
Semantics of Reactive Components in 
Event-Driven Workflow Execution 

Dimitrios Tombros Andreas Geppert Klaus R. Dittrich 

Institut ftir Informatik, Universit/it Ztirich 
Winterthurerstr. 190, CH-8057 Ztirich, Switzerland 

{ tombros,geppert,dittrich } @ifi.unizh.ch 

Abstract :  The exact semantics of workflows and involved processing entities is an 
open yet urgent problem. This paper considers the semantics and correctness of event- 
driven workflow execution. The basis for the formalization in our approach is provided 
by an event history which records all events that have occurred during the execution of 
workflows. Workflows are executed by reactive components which operate on top of 
that history. Based on the history it is possible to determine the semantics of these reac- 
tive components (and consequently, the semantics of workflows) as well as to check 
whether their observable behavior is correct. 
Keywords: workflow management, ECA-rules, distributed systems 

1 Introduction and Motivation 
Workflow management systems (WfMS) [8] are cooperative environments in which 
multiple distributed processing entities cooperate in order to accomplish tasks (e.g., 
process an insurance claim). A worlcltow specification defines the required activities 
and their execution dependencies, data flows between the activities, and further infor- 
mation such as the assignment of resources to activities. WfMSs have to provide the 
functionality to define and execute workflows in a distributed heterogeneous environ- 
ment. However, while many research prototypes and products have been developed 
only few provide a formal foundation for the specification and execution of distributed 
workflows. 

Our approach to the specification and execution of workflows is multi-leveled [14]. 
We separate the high-level (graphical) specification of workflow types and abstract 
workflow execution characteristics from an intermediate-level executable representa- 
tion described with the BROKER/SERVICE MODV.L (B/SM). The resulting system is then 
directly implemented with the help of a distributed execution framework (event engine 
- EvE) providing facilities for process event management and history logging, commu- 
nication of participating workflow enactors etc. [7]. The B/SM provides a formal 
framework in which precise semantics of the workflow enactors and workflow execu- 
tion can be described. This presents a series of advantages: 
�9 the modeler can understand what a workflow enactor (broker) exactly does, 
�9 the set of workflow executions that correctly model the workflow specification can 

be precisely defined, 
�9 the correctness of the WfMS-implementation (transformations) can be verified, 
�9 post-mortem workflow analysis is possible (e.g., for bottleneck recognition), and 
�9 the impact of modifications of specifications during workflow execution (workflow 

evolution) can be precisely described. 



410 

This paper is structured as follows: the next section contains an overview of our ap- 
proach to workflow management. In section 3 we formally describe the notion of event 
history on which correctness of distributed workflow execution is based. Based on 
these definitions we describe the semantics of the workflow enactors (brokers) and 
their functionality in section 4. We then define the semantics of workflow execution. In 
section 5 we consider related work in formal semantics for WfMSs. We conclude the 
paper in section 6 by summarizing the contributions of our approach and future work. 

2 O v e r v i e w  

2.1 Worldlows 

A workflow type is the enactable specification of a (business or design) process. The 
workflow specification defines the process steps. Execution dependencies between the 
steps are also defined. There are ordering, temporal, and output-data dependencies. A 
step can either be an elementary activity or in turn a workflow. In the first case, the ac- 
tivity is performed by a person or a software system. Both are henceforth summarized 
under the term processing entity (PE). The workflow specification assigns responsible 
PEs to activities. In the second case, a step is a sub-workflow and thus has in turn a 
complex structure and defines steps, constraints, and responsible PEs. A workflow in- 
stance is a concrete workflow executed according to the definition of its type. A WfMS 
is a software system that supports workflow specification and enactment. 

In Fig. 1 we present as an example the processing of a health insurance claim 
(HIC). The workftow is initiated once the HIC mail arrives at a local insurance agency. 

Workflow structure and activity input/ouput parameters: 

[ . . . . . .  pr~ _ J 

.... t AI: .acceptcase( $ mail, 1" HIC) ......... I -- clerk 

sWI" checkclaim ( $ HIC) I 

A2: c~176 ( $ HIC.treatment, 1" blacklist ) ] 

A 3 ~ c o ~  i ~ H ~ q a ~ T  treatment 

- - -~ A4: print_chec k ( $ HIC) I "" can print 

! A5: print_denial ( $ HIC) I can  print 
Activity execution dependencies: 

Fig. 1. The health insurance claim example workflow 



411 

A clerk working at the local agency creates a file containing the diagnosis, treatments, 
costs, and the insurance number (activity accept_case). If the claimed amount is be- 
low 300 Swiss Francs the HIC is directly accepted and paid (activity print._eheck). Oth- 
erwise, the HIC has to be processed at the central company clearing center. There a 
sub-workflow is started, which consists of activities that may be performed in parallel. 
One is to check whether some of the treatments are contained in a blacklist, in which 
case their coverage will be denied (activity control._blaeklist). An activity of type 
control_treatment controls whether the treatment actually suits the diagnosis. If any of 
these controls fails, an entry is made in the customer record, a notification of  the rejec- 
tion is printed at the local agency (print_denial). Otherwise, a payment check can be 
printed at the local agency (print_check). 

