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Abstract 

The situations within which Information Systems Development in general, and 
Requirements Engineering in particular are positioned, can be regarded as des ign  s i t u a t i o n s .  

We subscribe to the view that understanding the problem amounts to solving it. The 
implication of this is that RE involves a continuous cycle of p r o b l e m  genera t ion  - 

con jec ture  - evaluat ion.  This paper is concerned with the evaluation of designs for a given 
set of requirements. Our approach is based on a framework that demands a reflective stance 
whereby the issues, positions and arguments are clearly visible to all participants and a 
rationale behind the design decisions taken is kept for future examination. Within this 
context, we are concerned with both the reasoning for the planning of designing the target 
artefact, and the alternative specifications in the design 'product' themselves. 

1 Introduct ion 

Our approach to Requirements Engineering (RE) is centred on a framework for 
articulating, modelling and reasoning about knowledge pertinent to problem situations 
that can be collectively termed design problem situations. Our approach, known as 
Enterprise Requirements Analysis ( ~ ? / ) ,  encourages stakeholders to address the 
problem of requirements in terms of a paradigm whereby, 
�9 given a set of objectives to be met by the artefact (the artefact's purpose) 
�9 some design is proposed such that if this design were to materialise then the 

artefact would satisfy the originally stated objectives. 
In other words, ER~ is based on the premise that dealing with requirements cannot 

be divorced from the form of the required artifact. This close interplay between 
requirements and designs is essential in attempting to validate requirements. 

Goals acquisition and operationalisation deals with the informal aspects of 
articulating, documenting and agreeing about high-level goals. Such goals are refined 
into plans that eventually lead to design models. Design generation decisions 
concentrate on generating such models, the purpose of which is to describe the form of 
the artefact. Ultimately, design validation decisions are utilised to ensure and assess the 
suitability of the generated designs. They are concerned with evaluating both the 
hypotheses chosen to plan the design process, and the competing designs, each one 
being potentially realisable and leading to the implementation of the artefact. These 
four decision classes are carded out within a design rationale framework that captures, 
documents and uses the reasons behind the decisions taken (see Figure 1). 
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Figure 1: ERA Framework 

The purpose of this paper is to describe the techniques used to capture and use 
validation decisions within the EPv~I framework. The paper is organised as follows: 

Section 2 presents background of different validation and scenario-based techniques 
because validation is crucial in E~I . ;  Section 3 overviews the way-of-working within 
the validation layers, namely elaboration, experimentation and evaluation, described in 
Sections 4, 5, and 6, respectively; Section 7 describes implementation issues, and 
Section 8 presents conclusions and further work. 

2 Background 

In this section we introduce the concerns of validation, and give a brief overview 
of current practice within two areas: (a) the diversity of the validation approaches, and 
(b) how scenarios have been used in design situations. 

2 . 1  V a l i d a t i o n  P r o c e s s e s  

Validation has been closely related to verification and quality measurement. 
Verification has more to do with ensuring that the design products really fulfil the 
stated requirements [12], while quality measurement is more concerned with 
measuring, in a meaningful way, the quality attributes of the design product [15]. 

Validation is more about "... certifying the requirements model for correctness 
against the user's intention" [21]. Therefore, validation ensures that the generated design 
models are consistent with the customer's intentions, and that they are error and 
conflict free. Specifically, validation processes can be used to: 
�9 communicate the specifications of the system to the customer, in order to locate 

misunderstandings; 
�9 ensure that the intended functions are performed; 
�9 exclude unintended functions; 
�9 ensure that no other design solution can improve the quality of the target artefact; 
�9 uncover errors and conflicts; 
�9 correct errors; 
�9 exhibit desired situations and behaviours. 
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2 . 2  Validation Techniques 

Different categorisations of validation techniques have been established [22], [7] 
and [18]. We distinguish the techniques developed based on the three dimensions 
illustrated in figure 2. 

