model for correctness
against the user's intention" [21]. Therefore, validation ensures that the generated design
models are consistent with the customer's intentions, and that they are error and
conflict free. Specifically, validation processes can be used to:
�9 communicate the specifications of the system to the customer, in order to locate

misunderstandings;
�9 ensure that the intended functions are performed;
�9 exclude unintended functions;
�9 ensure that no other design solution can improve the quality of the target artefact;
�9 uncover errors and conflicts;
�9 correct errors;
�9 exhibit desired situations and behaviours.

49

2 . 2 Validation Techniques

Different categorisations of validation techniques have been established [22], [7]
and [18]. We distinguish the techniques developed based on the three dimensions
illustrated in figure 2.

EXECUTABILITY

executable

non-executable

informal

~ ia~/trinsi~ ~t'YSABILITY

formal FOI~MALITY
Figure 2: A framework for comparing validation techniques

1. EXECUTABILITY This group of techniques is concerned with the extent that
requirements specifications are 'executed'. Techniques can be distinguished to be
from non-executable to fully executable [9], [20];

2. ANALYSABILITY This groups techniques according to the extent that analytical
methods are applied. Techniques can be distinguished to be from extrinsic (those
with no concern for the semantic properties of the specifications), such as those
based on visualisation techniques, to intrinsic (those involving the validation of the
contents and use of the specifications themselves), such as those based on syntax-
checking, behavioural checking, or scenario analysis [24];

3. FORMALITY This distinguishes validation techniques from formal ones (those based
on formal methods like modelling languages) such as in [7], to informal ones, such
as those based on brainstorming, open-ended meetings, reviewing, or visualisation
techniques [17], [19].
The approach proposed in this paper aims to develop an executable, intrinsic and

formal methodology to validation.

2 .3 Scenarios in Design Situations

Several approaches have been developed using scenarios in designs [2], [11], [27].
Some use scenarios as behavioural requirements [1], [10] and [28]. A behavioural
requirement "... describes the way a system behaves, concentrating on the interactions
between system and users" [28]. Such behavioural requirements are similar to use cases:
"A use case is just what it sounds like: It is a way to use the system. Users interact with the
system by interacting with its use cases. Taken together, a system's use cases represent
everything users can do with it." [13]. Other efforts use scenarios as a concrete
vocabulary to envision the design process before any design is employed [4], [5], to
satisfy objectives [23], or to contextualise pertinent knowledge [29].

Scenarios have been applied to many domains, such as the military, business
marketing and HCI. These domains share common properties. These properties
correspond to the ability of scenarios to refer to concrete descriptions of situations and

50

behaviours, to be open-ended, to focus on contextualised pertinent knowledge and
ignore irrelevant ones, to be more informal, and to describe, in general terms, how a
particular task gets done. Such scenarios address the incompleteness and scope problem
in system requirements [14[, and generally, issues of uncertainty, uniqueness and value
in requirements specifications, which cannot be addressed by technical rationalisation
alone [25].

3 Val idat ion in E ~ f l - An Overv iew

Validation processes in ERe/ are concerned with both the reasoning for the
planning of designing the target artefact, and the alternative specifications in the design
'product' themselves. The first concern deals with 'design actions' based on
'hypotheses' that aim to bring the enterprise to a desired state. A design action
designates any action taken in the course of a design project, whereas a hypothesis
represents any option, suggestion or proposal about resolving a problem arising in the
design process.

Once hypotheses are set and decisions are taken, participants need then to review
and evaluate these decisions, to enable confirmation or refutation. Criticising previous
decisions brings out errors, mistakes and difficulties that actually help knowledge grow
and assist in finding the 'best' solution to the problem. Testing is about refuting
current knowledge, until there is substantial evidence to confirm it. Ultimately,
validation processes will produce confirmations or refutations, which will help to
maintain the objectivity of the design knowledge, as well as to make designers feel
confident about the design solution.

The successful development of a validation process is dependent on its ability to
revise and correct previous knowledge in the presence of new knowledge. When new
evidence appears, previous design actions should be revisited and undergo revision, and
probably result in new actions that refute previous ones. In this way, if there are
design actions that lead to a satisfying set of goals for solving the problem, then this
set of design actions is to be part of an established design path; otherwise, it is part of
a rejected design path, and the designer may backtrack and experiment with alternative
options, until the desired outcome is encountered.

