
Preserving Behaviour: W h y and H o w *

Fabienne Cathala 1,3 and Pascal Poncelet 2,3

1 Cemagref, division Aix-en-Provence, France
2 IUT d'Aix-en-Provence, France

3 LIM - URA CNRS 1 7 8 7 - Universit~ de la M~diterran~e
Facult~ des Sciences de Luminy, Case 901, 163 Avenue de Luminy,

13288 Marseille Cedex 9, FRANCE
E-mail: Firstname.Lastname~lim.univ-mrs.fr

Abs t r ac t . In this paper, we propose a generic method for elaborating
the behavioural specification dictionary of applications. It could apply in
the context of various conceptual modelling approaches and take advan-
tage of functionalities provided by associated CASE tools. The method
is based on a meta-schema abstracting the behavioural concepts by us-
ing the structural abstractions of the chosen modelling approach. Once
storage structures are generated from this meta-schema, they can be
populated in an automated way by examining dynamic schemas spec-
ified by designers. The method is intended for dealing with particular
applications in which behaviour must be preserved.

1 Mot ivat ions

There are some kinds of applications in which behaviour must be represented not
to be simulated or enhanced (through some executive programs or even active
rules [Ha90, LNR87, TPC94b]) but to be preserved.
Reasons behind "storing behaviour" are various. First of all, by keeping the
whole trace of the application dynamics, scope of queries can be extended to the
application history. But a main difference between our concern and temporal
or historical database approaches [LZ88] is that we aim to capture much more
semantics about application behaviour. For instance we would like to express
the following queries: what happened when such event occurred? Which were
the reactions of such or such object? Another motivat ion is storing "behaviour
pat terns", i.e. particular possible behaviours which could be either critical or
good behaviours. Whenever objects adopt such behaviours, they must be de-
tected automatically, thus it is possible to control the application evolution over
t ime or to anticipate critical situations. For instance, in a l ibrary management
application, users could be classified according to their behaviour over t ime in
different categories such as "good or bad borrower", "occasional", ... We imagine
that , depending on their category, they could be offered some special privileges
(or in contrast privileges could be revoked).

* This work is supported by the CEMAGREF (institute for agriculture and
environment engineering - program "Engineering and safety of dams and hydraulic
works (E32)") and the french ministry of environment.

334

Addressing the issue of storing behaviour requires dealing with two different
representation models. On one hand, dynamic conceptual models are really suit-
able for representing application behaviour, as well as behaviour patterns. On
the other hand, the only models available for storage are database models, i.e.
structural models. In this paper, we propose a generic method for preserving
behaviour. It could be used with various modelling approaches and yields the
behavioural specification dictionary in form of instanciated storage structures
(based on such or such database model). The proposed method has two interest-
ing qualities: its simplicity and a non expensive enhancement particularly when
integrated within the CASE tool supporting the chosen modelling approach.
The paper is organized as follows. Section 2 gives the general principles of
our method. These principles are enhanced through two different experimen-
tations. The first one, summarized in section 3, is based on the OMT approach
[RBP+91]. It serves as an illustration of the method feasability. The groundwork
for the second experimentation, described in section 4, is the IFO2 approach
[PTCL93, TPC94a]. We take advantage of the associated CASE tool and com-
plement it by an additional functionality. Section 5 proposes a brief survey of
related work, in particular through a comparison with our method.

2 P r e s e r v i n g B e h a v i o u r : G e n e r a l P r i n c i p l e s

Behaviour representation has been addressed by various conceptual approaches
among which we could quote OMT, OOD, OOA-OOD, ... [Boo91, RBP+91,
Som91, SM88, SM92, SSE87, Saa91, CY90]. They provide designers with a high-
level and object-oriented model. It is complemented by transformation mecha-
nisms applying to conceptual schemas and yielding specifications which could
be implemented using various target systems (classical and object DBMSs or
languages) [RBP+91, BM91, PTCL93]. For describing the dynamics of applica-
tions, these approaches frequently adopt state-transition diagrams.
Given our particular concern of preserving behaviour, conceptual approaches
provide a dynamic representation for abstracting application behaviour, along
with structural representation facilities. The former capability meet our need of
specifying behaviour patterns, or possible behaviours; the latter offers high-level
abstractions and mechanisms for modelling and designing database schemas. In
such a context, our approach (its general principles are depicted in figure 1) is
based on a meta-schema describing the dynamic concepts by using the struc-
tural abstractions of the model. Meta-data is frequently required for capturing
meaning, content, organization or purpose of data, and various approaches make
use of meta-schemas. Some of them are summarized in [SM91].