EXECUTABILITY 

executable 

non-executable 

informal 

~ ia~/trinsi~ ~t'YSABILITY 

formal FOI~MALITY 
Figure 2: A framework for comparing validation techniques 

1. EXECUTABILITY This group of techniques is concerned with the extent that 
requirements specifications are 'executed'. Techniques can be distinguished to be 
from non-executable to fully executable [9], [20]; 

2. ANALYSABILITY This groups techniques according to the extent that analytical 
methods are applied. Techniques can be distinguished to be from extrinsic (those 
with no concern for the semantic properties of the specifications), such as those 
based on visualisation techniques, to intrinsic (those involving the validation of the 
contents and use of the specifications themselves), such as those based on syntax- 
checking, behavioural checking, or scenario analysis [24]; 

3. FORMALITY This distinguishes validation techniques from formal ones (those based 
on formal methods like modelling languages) such as in [7], to informal ones, such 
as those based on brainstorming, open-ended meetings, reviewing, or visualisation 
techniques [17], [19]. 
The approach proposed in this paper aims to develop an executable, intrinsic and 

formal methodology to validation. 

2 .3  Scenarios in Design Situations 

Several approaches have been developed using scenarios in designs [2], [11], [27]. 
Some use scenarios as behavioural requirements [1], [10] and [28]. A behavioural 
requirement "... describes the way a system behaves, concentrating on the interactions 
between system and users" [28]. Such behavioural requirements are similar to use cases: 
"A use case is just what it sounds like: It is a way to use the system. Users interact with the 
system by interacting with its use cases. Taken together, a system's use cases represent 
everything users can do with it." [13]. Other efforts use scenarios as a concrete 
vocabulary to envision the design process before any design is employed [4], [5], to 
satisfy objectives [23], or to contextualise pertinent knowledge [29]. 

Scenarios have been applied to many domains, such as the military, business 
marketing and HCI. These domains share common properties. These properties 
correspond to the ability of scenarios to refer to concrete descriptions of situations and 
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behaviours, to be open-ended, to focus on contextualised pertinent knowledge and 
ignore irrelevant ones, to be more informal, and to describe, in general terms, how a 
particular task gets done. Such scenarios address the incompleteness and scope problem 
in system requirements [14[, and generally, issues of uncertainty, uniqueness and value 
in requirements specifications, which cannot be addressed by technical rationalisation 
alone [25]. 

3 Val idat ion in E ~ f l  - An Overv iew 

Validation processes in ERe/ are concerned with both the reasoning for the 
planning of designing the target artefact, and the alternative specifications in the design 
'product' themselves. The first concern deals with 'design actions' based on 
'hypotheses' that aim to bring the enterprise to a desired state. A design action 
designates any action taken in the course of a design project, whereas a hypothesis 
represents any option, suggestion or proposal about resolving a problem arising in the 
design process. 

Once hypotheses are set and decisions are taken, participants need then to review 
and evaluate these decisions, to enable confirmation or refutation. Criticising previous 
decisions brings out errors, mistakes and difficulties that actually help knowledge grow 
and assist in finding the 'best' solution to the problem. Testing is about refuting 
current knowledge, until there is substantial evidence to confirm it. Ultimately, 
validation processes will produce confirmations or refutations, which will help to 
maintain the objectivity of the design knowledge, as well as to make designers feel 
confident about the design solution. 

The successful development of a validation process is dependent on its ability to 
revise and correct previous knowledge in the presence of new knowledge. When new 
evidence appears, previous design actions should be revisited and undergo revision, and 
probably result in new actions that refute previous ones. In this way, if there are 
design actions that lead to a satisfying set of goals for solving the problem, then this 
set of design actions is to be part of an established design path; otherwise, it is part of 
a rejected design path, and the designer may backtrack and experiment with alternative 
options, until the desired outcome is encountered. 

The second concern is the validation of the decisions on the alternative 'products' 
that give the form of the artefact, i.e. the design models. Once design models are 
developed, these need to be validated early in the design process. Design models are 
validated in terms of their appropriateness, feasibility, consistency, and quality. When 
alternative competing designs are constructed, it is necessary to provide mechanisms 
that guide the commitment to one of them, while demonstrating how the others have 
failed. The validation phase in E ~ I  supports this design action guidance to the 
establishment or rejection of the design models. 