2.2 Brokers and Services 

Besides workflow specification and enactment, further requirements such as the ability 
to integrate external systems and to reuse old artifacts (parts of workflow specifica- 
tions, mediation software) are important for WfMSs. All these requirements can only 
be met if various aspects of a WfMS-architecture are exactly defined: 
�9 c o m p o n e n t s  representing PEs that take part in one of the workflows - -  the structur- 

al and data aspect, 
�9 tasks  that can be performed by those components - -  the functional aspect, and 
�9 ru les  determining how, when and under which constraints the components can/ 

must perform the activities - -  the behavioral, temporal, and operational aspect. 
We propose the BROKER/SERVICES MODEL (B/SM) [14] as a model for such architec- 
tures. Workflow specifications are mapped into B/SM and are automatically augment- 
ed with the necessary elements to attain executability. B/SM is described in detail in 
[14] so that this section gives only a short description for the sake of comprehension. 

Broker s  represent components of a WfMS, i.e., they model PEs involved in the exe- 
cution of one or more workflows. They are react ive  and offer se rv i ces  to other brokers 
(their clients). Brokers can access the functionality of their peers through service re- 
quests. The set of activities that can be executed within a WfMS (i.e., its functionality) 
is described by serv ices .  A service is specified by a s igna ture  consisting of the service 
name, a set of typed parameters bound at request time, and the possible replies and ex- 
ceptions its request may cause. Broker behavior is defined in terms of event-condition- 
action (ECA) rules, which define the reaction to simple events such as requests or to 
complex events such as the transition of a workflow to a certain state. In our example 
workflow we use the following brokers: 
�9 A person which provides the accept_case service represented by a broker (called 

Meier )  assuming a clerk role. His behavior is expressed by the rule: 
ON request (accept_case, mail) 
IF(HIC = create_claim(mail)) AND HIC.amount > 300 
DO request (control_blacklist, HIC.treatment) 

request (control_treatment, HIC. treatment, HIC. diagnosis ) 

�9 Two PEs situated at the company clearing center: a database application (broker 
RSA) to check acceptance of the treatment ( c o n t r o l _ . . b l a c k l i s t  service) and an 
expert system (broker RSF.X) which checks the compatibility between treatment 



412 

and diagnosis ( c o n t r o l t r e a t m e n t  service). If both controls are successful, the 
check can be printed as expressed by the rule: 
ON reply(control treatment, treatment) AND 

reply (control blacklist, blacklist) 
IF treatment="OK" AND blacklist="NO" 
DO request (print_check, HIC) 

�9 A demon (broker printer) providing printing services (print_check, 
print_denial). 

A specific service is provided by one or more brokers and can be initiated by client 
brokers through request events. Service execution is terminated when a reply or one of 
the possible exception events defined for the service is generated. The association be- 
tween a service and its providers is established by means of m:n relationships called 
responsibilities. The way a service is executed within the context of a specific work- 
flow depends on additional factors such as the fulfillment of defined preconditions for 
its provision, actual request parameters, etc. In typical cases, a workflow and its activi- 
ties consume input data, produce output data, and read and manipulate data items 
stored in some sort of data store. Thus, production data must flow through a workflow 
according to the workflow's definition. Most of the production data will be managed 
by external systems, and it is not justified to assume that the WfMS and the production 
data store are tightly integrated, However, the B/SM supports the access of processing 
entities to these data through operations defined for their types. In B/SM, workflows 
are defined by a name, a set of initiating requests and a set of terminating replies. The 
workflow structure and related execution constraints are defined by the reaction of cer- 
tain brokers to specific situations (request of services, etc.). Worldtows are executed by 
the execution of the services provided. A workflow starts executing when its initiation 
event occurs which is a request of the first service to be provided. 

2.3 EvE 

Brokers and consequently, workflows are executed through the use of the distributed 
event engine EvE [7]. EvE's major purpose is to support brokers by providing event 
management, storage, and notification functionality. The principle by which brokers 
use EvE is the following: broker ECA-rules are translated to rules stored and executed 
in EvE. When a broker generates a primitive event, it notifies its local EvE-server 
about the occurrence. EvE then performs composite event detection and determines 
brokers that have registered a notification interest for such primitive and potentially de- 
tected composite event occurrences which may result from this event. These brokers 
are then appropriately informed and react as defined by their ECA-rules (whereby 
these reactions can in turn generate new events, and so forth). An important task of 
EvE upon event detection is the maintenance of an event history in which all primitive 
and composite event occurrences are represented. 

In the present paper, we will not consider in detail the technical aspects of event 
generation, (composite) event detection and storage of events in the history in EvE. It 
is sufficient to note that these actions take place in a distributed environment, a fact that 
has to be considered for the correct definition of the semantics of events. 