Once the meta-schema is specified, any application behaviour modelled by de-
signers is seen as an instance of the recta-schema. On an implementation level,
storage structures can be generated from the meta-schema, by using provided

335

transformation mechanisms. Such facilities must be complemented in order to
deal with instances. In fact, an automatic instanciation can be performed. It
applies to dynamic conceptual descriptions and populates object classes or re-
lations generated from the meta-schema. Thus, the dynamic dictionary of the
application is achieved and can be handled by application programmers merely
through the query language of target systems. Such a facility could be an inter-
esting tool in software engineering, in particular for cooperative work, because
it is the basis of a dynamic repository (with such or such underlying storage
model) while offering a high-level description of behaviour (interfaces with aided
tools supporting the chosen conceptual model can be easily developped).

Behavioural /
meta-sch~aa//
Storage structure

generation

Behavioural ~
dictionary ~ instand

Fig. 1. General principles of the approach

Following from this principle, we examine the enhancement of our method with
two different conceptual models: OMT and IFO2. OMT is representative of sev-
eral modelling approaches. It proposes an object-oriented extension of the En-
tity/Relationship model and its dynamic model is based on statecharts [Har88,
Ha90]. On the other hand, IFO2 adopts a "whole-object" and "whole-event"
philosophy for describing the static and dynamic aspects of applications.
In these two different contexts, we apply the described approach as detailed in
the following sections.

3 E n h a n c e m e n t w i t h O M T

In OMT [RBP+91], object dynamics is modelled through state-transition dia-
grams. Basically, being in a given state, an object could evolve by performing a
transition and enter another state. A transition, triggered by event, is constrained
by a condition or guard and can perform actions. State-transition diagrams could
be nested (state generalization): a state can be expanded in a lower-level diagram
offering a refined vision of a behaviour part, in terms of states and transitions.
Furthermore, diagrams could be splitted into concurrent sub-diagrams and di-
agrams, at the highest level, reflect behaviour of object classes, inherently con-
current (state aggregation). Communication between objects is based on event
sending.

336

Example 1 As an illustration, we consider the behaviour of two kinds of objects
in the library application: "Book-Copy" and "User" which are captured through
the diagrams in figure 2. Let us consider the highest level diagram describing
the user's behaviour, as regards the registration fees of the library. His current
situation is captured through the attribute "status" having the following possible
values: "Registred", "Waiting" and "Excluded". We imagine that a user changes
from "Registred" to "Waiting" if he is late in paying for registration. From the
state "Waiting", the transition to "Registred" can be performed, if the user
decides to pay, else, after a certain delay, the user's privileges are revoked and
the object state becomes "Excluded" (corresponding to the "User" diagram exit
point).
To illustrate the concurrent sub-diagram mechanism, let us now examine the
diagram or super-state "Registred"; it corresponds to the entry point of the
diagram "User" and it is splitted into two sub-diagrams "Subscriver-State" and
"Borrow-State". When the transition "t4" is performed, the concerned object
enters a state in each sub-diagram. "Borrow-State" is expanded in a lower-level
diagram, encompassing the states "User" (no current loan), "Borrower" and
"Reminded". The latter is entered whenever a user do not return borrowed books
in time. A very mere state diagram of "Book-copy" objects is also proposed.

- - User

Y

Re~s~ed

B o r r o w - S l a l ~ t 6 t8

.
Subscriber-State

~t15 ti3(~.t14

~Book-Copy

y@
Borro

120 \ lane

"J L
17 t19

i Formalism:

i U subdiagram :

Fig. 2. Library application dynamics with OMT

The behavioural meta-schema, to be specified, must capture not only the ba-
sic concepts but also the abstractions of state generalization and aggregation.
The recta-schema is partially depicted in figure 3. In fact, we focus on the more
interesting aspects when abstracting the dynamic model and do not detail the
description of all the concepts.