The second concern is the validation of the decisions on the alternative 'products'
that give the form of the artefact, i.e. the design models. Once design models are
developed, these need to be validated early in the design process. Design models are
validated in terms of their appropriateness, feasibility, consistency, and quality. When
alternative competing designs are constructed, it is necessary to provide mechanisms
that guide the commitment to one of them, while demonstrating how the others have
failed. The validation phase in E ~ I supports this design action guidance to the
establishment or rejection of the design models.

Figure 3 summarises the E~,~ validation process. It shows explicitly how both
the validation of the reasoning to the planning -i.e. the set of hypotheses chosen, a~d
the validation of the generated design models can be accommodated in the same
framework, resulting in a full validation methodology. The validation process is
partitioned into three distinct phases: elaboration, experimentation and evaluation.

51

Figure 3: Validation Framework

The process begins with a set of elaboration procedures. For design model
validation, the approach considers a particular design together with the quality-based
expectations of the target system, and responses from the users or other quality
measuring techniques. For evaluating the reasoning to planning design actions, the
approach mainly considers a specific design action, and identifies dependencies with
other design actions, generating inferences, and reviewing the results.

Following these procedures, scenarios are used to consider all candidate alternative
options, shown in figure 3 as the experimentation layer. Experimentation reconsiders
and tries previous alternatives that might bring the enterprise to a desired state.
Experimentation is about setting the environment for trial-and-test activities on the
remaining alternative options, but not generating new hypotheses. Each alternative is
visualised and executed, demonstrating (possibly) unexpected design behaviours, or
detecting feasibility inconsistencies, or missing conflicts and errors.

Such errors are used in the next layer, evaluation, as inputs for setting statistical
comparison views between the alternative designs. Critical errors, such as
contradictions, incompleteness and pay-offs are collected, classified as instances of
errors, and used to determine whether the particular design model or the altered
planning graph will be selected or rejected. The process can continue by considering
even more alternatives by more experimentation.

4 Elaboration

Problem solving in E~v~/ demands a large amount of search between candidate
design possibilities. In considering options, practitioners build trees of decisions on
hypotheses, with the side branches representing alternative possibilities, some of
which are established, and others rejected. When designers traverse these trees of
hypotheses, they are actually building 'design paths', each one composed of a sequence
of design actions that collectively attempt to bring the enterprise to a new desired state.
Practitioners normally choose one such design path, and test to see whether it satisfies

52

the attributes of the intended system, and subsequently confirm (or refute) the selected
design path. In the case of refutation, previous options will need to be re-examined and
tested, mainly by implementing backtracking and experimentation activities.

Practitioners need tools and mechanisms that will assist them in searching
efficiently the options' space, before selecting a design path. It is important, in order
to satisfy the need for efficiency, to ensure that the designer gets the most information
from a particular part of the design knowledge, and that all possible choices are
encountered and attempted. Rationale in design is about critically examining the
choices given. Critical examination can be achieved only by going through all
alternative possibilities, and evaluating the results.

In order to assist the problem solver to efficiently search the design options,
pertinent knowledge should be brought together. By using applicable knowledge,
practitioners can judge the desirability of an option more objectively, and be confident
of their decisions. Of course, the process of searching for pertinent knowledge will
almost never be complete, and valuable existing information will probably be missed.
Domain dependent factors can be ignored, and misjudgements can be made. However,
the EPv~ validation approach tries to compromise between concentrating solely on
isolated design objects, and considering the whole of the available knowledge.

4.1 Elaborating on Planning - A Contextual Approach

To satisfy the need for collecting relevant knowledge together, validation in ~E~/
shifts the focus from individual design actions to sets of them. Such sets place
emphasis on how 'decisions', i.e. design actions, are logically 'linked' and synthesised.
To ensure that design actions can be synergistically used, the validation approach seeks
to identify embedded dependencies between these design actions. Such dependencies can
guide the practitioners to consider the use of hypotheses. By analysing these
dependencies, in terms of supporting an 'inference-generation machine', the validation
process guarantees that any violations of these dependencies will be detected and
resolved.

To demonstrate the types of concepts and methods employed, the Air Traffic
Control (ATC) case study is used [3]. The enterprise of the ATC centre manages the air
traffic flow of some airport. The enterprise is responsible for the safety of aircrafts
approaching the airport, and the satisfaction of their passengers. ATC is already partly
automated, however, causes such as delays in aircraft flights during the summer
months, drive a change process in the enterprise.