413 

3 Event History 
In this section, we define the semantics of primitive and composite event types and 
event occurrences. These semantics depend on the notion of time used in the distribut- 
ed WFMSs. In an executing workfiow event occurrences are collected in an event his- 
tory (EH) which is also formally defined. 

3.1 Event  Types 

We base our definitions on the auxiliary sorts SNwhich is a set of service names, Eg( 
which is a set of  exception names, S which is a set of  participating sites, and C which is 
a set of distributed reactive components (more precisely specified below). 

Definition 1 (Primitive event types) 
�9 broker interaction event types: let name e $Nbe a service name, and plist 

a possibly empty list of  typed parameters, then 
�9 REQ(namo, plist) is a service request event type, 

�9 CFM(name) is a request confirmation event type, 

�9 RPL(name, plist) is a reply event type 

�9 EXC(name, ename) is an exception event type, where ename e 
�9 TEl" is an explicit time event type. 

Event parameter types are defined from a set of base types, ~:r= [integer, float, bool- 
ean, string, reference}. ~ C97ff, RP& and ~3cc are the sets of request, confirmation, 
reply and exception event types correspondingly defined in a given system and a~q'= 
~ O . w  cy~4u RPZ:u E~CC. Note that primitive event types are local in the sense that they 
relate to one site. 

Through the (recursive) use of unary and binary event operators composite event 
types can be constructed. In addition, a restriction sw on the component event types 
may be specified requiring that they occur within the same workflow. 

Definition 2 (Composite event types) 
Assume that E I I ,  El-2, and El-3 are event types. Then 
�9 CON(ET1, ET2, sw) is a conjunctive event type, 
�9 DEX (El-l, El-2) is an exclusive-or disjunctive event type, 
�9 SEQ (ET1, ET2, sw) is a sequential event type, 
�9 CCR (ET1, ET2, sw) is a concurrent event type, 
�9 NEG (El-l, (ET2, El-3,sw), sw) is a negative event type, and 
�9 REP (E'II, times, sw) is an repetitive event type. 

We define an operation eomptype on event types which returns the set of participating 
component event types (including the event type itself). OEq'is the set of all composite 
event types. ~/ '= PE'q'w C~Tis the set of all event types defined in the system. Note that 
composite event types whose component types relate to different sites are considered 
as global. The semantics of event composition are formally defined in section 3.3. At 
this point however, we describe them informally: 
�9 CON is detected when both component events occur independent of their relative 

order. 
�9 D EX is detected when either one of the two component events has occurred. 
�9 SEQ is detected when the two component events occur in a certain time order. 



414 

�9 CCR is detected when the two component events occur at the same time. 
�9 NEG is detected if ET1 does not occur in the interval defined by fiT2 and ET3. 
�9 REP is detected when ET1 occurs a predefined number of times. 

3.2 Times tamps  and Primitive Event Occurrences 

In order to define the semantics of event occurrences we have to define our notion of 
time. A WfMS is composed of a set of distributed sites Seach of which has a single lo- 
cal clock. An concept of time [10] with the following characteristics is supported: 
�9 Time is linear allowing comparison of timestamps. 
�9 Time has a lower bound coinciding with system initialization but no upper bound. 
�9 A global time is approximated by adjusting the granularity of local clocks to the 

global reference clock granularity gg.We assume that gg (dependent on the syn- 

chronization precision among the local clocks) is small enough so that no two 
primitive events originating on the same site occur at the same global time. This as- 
sumption allows us to use a simplified semantic model for timestamps in distribut- 
ed systems as suggested in [13] without affecting the power of our model. More 
specifically the assumption excludes work.flow execution concurrency at any given 
site. In the typical application scenarios of the B/SM this restriction is easily met 
(or can be enforced without performance penalties). 

�9 The three conceptual primitives of time points (e.g., 17;00 on 30.11.1996), time in- 
tervals with a lower and an upper bound (e.g., from this instant until 17:00 on 
30.11.1996), and time durations (e.g., 24 hours) must be supported. These primi- 
tives are expressed in B/SM as part of event type definitions. 

In a WfMS, a 2gg-restricted temporal ordering between primitive event occurrences 
based on their timestamps can be established. Thus in order to determine the temporal 
order of two primitive events occurring at different sites, their timestamp difference 
must be at least 2gg. Otherwise these events are perceived to occur concurrently. This 
means that a partial order structure of primitive event occurrences can be defined. Giv- 
en 5 and a function 9t: [oca[---~g~6a[calculating the global time 9t s of a local clock It s 
at a site s, a timestamp of an event occurrence is defined as follows: 

Definition 3 (Timestamp) 
A timestamp T(e) of an event occurrence is a partial function T(e): S ~gfo6a[de- 
fining a global time global s = gts(Its) for each site s participating in the times- 
tamp domain. 

Based on the definition of event types and timestamps we define primitive event occur- 
rences. 