Figure 3 summarises the E~,~ validation process. It shows explicitly how both 
the validation of the reasoning to the planning -i.e. the set of hypotheses chosen, a~d 
the validation of the generated design models can be accommodated in the same 
framework, resulting in a full validation methodology. The validation process is 
partitioned into three distinct phases: elaboration, experimentation and evaluation. 
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Figure 3: Validation Framework 

The process begins with a set of elaboration procedures. For design model 
validation, the approach considers a particular design together with the quality-based 
expectations of the target system, and responses from the users or other quality 
measuring techniques. For evaluating the reasoning to planning design actions, the 
approach mainly considers a specific design action, and identifies dependencies with 
other design actions, generating inferences, and reviewing the results. 

Following these procedures, scenarios are used to consider all candidate alternative 
options, shown in figure 3 as the experimentation layer. Experimentation reconsiders 
and tries previous alternatives that might bring the enterprise to a desired state. 
Experimentation is about setting the environment for trial-and-test activities on the 
remaining alternative options, but not generating new hypotheses. Each alternative is 
visualised and executed, demonstrating (possibly) unexpected design behaviours, or 
detecting feasibility inconsistencies, or missing conflicts and errors. 

Such errors are used in the next layer, evaluation, as inputs for setting statistical 
comparison views between the alternative designs. Critical errors, such as 
contradictions, incompleteness and pay-offs are collected, classified as instances of 
errors, and used to determine whether the particular design model or the altered 
planning graph will be selected or rejected. The process can continue by considering 
even more alternatives by more experimentation. 

4 Elaboration 

Problem solving in E~v~/ demands a large amount of search between candidate 
design possibilities. In considering options, practitioners build trees of decisions on 
hypotheses, with the side branches representing alternative possibilities, some of 
which are established, and others rejected. When designers traverse these trees of 
hypotheses, they are actually building 'design paths', each one composed of a sequence 
of design actions that collectively attempt to bring the enterprise to a new desired state. 
Practitioners normally choose one such design path, and test to see whether it satisfies 
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the attributes of the intended system, and subsequently confirm (or refute) the selected 
design path. In the case of refutation, previous options will need to be re-examined and 
tested, mainly by implementing backtracking and experimentation activities. 

Practitioners need tools and mechanisms that will assist them in searching 
efficiently the options' space, before selecting a design path. It is important, in order 
to satisfy the need for efficiency, to ensure that the designer gets the most information 
from a particular part of the design knowledge, and that all possible choices are 
encountered and attempted. Rationale in design is about critically examining the 
choices given. Critical examination can be achieved only by going through all 
alternative possibilities, and evaluating the results. 

In order to assist the problem solver to efficiently search the design options, 
pertinent knowledge should be brought together. By using applicable knowledge, 
practitioners can judge the desirability of an option more objectively, and be confident 
of their decisions. Of course, the process of searching for pertinent knowledge will 
almost never be complete, and valuable existing information will probably be missed. 
Domain dependent factors can be ignored, and misjudgements can be made. However, 
the EPv~ validation approach tries to compromise between concentrating solely on 
isolated design objects, and considering the whole of the available knowledge. 

4.1  Elaborating on Planning - A Contextual Approach 

To satisfy the need for collecting relevant knowledge together, validation in ~E~/ 
shifts the focus from individual design actions to sets of them. Such sets place 
emphasis on how 'decisions', i.e. design actions, are logically 'linked' and synthesised. 
To ensure that design actions can be synergistically used, the validation approach seeks 
to identify embedded dependencies between these design actions. Such dependencies can 
guide the practitioners to consider the use of hypotheses. By analysing these 
dependencies, in terms of supporting an 'inference-generation machine', the validation 
process guarantees that any violations of these dependencies will be detected and 
resolved. 

To demonstrate the types of concepts and methods employed, the Air Traffic 
Control (ATC) case study is used [3]. The enterprise of the ATC centre manages the air 
traffic flow of some airport. The enterprise is responsible for the safety of aircrafts 
approaching the airport, and the satisfaction of their passengers. ATC is already partly 
automated, however, causes such as delays in aircraft flights during the summer 
months, drive a change process in the enterprise. 