4.1.1 Modelling Contexts of Design Actions

The validation process uses contexts, and the modelling formalism of an 'action
context'. An action context is a logical group of a number of design actions, that
externalises and makes explicit embedded dependencies and relations between the design
actions themselves. An action context is a step towards to gaining an understanding of
the nature and structure of the problem itself.

Putting order and structure into a vast amount of knowledge about design actions,
is like providing a geometrical pattern where the system's variables can be observed,
used and tested. We view these variables in terms of being influential and dependent.

53

An influential variable represents the design action that undergoes criticism, whereas
dependent ones represent those design actions logically dependent on an influential
variable, or on another dependent variable. However, such dependencies do not need to
be stored, since they can be extracted using traversing queries.

~ .Accidents due to controllers'

i ! -Increased demands set upon

HI.~- Limit the number ~!'J controllers (+)
of aircrafts allowed to �9 Aeridents due to heavy air tra~c
eross eontroned airspace ~i ~ in controlled airspace (§

' il -Ineremed airtraffie especially
during summer(-)

~ I .Customer satisfaction (-)

\

�9 Errors & inaccuracies in flight
~ans (+)
�9 Last minute change of flight
plans(+)

it H3.1-Validatealrtraflle ~ I '~
d! scenarios ~:~

~ H3.2. Automate control ~ ~

controlers by automated �9 Automated units can handle
units data more efficiently without

?~ str~s (§

III I I:!; i~1~I

I ::I

�9 Controllers have to deal with too
many routine tasks (+)
�9 Stress is generated for eontrolers

routine tasks (+)

Figure 4: An Example Design Process

Dependencies in ~ / a r e used to generate the contents of the action contexts. In
order to view how dependencies are captured, we first look at how the deliberation set
is used to reason about the decisions taken within the design processes. An example
reasoning process is given in figure 4: design actions DA_I, DA_3.1 and DA_3.2 (with
an OR link between DA_3.1 and DA_3.2), are generated. Such dependencies can be
distinguished into three types:
1. Consequent dependencies to represent design paths, as sequences of applied design

actions; for example, an implicit consequent dependency, based on the diagram of
figure 4, would he that DA_3.1 or DA_3.2 follows DA_I;

2. Priority dependencies are used to establish logical dependencies between groups of
design actions; such dependencies are further specialised by establishing
rejecting priorities; the establishing (rejecting) priority designates that a particular
design action requests that another design action is within an established (rejected)
design path; for example, based on figure 4, there is an establishing dependency
from both DA_3.1 and DA_3.2 to DA_I;

3. Justification dependencies represent argumentative dependencies between design
actions; such dependencies are established between design actions when the same
arguments justify these design actions.

54

4.1.2 A Validation Inference Machine

Inferences can be made so that dependencies between design actions are validated.
Such inferences drive forward the solution of the problem by being used as further
arguments to confirm or refute the initial design actions. Figure 5 gives a
diagrammatic view of how inferences are generated and used in E~I~

Figure 5: Inference system for Action Contexts

According to figure 5, inferences can be generated as the by-product of interactions
between the action contexts and the dependency analysis processes. Once action
contexts are built, sets of dependencies are input into the dependency analysis module,
to be analysed for validity. Dependency analysis techniques involve searching errors, in
terms of cyclic design paths, violations of the priorities between the design actions,
and finally for misuses of arguments (i.e. text-based arguments that contradict one
another).

Once dependencies are analysed, inferences are generated. If 'negative' inferences,
are found, then designers need to detect and correct the source of the error. To do that,
designers backtrack and experiment, until the action context of concern is error-free.

4 .2 Elaborating on Design Models-A Quality Inspection Approach

Design models are generated as sets of specifications that attempt to describe how
the intended properties and functions of the target artefact will work, However, it is
more likely that alternative design models will be generated, and the designer will need
to select one and demonstrate how the rest will fall. In order to ensure that the designer
has made the 'correct' choice, the validation process assists the decision-making task
by supporting an environment for quality-based inspection in the design model.

Quality inspection of the generated design models aims at:
�9 stating the designers' quality expectations of the design model in terms of

determining criteria to be satisfied;
�9 measuring the degree that these criteria are satisfied using quality measuring tools,

ex. cost-effective techniques;
�9 capturing how the atomic components of the design models influence the quality of

the total model.
The validation process is mostly influenced from the Goal-Rule-Checklist-Metric

(GRCM) approach to quality inspection [26]. GRCM hierarchies are built to inspect
and evaluate the produced design. The main idea is to initiate quality inspection from a
starting goal, and define rules as criteria upon which evaluation proceeds. Checklists
are used as guides on how to evaluate the goals, by stating specific properties of the
design product that need to be investigated. Finally, metrics are used as values that

55

measure the degree that checklists are 'satisfied', by implementing the checking and
inspection of the product in use.