Definition 4 (Primitive event occurrence) 
A primitive event occurrence is a 9-tuple pe = (type, site, eid, T, serv, wid, 
source, sid, plst), where 
�9 type �9 ~ 'q ' is  the event type of pe 
�9 site �9 Sis the site where peo occurred 
�9 eid �9 Nis the unique identifier for site of the event occurrence 
�9 serv �9 5N is the name of the requested service if type = REQ, else serv = 
~ T(pe) is the timestamp of pe defined as follows: 

o T(pe)(site).global = gts(Its) 



415 

o T(pe)(s').global = _1_ V s '  ~: site 
�9 wid ~ Nis  the identifier of  the workflow instance in which peo occur red  
�9 source  ~ c is the event originator (broker) 

�9 /(eid,souree) of the corresponding request event if type ~ {CFM, RPL, EXC} 

sld" "~0  otherwise 

�9 plist is a list of  actual parameters 

Note that wid, source,  and plist are meaningless for time events, since these occur inde- 
pendently from workflows. In case of  a request occurrence, its source is the client o f  
the service while in case of  confirmations and replies it is the service provider. 

3.3 Event Composition and Event History 

To define the semantics of  event composition in a distributed system we use the notion 
of  a component  t imestamp: 

Definition 5 (Component  t imestamp) 
A component timestamp t of  a t imestamp T(e) is a tuple (site, global), where site 

domain(T(e)) (see  Definition 3) and global = T(e)(site).global. We can also 
write that  t E T(e). 

On the basis o f  the 2gg-precedence model [13] i.e., under the assumption that there are 
no two primitive events occurring at the same site at the same global time, the temporal 
relationships between two timestamps T(e 0 and T(e2) are defined as follows: 

Definition 6 (Concurrent t imestamps) 
The concurrency relationship between timestamps w written as T(e 0 ~ T(e2) 

is said to hold i f f  V h e T(el) V t 2 e T(e2): ( tl.site = tz.site ^ h.global = t2.glo- 
bal ) v ( tl.site ~: t2.site ^ I t 1.global - t2.global I < 2gg ) 

Two timestamps are thus concurrent if  all component t imestamps from the same site 
are equal and all component  t imestamps from different sites differ less than 2gg. 

Definition 7 (Sequential t imestamps) 
The sequential relationship between timestamps - -  written as T(e 0 < T(e2) 
is said to hold iff 

3 t 1 ~T (e l )  El t 2 ~ T(e2): ( t l .s i te  = t2.site ^ t l .g lobal  < t2.global ) v 
( t 1.site ~ t2.site ^ t 1.global < t2.global - gg) a 

V t 1 ~ T (e l )  V t 2 E T(e2) t l .g lobal  _< t2.global 

Two timestamps are sequential if  for any of  the component  t imestamps a precedence 
can be established 1 and for every preceding component t imestamp the global time is 
not larger than that of  the following component  timestamp. Note that the sequential re- 
lationship is transitive. Two timestamps for which neither a concurrency nor a prece- 
dence relationship can be established are said to be unrelated when their base-values 
- -  at least one of  which is non-atomic - -  are less than one clock tick apart. 

1. This means that if component events originate at different sites their difference must be at 
least two global clock ticks, while if they originate at the same site they must be at least one 
global clock tick apart. 



416 

Definition 8 (Unrelated timestamps) 
Two timestamps T(el) and T(e2) are said to be unrelated - -  written as T(el) 0 
T(e2) - - i f f ~  ((T(el) - T(e2) ) v (T(e l )<  T(e2) ) v (T(e2) < T(el) ) )  

The timestamps of composite events are determined by the latest timestamp of a com- 
ponent occurrence. In order to unambiguously determine the composite event times- 
tamp if there are concurrent or unrelated timestamps, a timestamp join procedure is 
used [13]. Note that if no precedence relationship can be established between the par- 
ticipating timestamps T(el) and T(e2) then at most two global ticks cover them (for a 
proof see [13]). 

Definition 9 (Joined timestamps) 
Given two timestamps T(el) and T(e2) for which neither T(el) < T(e2) nor T(e2) 
< T(e 0 their joined timestamp is defined by the function T: T(e0,T(e2) ~ T(el) 
L) T(e2) 

The join procedure is omitted here due to space considerations. Informally, the joined 
timestamp is the higher of the local clock values recorded for each participating event 
occurrence. Before we describe the semantics of event composition we provide the 
definition of a composite event occurrence: 

Definition 10 (Composite event occurrence) 
A composite event occurrence is a 6-tuple co = (type, site, eid, T, wid, comp), 
where 
�9 type ~ c-~/'is the event type of ce 
�9 site e .5is the detection site 
~ eid e Nis the unique occurrence identifier for that detection site 
~ T(ce) is the timestamp of ee 
~ wid ~ Nis the identifier of the work_flow instance in which ce occurred 
~ comp is a list of component event occurrences with elements of the form 

(site, eid) 

In order to define the subset of C7;7"of actually occurring composite events we use the 
concept of a (global) event occurrence sequence: 

Definition 11 (Event occurrence sequence) 

An event occurrence sequence eos, is a finite sequence of n primitive and/or 
composite event occurrences, eos is written as <el ..... en>, where each ei, 1 _< i _< 
n is an occurrence of some event type at some point in global time. 