4.1.1 Modelling Contexts of Design Actions 

The validation process uses contexts, and the modelling formalism of an 'action 
context'. An action context is a logical group of a number of design actions, that 
externalises and makes explicit embedded dependencies and relations between the design 
actions themselves. An action context is a step towards to gaining an understanding of 
the nature and structure of the problem itself. 

Putting order and structure into a vast amount of knowledge about design actions, 
is like providing a geometrical pattern where the system's variables can be observed, 
used and tested. We view these variables in terms of being influential and dependent. 
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An influential variable represents the design action that undergoes criticism, whereas 
dependent ones represent those design actions logically dependent on an influential 
variable, or on another dependent variable. However, such dependencies do not need to 
be stored, since they can be extracted using traversing queries. 

~ .Accidents due to controllers' 

i ! -Increased demands set upon 

HI.~- Limit the number ~!'J controllers (+) 
of aircrafts allowed to �9 Aeridents due to heavy air tra~c 
eross eontroned airspace ~i ~ in controlled airspace (§ 

' il -Ineremed airtraffie especially 
during summer(-) 

~ I .Customer satisfaction (-) 

\ 

�9 Errors & inaccuracies in flight 
~ans (+) 
�9 Last minute change of flight 
plans(+) 

it H3.1-Validatealrtraflle ~ I '~ 
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~ H3.2. Automate control ~ ~  

controlers by automated �9 Automated units can handle 
units data more efficiently without 

?~ str~s (§ 

III I I:!; i~1~I 

I ::I 

�9 Controllers have to deal with too 
many routine tasks (+) 
�9 Stress is generated for eontrolers 

routine tasks (+) 

Figure 4: An Example Design Process 

Dependencies in ~ / a r e  used to generate the contents of the action contexts. In 
order to view how dependencies are captured, we first look at how the deliberation set 
is used to reason about the decisions taken within the design processes. An example 
reasoning process is given in figure 4: design actions DA_I, DA_3.1 and DA_3.2 (with 
an OR link between DA_3.1 and DA_3.2), are generated. Such dependencies can be 
distinguished into three types: 
1. Consequent dependencies to represent design paths, as sequences of applied design 

actions; for example, an implicit consequent dependency, based on the diagram of 
figure 4, would he that DA_3.1 or DA_3.2 follows DA_I; 

2. Priority dependencies are used to establish logical dependencies between groups of 
design actions; such dependencies are further specialised by establishing 
rejecting priorities; the establishing (rejecting) priority designates that a particular 
design action requests that another design action is within an established (rejected) 
design path; for example, based on figure 4, there is an establishing dependency 
from both DA_3.1 and DA_3.2 to DA_I; 

3. Justification dependencies represent argumentative dependencies between design 
actions; such dependencies are established between design actions when the same 
arguments justify these design actions. 
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4.1.2 A Validation Inference Machine 

Inferences can be made so that dependencies between design actions are validated. 
Such inferences drive forward the solution of the problem by being used as further 
arguments to confirm or refute the initial design actions. Figure 5 gives a 
diagrammatic view of how inferences are generated and used in E~I~ 

Figure 5: Inference system for Action Contexts 

According to figure 5, inferences can be generated as the by-product of interactions 
between the action contexts and the dependency analysis processes. Once action 
contexts are built, sets of dependencies are input into the dependency analysis module, 
to be analysed for validity. Dependency analysis techniques involve searching errors, in 
terms of cyclic design paths, violations of the priorities between the design actions, 
and finally for misuses of arguments (i.e. text-based arguments that contradict one 
another). 

Once dependencies are analysed, inferences are generated. If 'negative' inferences, 
are found, then designers need to detect and correct the source of the error. To do that, 
designers backtrack and experiment, until the action context of concern is error-free. 

4 .2  Elaborating on Design Models-A Quality Inspection Approach 

Design models are generated as sets of specifications that attempt to describe how 
the intended properties and functions of the target artefact will work, However, it is 
more likely that alternative design models will be generated, and the designer will need 
to select one and demonstrate how the rest will fall. In order to ensure that the designer 
has made the 'correct' choice, the validation process assists the decision-making task 
by supporting an environment for quality-based inspection in the design model. 