337

Due to its recursive feature, state generalization requires suitable structural ab-
stractions and a clear cut vision of activity propagation through the various
description levels, since diagrams could be arbitrarily nested. For reflecting this
nesting mechanism, we use the recursive aggregation of the object model, and
adopt a uniform vision of states and diagrams. More precisely, a DIAGRAM could
be specialized in a simple STATE (at the lowest level) or in a SUB-DIAGRAM
(at whatever higher level). A SUB-DIAGRAM is described as an aggregation of
transitions, and in its turn TRANSITION is modelled as a recursive aggregation
having the following components: INITIAL, FINAL, EVENT, CONDITION, and AC-
TION. The two former components correspond to the diagram exited or entered
by the transition, thus, at the lowest-level, they are merely the initial and final
states of the transition. This representation makes it possible to capture not only
transitions between states or between higher-level diagrams but also transitions
indicating entry or exit points in a diagram. When specified, latter transitions
must be necessarily triggered to enter or exit a diagram. They can correspond
to the beginning or the end of object life cycle, and they play an interesting part
in transition inheritance from a higher level diagram. In fact, when a diagram
is entered possible entry points are the only sub-diagrams (or states) which can
be reached. On the other hand, exit points must be necessarily reached before
performing a transition exiting the diagram. For these particular transitions,
the INITIAL (or FINAL) component has no instance. The other components of
TRANSITION, i.e. EVENT, CONDITION, and ACTION, capture the possible event
triggering the transition, its guard if any, and the actions to be performed.

FormaUsm:

[Z ~ o b j e c t class
_ _ a s soc i a t i on

o �9 optional and mul t ip le
c~'dinalilies
aggrega~on i

~ . spec i a l i za t i on

Fig. 3. Behavioural meta-schema with OMT

The meta-schema being defined, the second step of our approach can be applied
by using the transformation mechanisms defined for the object model of OMT.
We choose the relational model as transformation target, and achieve from the
behavioural meta-schema, the relational schema partially given below.

338

APPLICATION (NAME);
DIAGRAM (ID_D ATZD, TYPE, O-ID, NAME);
TRANSITION (TRAD, INITIAL, FINAL, E, C, ID_D);

ATTRIBUTE (AT _ID);
OBJECT_CLASS (O_ID, ...);
ACTION (ACAD, TRZD);

When performing such a mapping, we assume that diagrams in the behavioural
specifications are identified through the combination of their name and the at-
tribute which is abstracted. Transitions are provided with an artificial identifier
(prefered to a composite candidate key combining several attributes).

Relations reflecting the meta-schema are then automatically populated from dy-
namic representations specified by designers. Thus the underlying mechanism
performs the instanciation of the behavioural dictionary of an application. Be-
fore describing the corresponding algorithms we need to introduce the following
definitions.

Preliminary Definitions

- Let D be the set of dynamic diagrams in the designer specifications.
Vd E D, d is a couple (lDd, Td), where Td is the set of transitions in d.
Vt E Td, t is defined as a tuple (T R_I D , init, f in , E, C, A) where init and f i n
E D stand for the diagrams exited and entered by t, and E, C, A symbolize
the event, condition and action clauses of t.

- Let S C D be the set of states such that: Vd E S, Td = ~;
and H C D, the set of highest-level diagrams, such that:
Vd E H, Vd' E D, /3t ~ C Td, / t ' . init = d or t ' . f i n = d where t ' . init (t ' . f in
resp.) is the initial (final resp.) diagram of t ~.

- Marked_Diag is a set used to store diagrams already examined.

Instanciation Algorithm
The instanciation mechanism starts from the highest-level diagrams by perform-
ing for each one the procedure Diag-Instanciation. This procedure captures the
diagram semantics (merely by operating suitable insertions) and then examines
its transitions. In order to insert the tuple describing a transition, diagrams en-
tered or exited by the transition must be captured. This is done by applying
once again the procedure Diag-Instanciation to the initial and final diagrams of
the considered transition. Thus, if transition is defined between high level dia-
grams, it is inserted only when the diagrams are fully described (with their own
sub-diagrams and transitions). In fact, the described procedure is recursively
executed and diagram capture is performed in depth first.

prog Schema_[nstanciation
for each d in H d._~o

Marked_Diag +-
DiagAnstanciation(d)

endfor
endprog

339

proc Diag_Inst anciation (d)
Insertion(DIAGRAM, d)
if d ~ S then

for each t in T~ d._o
if_ t.init ~ ~ and t.init ~ Marked_Diag then

Marked_Diag +-- Marked_Diag U {t.init}
Diag_Inst anciation(t .init)

endif
if_t.fin r O and t.Sin (~ Marked_Diag then

Marked_Diag +- Marked_Diag U {t.fin}
Diag_Instanciation(t. f in)

endif
Insertion(TRANSITION, t)

endfor
endif

endproc

Through this section, we show the feasability of our method by using OMT. The
chosen dynamic model is really suitable for representing how objects evolve over
time. Nevertheless, it is not adapted to set-oriented processes. This is why we
propose a second experimentation in the following section.