I t  is also val id that V i,k, 1 _< i,k _< n : (T(e i )  < T(ei+k) ) v (T(e i )  ~ T(ei+k) ) v (T(e i )  0 
T(ei+k) ), i.e. eos depicts a partial order among the participating event occurrences. 
As already mentioned, event operators are used to construct composite events. Infor- 
mally the timestamps of the occurrences are defined as follows: 
�9 A CON is assigned the timestamp of the later of the component occurrences if their 

temporal order can be decided. Otherwise the two timestamps have to be joined 
(see Definition 9). 

�9 A DEX is assigned the timestamp of the component event that actually occurred. 
�9 A SEQ is assigned the timestamp of the later event occurrence. 
�9 A CCR is assigned the joined timestamp of the component occurrences. Note that 

the component occurrences of a concurrent event can only occur at different sites. 



417 

�9 A NEG is a special case of  a SEQT. Its timestamp is the one of  the component oc- 
currence defining the end of  the interval. 

�9 A FIEP is a special case of  a SEOT where the precedence relationship is valid 
among each pair of  consecutive component occurrences. The timestamp of  the 
composite occurrence is the one of  the last component occurrence. 

Formally the semantics of  these operators can be defined as follows: 

Definition 12 (Semantics of  event composition) 
Let CET be a composite event type, eos an event occurrence sequence, and ET1, 
ET2, and ET3 event types. Then OET has an occurrence ee with component 
event occurrences ce.comp = <ol, .:., en> iff 
�9 VET e : e E eo .eomp ~ --13CE T CO' : ce ~ co' ^ ce '  E eos ^ e i E co ' . comp 
�9 and one of  the following hold: 

0 CUT = CON (ET1, ET2, sw) ^ 

( 3ET 1 e 1 3ET 2 e 2 : ce .comp = <e 1, e2> ^ e l  E eos A e 2 Eeos A 
(T(ce) = T(e2) iff T (e l )  < T(e2) ) ^ (T(ce) = T (e l )  iff T(e2) < T (e l )  ) ^ 
(T(ce) = T ( e l )  u T(e2) iff T (e l )  ~ T(e2) v T (e l )  0 T(e2) ) ^ e 1.wid = ez.wid ) 

0 CET = DEX (ET1, ET2) ^ 
( ( 3ET 1 e 1 : ce . comp = < e l >  ^ e 1 E eos ^ T(ce) = T (e l )  ) v 
( 3ET 2 e 2 : ce . comp = <e2> ^ e 2 E eos ^ T(ce) = T(e2) ) ) 

0 CET = SEQ(ET1,  ET2, sw) ^ 
( qET1 e l  :lET2 e2 : ce . comp = <e 1, e2> ^ e 1 E eos A e 2 Eeos ^ 
T ( e l )  < T(e2) ^ T(ce) = T(e2) ^ e l .w id  = e2.wid ) 

0 CET = CCR (ET1, ET2, sw) ^ 
( =lET 1 e 1 :lET 2 e 2 : ce . comp = < e l ,  e2> ^ e 1 E eos ^ e 2 Eeos ^ 
T ( e l )  ~ T(e2) ^ T(ce) = T (e l )  u T(e2) ^ e l . w i d  = e2.wid ) 

0 CET = NEG (ET1, (ET2, ET3,sw) sw) ^ 
( ElET2 e2 ~]ET3 e3 : ce . comp = <e2, e3> ^ e 2 E eos ^ e 3 E eos ^ T(ce)  = T(e3) 
^ e2 .wid  = e3 .wid  ) ^ (-~ :lET 1 e 1 : e 1 Eeos ^ T(e2)  < T ( e l ) <  T (e3 )  ^ e l . w i d  = 
e2 .w id  = e3 .wid  ) 

0 C E T =  REP (ET1, n, sw) ^ 
( k / i ,  1 < i < n :lET i e i : ce .comp = <e 1 . . . . .  en> ^ T(ce) = T(en) ^ 
( ~" k, 1 < k < n : e k E eos  ^ e 1 .wid = ek.wid ) 

Composite event OCCUrrences are detected at the site where the corresponding detector 
resides. The detection is synchronous and based on the assumption that all relevant 
component  event occurrences with smaller timestamps will have arrived at the detector 
(FIFO delivery) [13]. Based on the previous definitions we can define the event history 
o f  the system execution at time t as follows: 