Quality inspection of the generated design models aims at: 
�9 stating the designers' quality expectations of the design model in terms of 

determining criteria to be satisfied; 
�9 measuring the degree that these criteria are satisfied using quality measuring tools, 

ex. cost-effective techniques; 
�9 capturing how the atomic components of the design models influence the quality of 

the total model. 
The validation process is mostly influenced from the Goal-Rule-Checklist-Metric 

(GRCM) approach to quality inspection [26]. GRCM hierarchies are built to inspect 
and evaluate the produced design. The main idea is to initiate quality inspection from a 
starting goal, and define rules as criteria upon which evaluation proceeds. Checklists 
are used as guides on how to evaluate the goals, by stating specific properties of the 
design product that need to be investigated. Finally, metrics are used as values that 
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measure the degree that checklists are 'satisfied', by implementing the checking and 
inspection of the product in use. 

The validation process uses the following semantics, to inspect and trace the 
quality influences in the design models: 
�9 design models designate the product specifications that state the intended functions 

and attributes of the target artefact; 
�9 criteria represent quality, or non-quality, factors that need to be satisfied; 
�9 modelproperties represent properties of the design models, to which criteria refer; 
�9 components are atomic objects that constitute the contents of the design models; 
�9 component properties designate properties of the model components that impact the 

overall model properties; 
�9 metrics represent values that are the by-product of the empirical estimations of the 

designers, or the outputs of any evaluation and measurement techniques. 
What the elaboration phase of the validation process discovers is a set of metrics, 

or more accurately a new set of arguments, that can be used to confirm the decision to 
select or refute the design model under criticism. 

5 Experimentation 

In most cases, the problem will not be solved by the current set of options or 
design objects employed, and the designers will try to find new ones that will solve the 
problem. Hypothesising on different design objects builds new 'design paths', that can 
lead to other versions of the planning and the specifications for the target artefact. 
However, finding those 'alternative' and 'possible' paths is an iterative process. 

The feasibility of implementing this process of finding a new acceptable solution 
is largely dependent on the designer's creative skills. Accordingly, a crucial factor is 
the support of a systematic way of selecting and trying each of the 'pending' solutions, 
instead of deliberating from the beginning. Broadly, such a technique would be based 
on going through all the design possibilities encountered, but not tried, and attempt 
each alternative option. Experimenting-in-action can be successfully employed to build 
'versions of artefacts', by intelligent combination of the alternative options set. 

Through experimentation, participants set 'what-if 'questions. Whilst 'what-if' 
cases are experimented with, designers are actually separating the design process into 
testing episodes. A testing episode is represents the alternative choices selected within 
a context of reference. Putting design objects into episodes is like arranging the actors 
in a movie, where the director tries different 'acts', settings, props, and scripts, until a 
better result is achieved. Neither the 'result', nor the 'end' of the episodes are known 
from the beginning. We define sequences of successive episodes as scenarios. Scenarios 
in ~ : ~  are used to designate the sequences of the experimentation in which designers 
engage, in order to generate alternative 'versions' of design artefacts. 

Scenarios are generated to systematically consider all alternative options. They are 
automatically generated by re-arranging the environment with different choice routes. 
To generate a scenario is to take a current action context or design model, and take 
different decisions upon the option set. Once scenarios are generated, new action 
contexts and design models are generated. This process is depicted in figure 6. 
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generates remitsto 

Figure 6: Scenario generation 

Sequences of experimentations on choice decisions result in new design products, 
and scenarios correspond to the paths traversed. Such design products have the form of 
new, or improved, action contexts and design models, (the two basic concerns of the 
validation process). Explicit tracing of the sequences of experimentation steps, i.e. the 
scenarios, that led to introducing new design products, will give rise to attempts to 
refute the initial hypotheses established. Scenarios are used in E~v~/as attempts to 
refute the initial hypotheses, in order to confirm their rightness or falsifiability. By 
testing scenarios, two types of 'critical' arguments will be generated: 
| CONFIRMATIONS that designate confirming evidence, generated when every attempt 

to falsify the initial hypotheses presented is unsuccessful; 
�9 REFIYFATIONS that designate refuting evidence, generated when an attempt to falsify 

the initial hypotheses is successful, and exposes errors in the initial solution. 
Confirmations and refutations, as the user's response to examining specific design 

alternatives, are then used to establish or reject design choices. In this sense, valuable 
empirical experimentations and tests from a host of stakeholders and designers in not 
lost, rather it is reviewed and examined by another host of people. 