The validation process uses the following semantics, to inspect and trace the
quality influences in the design models:
�9 design models designate the product specifications that state the intended functions

and attributes of the target artefact;
�9 criteria represent quality, or non-quality, factors that need to be satisfied;
�9 modelproperties represent properties of the design models, to which criteria refer;
�9 components are atomic objects that constitute the contents of the design models;
�9 component properties designate properties of the model components that impact the

overall model properties;
�9 metrics represent values that are the by-product of the empirical estimations of the

designers, or the outputs of any evaluation and measurement techniques.
What the elaboration phase of the validation process discovers is a set of metrics,

or more accurately a new set of arguments, that can be used to confirm the decision to
select or refute the design model under criticism.

5 Experimentation

In most cases, the problem will not be solved by the current set of options or
design objects employed, and the designers will try to find new ones that will solve the
problem. Hypothesising on different design objects builds new 'design paths', that can
lead to other versions of the planning and the specifications for the target artefact.
However, finding those 'alternative' and 'possible' paths is an iterative process.

The feasibility of implementing this process of finding a new acceptable solution
is largely dependent on the designer's creative skills. Accordingly, a crucial factor is
the support of a systematic way of selecting and trying each of the 'pending' solutions,
instead of deliberating from the beginning. Broadly, such a technique would be based
on going through all the design possibilities encountered, but not tried, and attempt
each alternative option. Experimenting-in-action can be successfully employed to build
'versions of artefacts', by intelligent combination of the alternative options set.

Through experimentation, participants set 'what-if 'questions. Whilst 'what-if'
cases are experimented with, designers are actually separating the design process into
testing episodes. A testing episode is represents the alternative choices selected within
a context of reference. Putting design objects into episodes is like arranging the actors
in a movie, where the director tries different 'acts', settings, props, and scripts, until a
better result is achieved. Neither the 'result', nor the 'end' of the episodes are known
from the beginning. We define sequences of successive episodes as scenarios. Scenarios
in ~ : ~ are used to designate the sequences of the experimentation in which designers
engage, in order to generate alternative 'versions' of design artefacts.

Scenarios are generated to systematically consider all alternative options. They are
automatically generated by re-arranging the environment with different choice routes.
To generate a scenario is to take a current action context or design model, and take
different decisions upon the option set. Once scenarios are generated, new action
contexts and design models are generated. This process is depicted in figure 6.

56

generates remitsto

Figure 6: Scenario generation

Sequences of experimentations on choice decisions result in new design products,
and scenarios correspond to the paths traversed. Such design products have the form of
new, or improved, action contexts and design models, (the two basic concerns of the
validation process). Explicit tracing of the sequences of experimentation steps, i.e. the
scenarios, that led to introducing new design products, will give rise to attempts to
refute the initial hypotheses established. Scenarios are used in E~v~/as attempts to
refute the initial hypotheses, in order to confirm their rightness or falsifiability. By
testing scenarios, two types of 'critical' arguments will be generated:
| CONFIRMATIONS that designate confirming evidence, generated when every attempt

to falsify the initial hypotheses presented is unsuccessful;
�9 REFIYFATIONS that designate refuting evidence, generated when an attempt to falsify

the initial hypotheses is successful, and exposes errors in the initial solution.
Confirmations and refutations, as the user's response to examining specific design

alternatives, are then used to establish or reject design choices. In this sense, valuable
empirical experimentations and tests from a host of stakeholders and designers in not
lost, rather it is reviewed and examined by another host of people.

6 E v a l u a t i o n

Evaluation activities in the E ~ I validation process are concerned with: (i)
detecting errors; (ii) classifying errors; (iii) using errors to build comparative
arguments; (iv) resolving errors; and, (v) recording decisions about errors.