Definition 13 (Event history at global time t, EHt) 
EH t is an event occurrence sequence with n occurrences such that for all e e EH t 
holds 
�9 T(e) < t - max__sync_delay 
�9 =1 ET E 'ET: e. type = ET 
�9 Eli, 1 _< i_<n :E lET i~  !Ec/ ' :EiETiei:EiCETE OE'T: (e iE E H t ^ < e  1 . . . . .  e i . l , e  i, 

ei+ 1 . . . .  en> occurs for CET) ~ ElCET ce : ce E EH t ^ e E e .comp 

Informally, an event history contains all global event occurrences in the system which 
occurred up to the last detector synchronization point (t - max._syne delay). All occur- 
rences in the event history must have a corresponding event type. Furthermore, if an 



418 

occurrence can form a composite event occurrence together with other occurrences, 
then a corresponding composite global event occurrence must also be contained in the 
event history. A possible event history for the execution of the presented example is 
contained in Tab. 1. The event history EHt§ 1 will be constructed by appending to EH t 
all primitive and composite event occurrences with timestamp t+l. The order of the ap- 
pended events is not important as there are no hidden time dependencies defined in the 
workflow within the appended occurrences. These new composite event occurrences 
are determined as defined in Definition 12. 

Tab. 1: 

type site eid 

REQ agnt 1 
REO agnt 2 

REQ agnt 3 

CFM iclrh 1 

CFM clrh 2' 
RPL clrh 3 

RPL clrh 4 

CON agnt ! '4 

REQ agnt 5 
CFM !agnt 6 
RPL agnt "7' 

Sample event history (not all fields have meaning for every event type) 

T serv 

13/i,10:01 accept_case 
13/1,10:04 control_blacklist 

13/1,10:06 controL.treatment 

13/1,11:15 

13/1,14:30 
14/1,16:30 

15/1,09:47 

15/i,09:4~ 

15/1,11:45 ~rint_check 

15/1,11:45 
15/1,11:46 

wid source sid plist 

1 initiator ' "Pay 450.- to .." 
1 meier 'N-rays" 

1 meier "chest pain", 
"x-rays" 

1 RSEX (2,meier) 

1 RSA (3,meier) 
1 RSEX (3,meier) 

1 i RSA i(2,meier) "NO" 
i 

"OK" 

1 meier I-IIC 

1 printer (5,meier) 
1 printer (5,meier) "job is ready" 

comp 

(cl'rh,3), 
(clrh,4) 

In a WfMS, events (e.g., participating in a composite event type) can be generated 
by sources at different sites. Event occurrences are detected at the site where a detector 
resides, which may be different from the generating sites and/or different from the in- 
terested sites (i.e., sites where brokers reacting to the event reside). The detector is re- 
sponsible for recording the occurrence in the event history. This can either take place 
immediately after an event is signalled or after a composite event is detected, or finally 
at specified synchronization intervals. However, interested brokers can only react to an 
event occurrence after this has been recorded in the history; as only then has the global 
event actually occurred. Thus, the recording of event occurrences at some global time 
from detectors in the event history synchronizes all sites participating in the execution 
of a workflow. The choice of strategy depends on application requirements, the expect- 
ed message propagation times between participating sites, and the granularity of time. 
Workflows are time-dependent but not time-critical. Thus, a conservative strategy for 
the synchronization of remote sites can be applied. 



419 

4 Semantics of Event-Driven Workflow Execution 

4.1 Semantics of Brokers 

In this chapter, and based on the formalism developed in the previous section we first 
define the notion of broker semantics under a certain event history. We then define 
those event histories in which a broker demonstrates observably correct behavior. 

The semantics of a broker is defined by the events it generates, i.e., for a given bro- 
ker, its semantics in terms of events is the restriction of the event history to those oc- 
currences that originated in the broker: 

Definition 14 (Broker Semantics) 
The semantics of a broker b under an event history Ell are defined as an event 
history Ell' such that 
(V eo e EH': eo E EH ^ eo.source = b) ^ (V eo e EH: eo.source = b ~ eo e EH') 

A broker is considered a blackbox with observable external behavior expressed by the 
events it generates. It is notified upon the occurrence of specific events and reacts ac- 
cording to its definition. We assume that each broker has an associated event delivery 
interface (EDI) and that the event delivery system is reliable, i.e. that every event oc- 
currence will be delivered to registered brokers. Formally: 

Definition 15 (Broker) 
A broker (reactive component) is described by a triple brkr = (name, Rq-/, EDI) 
�9 name e B.N 
* Rr {rl, r2 . . . .  } is a set of rules which are tuples of the following form 

(on_etype,~EN' ]9~-~ w i th  on_etype e E%" G E ~ 7 ~ _ 3  = {et l  ..... etn} w i t h  

et  i e 
~ EDI is an event delivery interface for incoming event occurrences. Given 

eoin ,  eo_out event occurrences, Ell an event history, we define the follow- 
ing operations for EDI: 

put: EDI x eo_in -~ EDI' 
consume: EDI --> eo_in x EDI' 
flush: EDI x EH ~ EDI' x EH' x eo_out 
contains: EDI x t x e ---> boolean 

Informally, we make the following observations. We define for a broker its event regis- 
tration set regset = w r e ~./r.comptype(etype) i.e. the set of all (primitive and com- 
posite) event types to which the broker has to react as defined in the broker's rule set. 
Event occurrences are delivered to the EDI by the put operation, as soon as they are 
logged in the event history. We require that delivered occurrences have to be consumed 
by the broker within a finite amount of time (max_delay). If  the occurrence consumed 
is a request then a confirmation event is generated. If max_delay is exceeded an excep- 
tion is raised by flush. We also require that once an event occurrence has been con- 
sumed by a broker the rules which define reactions to that occurrence fire i.e., broker 
rules express dependencies between consumed and produced event occurrences. 