4 E n h a n c e m e n t wi th IFO2

IFO2 is a conceptual approach extending the IFO model [AH87] and encompass-
ing both structural and behavioural representation capabilities. Its originality is
to offer symetric concepts for the static and dynamic descriptions. One of the
main difference with OMT is that dynamics is described in an Overall way (and
not object class by object class), by specifying events of various semantics and
their relationships (synchronization or triggering). Basic event types are pro-
posed (external, temporal, operation invocation). To express synchronization,
they could be combined using various event constructors (aggregation, sequence,
grouping, union). Event types, either basic or complex, are organized by using
the key concept of event fragment. A fragment describes the system reactions
when faced by particular circumstances (or events). It necessarily encompasses
an event type, called the fragment heart, possibly related to other types by
mean of triggering functions. A precedence function must be specified whenever
events of the heart type must be preceded by other events. In short, a fragment
describes the causality relationships between a precedent type, a heart type and
triggered types. Fragments are integrated within event schemas by using rep-
resented types and IS_A links. A represented type can symbolize any fragment
since it stands for its heart. It could be specified for a twofold reason: re-using, in
a fragment, the description of another fragment or refining the latter description
(i.e. specializing it through additional precedent or triggered types).

340

I Formallsm:

4i]Simple Type

I ~--/ temporal Type

~, 0 R,p ~Type
4

[Functions:
- - TotaI
- - - - " Partial

Complex Total
- ~ @ - Complex Partial

wait Deferred

Composition

Grouping

Sequence

Union

Fig. 4. Library application dynamics with IFO2

Example 2 In figure 4, the library application dynamics is modelled with IFO2.
This schema is composed of five fragments related by IS-& links. The fragments
"User_Subscriver" and "Request" capture external events: users' requests for
subscription and loan requests from registred users, along with operations which
are performed when such events occur. The precedence relationship between
the two external types is modelled through the represented type "Subscrip-
tion" related with a precedence function to "Request". Management of loans
is described through the fragment " L o a n " (represented with a constructor se-
quence), which successively trigger the simple types "Unavailable" (the corre-
sponding method applies to the borrowed book which becomes unavailable) and
"Init-Loan" (which actually creates the loan). When a "Loan" event occurs, the
number of current loans is increased (the simple type " I n c A N b _ L o a n " performs
a mere update method). When a given delay completes, the user could be sent
a "Reminder" (perhaps several times).
The fragment "Return" describes what happens when a user returns a borrowed
book. And finally, the fragment "Closure" models how a loan completes: the
borrowed book becomes available or the user is excluded.

The behaviour meta-schema is specified by using the structural concepts of IFO2
(formally given in [PTCL93]), which are very close to the behavioural concepts.
More precisely, object types in IFO2 could be either basic (simple (attribute)
or abstract (entity)) or complex. For the latter, various object constructors are
defined. Object types are organized through fragments: a principal type, called
the heart, is described with its properties, i.e. other object types. Object frag-
ments could be re-used or refined by introducing represented types which stand
for the fragment hearts, and IS_A links.

341

Fig. 5. Behavioural meta-schema with IFO2

F ~ i ~ - -

I , /%] P,~,,t,,;,l~ :,-yp~

I ~ " Abstract Type

[• Repre, e,te~T, pe
IFunctions:
I - - Total
I - - - - " Partial I-~ compl~To,ol

Complex Partial

I @ Collection

I[@ Aggregation

I @ Union

Ii | compo~itio.
I @ Grouping
l j

The meta-schema, depicted in figure 5, encompasses two main fragments: FaAG-
MENT and TYPE. Additional fragments are specified for specialization or re-using
concerns. The fragment TYPE is devoted to specifying an IFO~ event type, which
is characterized by its name, its category and its parameters. This description
is refined in four ways according to the category of the event type in question
(thus four additional fragments are introduced).(i) The event type can be simple
(TES). In that case, the method invoked must be preserved along with its nature
(update operation, request, ...). (ii) When the considered event type is abstract
(TEA), its nature must be kept (are events of this type external, temporal or
internal?). (iii) Let us consider now an event type which is a represented type.
It has a particular feature since it symbolizes another type (or several) called its
source(s). This feature is captured, in the fragment TER, by specifying a nec-
essary and possibly multi-valued property: SOURCE. The latter is a represented
type which itself stands for TYPE. (iv) Finally, when the event type under con-
sideration is a complex type, it is abstracted through a recursive construction.
A COMPLEX_TYPE is seen as the aggregation of a CONSTRUCTOR applying to
a set of COMPONENT; each of which being itself an object of TYPE. With this
modelling style, arbitrarily complex types can be represented. Let us notice that
the domain of the printable type CONSTRUCTOP~ corresponds to the provided