The evaluation phase represents elements of failures. Such failures capture those
errors that designers consider in order to take decisions on design contexts, or on design
models. Failures can be either accepted, and thus resolved, or rejected, and therefore
ignored. Decisions to accept or reject failures encountered are recorded, to assist the
tracing of 'mistakes' in the design process that lead to an unsuccessful result. Failures
are used as entries in statistical charts, to generate comparative views for alternative
designs. There are three basic failure criteria used in E~t:
1. CONTRADICTIONS, generated when truths about the influence and use of arguments,

as well as the decisions on the DESIGN M O D E L S , are contradicted;
2. INCOMPLETENESS, tO trace any parts in the design process that are not fully

developed;
3. PAY-OFFS, tO designate the extent that the generated design solutions are feasible.

A complete description of the techniques and the methodology that uncovers and
resolves errors is out of the scope of this paper (the interested reader is referred to [8]).

57

7 On-going Implementation

A prototype to implement validation of designs is under development. The
prototype is an application component of the DELOS (Development Environment
Located Over SIS) architecture [16]. DELOS is based on the employment of Java as the
single development language, and sis as the single repository and central element of
the development environment (more information on sis can be found in [6]). A
snapshot of the types of objects in the repository is given in figure 7.

Figure 7: A snapshot from s i s

Figure 7 shows an example of the deliberation process to validating alternative
design models. Different levels of abstraction correspond to different instantiations of
the models established. Specifically, the objects in the M2 level define a meta-meta-
model composed of the necessary semantics to describe the objects defined in the M1
meta-level of abstraction. TheS level describes the application-dependent objects,
whereas in the T level, raw data entries are recorded. Visualisation techniques, such as
dynamic interactive animation, icons, 3D graphs, etc. are used to give more
comprehensive views of the knowledge in the repository.

8 Conclusions

The approach proposed in this paper provides the mechanisms for confirming or
refuting generated designs, based on a more formal view to validation. A key feature in

58

the approach is the use of scenarios to capture the sequences of steps followed to
experiment on the set of choices given, in order to ensure the "fitness" of designs.

Scenarios are traditionally viewed as fragments of dynamic visualisations, or text-
based stories. They are considered as visualisations of the design knowledge, rather
than as knowledge sources themselves, A few approaches try to base scenarios on more
concrete grounds, mainly by suggesting inquiry-based techniques, search of
requirements deficiencies, analysis of generated claims, or elaboration with tasks and
behaviours. However, what these approaches all share is lack of a more formal basis of
how scenarios are generated, recorded and used. To be successful in introducing new
validation approaches and tools into the design practice, it is essential that we support
systematic and automated ways to carry out the validation tasks. We believe that by
considering scenarios as 'active' design objects, the generation of which can be
automated to a great extent, solutions may emerge that are likely to be acceptable,
successful and useful.

Current work focuses on automating the techniques described here. Feedback came
from the use of the validation techniques and methodology within the ESPR1T project
ELEKTRA. The tool that supports the validation activities is a component of the DELOS
architecture. 3D browsing techniques, animation, SGML generators, and different
visualisation views, are used in order to communicate the design behaviour. The
development of the tool treats scenarios as concrete design objects that can be
documented, monitored, deliberated, agreed, and used to drive the design process.

Future work on scenario-based validation techniques will involve investigation of
more complex relationships between the generated scenarios and automated generation
of domain-dependent scenarios. The former will attempt to inspect how alternative
scenarios interact, whereas the latter will identify possible scenarios on the basis of
domain-dependent knowledge.

References

[1] Anderson, J.S., & Dumey, B. (1993). Using Scenarios in Deficiency-driven
Requirements Engineering. Paper presented at the IEEE International Symposium on
Requiremnts Engineering (RE'93), San Diego, California.

[2] Benner, K. M., Feather, M. S., Johnson, W. L., & Zorman, L. A. (1993). Utilizing
Scenarios in the Software Development Process. Paper presented at the IFIP '93,
Holland.

[3] CAA. (1983). CIVIL AVIATION AUTHORITY, A report on the supplying by the
Authority of navigation and air traffic control services to civil aircraft. London: Her
Majesty's Stationery Office.

[4] Carroll, J. M. (Ed.). (1995). Scenario-Based Design: Envisioning Work and
Technology in System Development: John Wiley & Sons, Inc.

[5] Carroll, J. M., & Rosson, M. B. (1992). Getting Around the Task-Artifact Cycle: How
to Make Claims and Design by Scenarios. ACM Transactions on Information Systems,
10 (2, April), 181-212.

[6] Constantopoulos, P., & Doerr, M. (1994). The Semantic Index System: A Brief
Presentation [http://www.ics.forth.gr/proj/isst/Systems/SIS/].