Given the formal notion of event history, we can reason about the correctness of  ob- 
servable broker behavior. Informally, a broker demonstrates observably correct behav- 
ior (under a given event history EHen d resulting after the workflow execution) iff: 
�9 it has reacted to all requests it is responsible for, 



420 

�9 it has reacted to all situations for which it defines workflow-specific rules, and 
�9 it has produced either a reply or an exception after a finite time interval for each re- 

quest it has received. 
Formally, the correctness of the observable behavior of a broker with respect to a com- 
plete event history (EHend) can be expressed as follows: 

:1 co_in ~ EHen d : eo_in.type E b.regset 
contains(EDI, T(eo) + max delay, co_in) =false 
and 
V r ~ b .Ru"  eo_in. type = r.on_etype V et ~ r. ~ ~ E ~  

3 eo_out  ~ EHen d : eo_out.source = b.name ^ co_out . type = et ^ 
T(eo_out)  > T(eo in) 

a n d i f e o  in.type = REQ 
((3 eo 2 E EHencl : eo2.sid.eid = eo_in.eid ^ eoe.type = EXC ^ 

eo2.name = "co_in.type.name unavailable") 
OF 
(:1 eo2,eo 3 r EHen d : e o j n . e i d  = eo2.sid.eid = eo,3.sid.eid ̂  eo2.type = CFM ^ 

eo3.type = RPL)) 

Practically, this means that in an event history resulting after a workflow has finished 
executing, for all requests that have been consumed by brokers there must exist corre- 
sponding reply and confirmation occurrences (Table 1). For non-serviced or incom- 
pletely serviced requests on the other hand there have to exist exception occurrences. 
Given such a well-formed event history, we can argue that the components that partici- 
pated in it demonstrated an observably correct behavior according to the workflow 
specification or at the very least aborted (parts of) its execution in a well-defined way. 

4.2 Semantics of Worldtow Execution 

Based on the semantics of brokers operating on an event history we can now define the 
semantics of workftows over that history. As already mentioned in section 2, process- 
ing entities are represented by brokers and workflow activities by services. The execu- 
tion of workflows by brokers is reflected in the event history. Formally, the semantics of 
the execution of workflow instance w is the projection of the event history on those 
events that occurred within w: EHIwi d = w. Based on the mapping of specifications to bro- 
kers and services, a workflow execution is correct if each responsible broker.reacts and 
generates adequate confirmations/replies or exceptions. Thus, if the event registration 
set of a broker is adequately defined (with respect to the intended workflow execution 
semantics), the workflow execution is correct iff each involved broker behaves in an 
observably correct manner. Thus, the notion of correct behavior of single brokers ex- 
pands to the correctness of a workflow execution: a workflow w is executed correctly 
under a given event history EHIwi d = w if each broker behaves observably correctly with 
respect to EHIwi d = w. 

During the transformation of workftow specifications into brokers, a designer has to 
ensure that each PE is represented by an adequate broker. "Adequacy" is hereby de- 
fined in terms of responsibility for services, rules, and replies/exceptions, all of which 
have to conform to the role of the processing entity in the workflow specification. The 
implementation of brokers on top of the event engine then guarantees that they behave 
observably correct under resulting event histories (whereby, of  course, we cannot en- 



421 

sure that the workflow specification itself is correct, i.e., conforms to the intended real- 
world meaning). Thus, summarizing, the formalization of the event history and the 
corresponding broker semantics allows to reason about the semantics of event-driven 
workflow execution based on reactive components. 

5 Related Work 
The semantics of composite events in non-distributed active DBMS have been de- 
scribed in [2, 4, 5, 12]. The semantics of composite events in distributed systems in 
general and distributed DBMS in particular have been discussed in [9]. [13] proposes a 
general application-independent framework for the detection of composite events in 
distributed systems. 

Event histories have also been used to specify the semantics of advanced transac- 
tion models. In [11], dependencies between events are specified using the precedence 
relationship and the event occurrence implication (occurrence of one event implies that 
of another one). Similarly, ACTA [3] is a framework in which transaction models are 
specified in terms of dependencies that must be fulfilled by a history in order to be le- 
gitimate under the specified transaction model. In [6], we show how ACTA-specifica- 
tions can be implemented by ECA-rules. 