6 E v a l u a t i o n  

Evaluation activities in the E ~ I  validation process are concerned with: (i) 
detecting errors; (ii) classifying errors; (iii) using errors to build comparative 
arguments; (iv) resolving errors; and, (v) recording decisions about errors. 

The evaluation phase represents elements of failures. Such failures capture those 
errors that designers consider in order to take decisions on design contexts, or on design 
models. Failures can be either accepted, and thus resolved, or rejected, and therefore 
ignored. Decisions to accept or reject failures encountered are recorded, to assist the 
tracing of 'mistakes' in the design process that lead to an unsuccessful result. Failures 
are used as entries in statistical charts, to generate comparative views for alternative 
designs. There are three basic failure criteria used in E~t:  
1. CONTRADICTIONS, generated when truths about the influence and use of arguments, 

as well as the decisions on the DESIGN M O D E L S ,  are contradicted; 
2. INCOMPLETENESS, tO trace any parts in the design process that are not fully 

developed; 
3. PAY-OFFS, tO designate the extent that the generated design solutions are feasible. 

A complete description of the techniques and the methodology that uncovers and 
resolves errors is out of the scope of this paper (the interested reader is referred to [8]). 
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7 On-going Implementation 

A prototype to implement validation of designs is under development. The 
prototype is an application component of the DELOS (Development Environment 
Located Over SIS) architecture [16]. DELOS is based on the employment of Java as the 
single development language, and sis as the single repository and central element of 
the development environment (more information on sis can be found in [6]). A 
snapshot of the types of objects in the repository is given in figure 7. 

Figure 7: A snapshot from s i s  

Figure 7 shows an example of the deliberation process to validating alternative 
design models. Different levels of abstraction correspond to different instantiations of 
the models established. Specifically, the objects in the M2 level define a meta-meta- 
model composed of the necessary semantics to describe the objects defined in the M1 
meta-level of abstraction. TheS level describes the application-dependent objects, 
whereas in the T level, raw data entries are recorded. Visualisation techniques, such as 
dynamic interactive animation, icons, 3D graphs, etc. are used to give more 
comprehensive views of the knowledge in the repository. 

8 Conclusions 

The approach proposed in this paper provides the mechanisms for confirming or 
refuting generated designs, based on a more formal view to validation. A key feature in 
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the approach is the use of scenarios to capture the sequences of steps followed to 
experiment on the set of choices given, in order to ensure the "fitness" of designs. 

Scenarios are traditionally viewed as fragments of dynamic visualisations, or text- 
based stories. They are considered as visualisations of the design knowledge, rather 
than as knowledge sources themselves, A few approaches try to base scenarios on more 
concrete grounds, mainly by suggesting inquiry-based techniques, search of 
requirements deficiencies, analysis of generated claims, or elaboration with tasks and 
behaviours. However, what these approaches all share is lack of a more formal basis of 
how scenarios are generated, recorded and used. To be successful in introducing new 
validation approaches and tools into the design practice, it is essential that we support 
systematic and automated ways to carry out the validation tasks. We believe that by 
considering scenarios as 'active' design objects, the generation of which can be 
automated to a great extent, solutions may emerge that are likely to be acceptable, 
successful and useful. 

Current work focuses on automating the techniques described here. Feedback came 
from the use of the validation techniques and methodology within the ESPR1T project 
ELEKTRA. The tool that supports the validation activities is a component of the DELOS 
architecture. 3D browsing techniques, animation, SGML generators, and different 
visualisation views, are used in order to communicate the design behaviour. The 
development of the tool treats scenarios as concrete design objects that can be 
documented, monitored, deliberated, agreed, and used to drive the design process. 

Future work on scenario-based validation techniques will involve investigation of 
more complex relationships between the generated scenarios and automated generation 
of domain-dependent scenarios. The former will attempt to inspect how alternative 
scenarios interact, whereas the latter will identify possible scenarios on the basis of 
domain-dependent knowledge. 
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