[7] Dubois, E., Du Bois, P., & Dubru, F. (1994, May 1%20). Animating Formal
Requirements Specifications of Cooperative Information Systems~ Paper presented at

59

the Second International Conference on Cooperative Information Systems -CooplS,
Toronto, Canada.

[8] Filippidou, D., & Loucopoulos, P. (1997). A Scenario-based Approach to Considering
Alternative Designs (Technical Report ISE-97-1). Manchester, UK: UMIST,
Department of Computation, Information Systems Engineering Group.

[9] Gulla, J. A., Willumsen, G., Lindland, O. I., & Solvberg, A. (1994). Executing,
Viewing and Explaining Conceptual Models. IEEE, 166-176.

[10] Holbrook, C. H. (1990). A Scenario-Based Methodology For Conducting Requirements
Elicitafion. ACM SIGSOFT Software Engineering Notes, 15(1, January), 95-104.

[11] Hsia, P., Samuel, J., Gao, J., Kung, D., Toyoshima, Y., & Chen, C. (1994). Formal
Approach to Scenario Analysis. IEEE Software, I1(2), 33-41.

[12] IEEE. (1996). Glossary of Software Engineering Technology, IEEE Std. New York.
[13] Jacobson, I. (1995). The Use-Case Construct in Object-Oriented Software Engineering.

In J. M. Carroll (Ed.), Scenario-Based Design: Envisioning Work and Technology in
System Development, (pp. 309-336): John Wiley & Sons, Inc.

[14]Kavaldi, E., Loucopoulos, P., & Filippidou, D. (1996). Using Scenarios to
Systematically Support Goal-Directed Elaboration for Information Systems
Requirements._ Paper presented at the ECBS'96, Friedrichshafen, Germany.

[15] Kitchenham, B., & Pfleeger, S. L. (1996). The Elusive Target. IEEE Software, 12 - 21.
[16] Klimanthianakis, P., & Loucopoulos, P. (1996, 6-9 November). DELOS : Development

Environment Located Over SIS~ Paper presented at the OOPSLA'96, Workshop on
Integration of Object-Oriented and Web Technologies, San Jose, California.

[17] Kramer, J., & Ng, K. (1988). Animation of Requirements Specification. Software
Practice and Experience, 18(8), 749-774.

[18]Lalioti, V. (1995). CineVali: a cinematographic validation of conceptual
specifications. PhD Thesis, UMIST, Manchester, U.K.

[19] Lalioti, V., & Loucopoulos, P. (1993). Visualisation for Validation._ Paper presented at
the 5th International Conference on Advanced Information Systems Engineering
(CAiSE.93), Pads, France.

[20]Lindland, O. I., & Krogstie, J. (1993). Validating Conceptual Models by
Transformational Prototyping._ Paper presented at the 5th International Conference on
Advanced Information Systems Engineering (CAiSE-93), Paris, France.

[21] Loucopoulos, P., & Karakostas, V. (1995). System Requirements Engineering. (1 st
ed.). London: McGraw Hill.

[22] Lubars, M., Potts, C., & Richter, C. (1993). A Review of the State of the Practice in
Requirements Modelling._ Paper presented at the IEFE International Symposium on
Requirements Engineering, San Diego, California.

[23]Potts, C. (1994). Requirements Completeness, Enterprise Goals and Scenarios,
Dagshtull.

[24] Potts, C., Takahashi, K., & Anton, A. (1994). Inquiry-Based Scenario Analysis of
System Requirements (Technical Report GIT-CC-94/14): College of Computing,
Georgia Institute of Technology, Atlanta.

[25] Sch/Sn, D. A. (1987). Educating the Reflective Practitioner. San Francisco: Jossey-
Bass.

[26] Tervonen, I. (1996). Support for Quality-Based Design and Inspection. /EEE Software,
44-54.

[27] Thebaut, S. M., Interrante, M. F., & Butch, T. F. (1990). Marcel: A Requirements
Elicitation Tool Utilizing Scenarios~ Paper presented at the 4th International
Workshop of Computer-Aided Software.

60

[28] Wexelbat, A. (1987). Report on Scenario Technology (Technical Report STP-139-87).
Manchester, UK: MCC.

[29] Wirfs-Brock, R. (1995). Designing Objects and Their Interactions: A Brief Look at
Responsibility-Driven Design. In J. M. Carroll (Ed.), Scenario-based Design:
Envisioning Work and Technology in System Development, (pp. 337-360): John
Wiley & Sons, Inc.