In [1], workflow execution on top of an active (relational) DBMS is proposed. In 
this case, ECA-rules provide the operational semantics of workflows. In MENTOR, 
state charts are used as the representation formalism for workflow specifications [15]. 
These assume that the system executes a single step every time-unit reacting to all ex- 
ternal changes that occur in the time unit elapsed since the completion of the previous 
step. In order to support the distributed execution of workflows, the state and activity 
charts are partitioned by being assigned to different business units. This transformation 
is proven to preserve the formally derived properties of the centralized specification. 

6 Conclusion 
In this paper, we considered formal aspects of event-driven workflow execution using 
brokers. Determining the proper semantics of all the involved components is a crucial 
task for any kind of WfMS. We have shown how event histories can be formalized, 
thus permitting the description of semantics of higher-level constructs in terms of 
event histories. We have shown how the semantics (and correctness) of reactive com- 
ponents can be formalized in this context. Thus, it is possible to define workflows and 
reactive components while knowing that the (workflow or event) engine behaves in an 
expected and correct way. Brokers are considered as blackboxes consuming and gener- 
ating events pertaining to a workflow execution. In somes cases, it may be important to 
exactly understand the internal processing of broker rules by defining the semantics of 
broker rule execution and not just event occurrence dependencies. This is a subject of 
our future work. 

The contribution of this paper, thus, is that it sets the stage for a formal approach to 
event-driven workflow execution. Furthermore, the issues discussed here are a prereq- 
uisite for analyzing effects and properties of workflow and broker evolution. The im- 
pact of modifications on active workflows and running components, including the 



422 

proper identification of cases where evolution is safe or which adaptations have to be 
made in order to attain consistent executions and histories is so far not very well under- 
stood. The formal and technical issues of this kind of evolution based on the formalism 
developed here is a subject of our future work. 

Acknowledgments: We thank Clemens Cap for his helpful suggestions. 

References 
1. F. Casati, S. Ceri, B. Pernici, G. Pozzi. Deriving Active Rules for Workflow 

Management. Proc. 7 th DEXA, Zurich, Switzerland, September 1996. 
2. S. Chakravarthy, V. Krishnaprasad, E. Answaar, S.-K. Kim. Composite Events for 

Active Databases: Semantics, Contexts and Detection. Proc. VLDB, Santiago, 
Chile, September 1994. 

3. P.K. Chrysanthis, K. Ramamritham. ACTA: A Framework for Specifying and 
Reasoning about Transaction Structure and Behavior. Proc. ACM SIGMOD, 1990. 

4. A.A.A. Fernandes, M.H. Williams, N.W. Paton. A Logic-Based Integration of 
Active and Deductive Databases. New Generation Computing, 1996. 

5. S. Gatziu, K.R. Dittrich. Detecting Composite Events in Active Database Systems 
Using Petri Nets. Proc. RIDE-ADS, Houston, TX, February 1994. 

6. A. Geppert, K.R. Dittrich. Rule-Based Implementation of Transaction Model 
Specifications. In N.W. Paton, H.W. Williams (eds.). Proc. 1 st Intl. Workshop on 
Rules in Database Systems, Edinburgh, UK, August-September 1993. 

7. A. Geppert, M. Kradolfer, D. Tombros. EvE, an Event Engine for Workflow 
Enactment in Distributed Environments. Technical Report 96.05, Department of 
Computer Science, University of Zurich, May 1996. 

8. S. Jablonski, C. Bussler. Workflow Management. Modeling Concepts, Architecture, 
and Implementation. International Thomson Computer Press, London 1996. 

9. H.V. Jagadish, O. Shmueli. Composite Events in a Distributed Object-Oriented 
Database. In M.T. Oezsu, U. Dayal, P. Valduriez (eds.). Distributed Object 
Management. Morgan Kaufmann, 1994. 

10. C.S. Jensen, J. Clifford, R. Elmasri, S.K. Gadia, P. Hayes, S. Jajodia (eds.). A 
consensus glossary of temporal database concepts. SIGMOD Record, 23(1), 1994. 

l l.J. Klein. Advanced Rule Driven Transaction Management. Proc. IEEE 
COMPCON, San Francisco, CA, March 1991. 

12. I. Motakis, C. Zaniolo. Composite Temporal Events in Active Database Rules: A 
Logic-Oriented Approach. Proc. 4 th Intl. Conf. on Deductive and Object-Oriented 
Databases, Singapore, December 1995. 

13. S. Schwiderski. Monitoring the Behavior of Distributed Systems. Phi3 Thesis, 
University of Cambridge, 1996. 

14. D. Tombros, A. Geppert, K.R. Dittrich. Design and Implementation of Process- 
Oriented Environments with Brokers and Services. In B. Freitag, C.B. Jones, C. 
Lengauer and H.-L Schek (eds.), Object-Orientation with Parallelism and 
Persistence, Kluwer Academic Publishers, 1996. 

15. D. Wodtke, G. Weikum. A Formal Foundation for Distributed Workflow Execution 
Based on State Charts. Proc. International Conference on Database Theory, 
Delphi, Greece, January 1997. 