342

event constructors in IFO2. The fragment of heart FRAGMENT describes the
organization of event fragments. Event fragments are seen as abstract entities
characterised by the following properties:

- a necessary and mono-valued property: HEART, which is a represented type
standing for TYPE;

- a mono-valued property: PRECEDENT, is specified only if the considered
event fragment encompasses a precedent type;

- a multi-valued property: TRIGGERED, which captures the possible types
triggered by the heart. Each triggered type could be itself heart of a sub-
fragment. This means that it can, in its turn, trigger other types, called
NESTED.

The fragment TRIGGERING is introduced in the meta-schema for a single reason:
sharing a part of specifications. In fact, when describing a precedent, triggered
or nested event type, we need to capture not only the type in question (modelled
by the represented type EVENT_TYPE which "is a" TYPE), but also the nature
of the precedence or triggering function and the condition under which triggering
is actually performed. Such a description is encapsulated within the fragment
TRIGGERING, merely reduced to its heart (specified as an aggregated type).

class C_SchemaEvt class C_Triggering
public type tuple(public type tuple(

Fragments: set(CFragment)) end; function_type: string,
condition: string,

class C_Fragment TypeEvt: C TE) end;
public type tuple(

heart: C_TE, class C_TE
precedent: C_Triggering, public type tuple(
trig: set(name: string,

tuple(triggered: CTriggering, domain: string,
set(C_triggering)))) end; parameter: set(string)) end;

class C_Complex_Type inherit C_TE class C_TES inherit C_TE
public type tuple(public type tuple(

constructor: string, method: string,
component: set(C_FTE)) end; nature: string) end;

class C_TEA inherit C_TE class C_TER inherit C_TE
public type tuple(public type tuple(

nature: string) end; set(C_TE)) end;

Fig. 6.02 classes

From IF02 structural schemas, mechanisms for generating code could be en-
hanced, for relational systems, the Object-Oriented DBMS 02 [Deug0] or C++.
As an illustration, we choose IFO2 transformation (described in [PTCL93]),
which yields when applied to the meta-schema the 02 inheritance class hierar-
chy, given in figure 6.

343

For populating 02 classes, we define an instanciation mechanism which suc-
cessively examines event fragments and creates required objects in the suitable
classes.

Preliminary Definitions

- Let .~" be the set of dynamic fragments in the designer specifications.
Vf E ~', f is defined as a couple (T, Fu) where T is a set of types and Fu is
a set of functions;

- Vt E T, t is defined as a tuple (ident, domain, heart,parameters, category)
where ident is the type identifier, heart a boolean, and category symbolizes
the category type (simple, abstract, ...). Its structure is type-dependent, i.e.
holds all relevant items for category instanciation;

- Vf~ E F~, f , is defined as a tuple (source_type, target_type, type_fonction,
condition).

Instanciation Algorithm

prog Schema_instanciation
for each f in F d__oo

Frag_instanciate(f)
s su {] }

endfor
endprog

proc Fraginstanciate(f)
Insertion(C_Fragment,f)
for each t in T do

Type_insertion(t)
if t .heart--TRUE then

f .hear t +-- t.identifier
endif

endfor
for each f~ in F~ do

Insertion(C_Triggering,f~)
K fu.type-fonction--precedence then

f.preced +- f~.source_type
else if fu.type-fonction--triggering then

f.succ +- f.succ U {f~.source-type}
else f . imbr +-- f . imbr U {f~.source_type}
endif

endif
endfor

endproc

344

proc Type_insertion(t)
if t.domain=C_TES then Insertion(C_TES,t) endif
if t.domain=C_TEA then Insertion(C_TEA,t) endif
if t.domain=C_Complex_Type then Insertion(C_Complex_Type,t) endif
if t.domain=C_TER then Insertion(C_TER,t) endif

endproc

An interesting feature of the IFO2 model is that it provides the concept of trace
(initially introduced in [Hoa85]). The trace is the sequence of all the events
ever occurred during the application life. Thus it proposes a chronological vi-
sion of IFO2 event schema instances. Mapping the structure of trace into an
02 class provides us with a suitable mechanism for storing actual behaviours,
only in terms of events (with their time-stamp, parameters, ...). Any object of
the class TaACE describes an event and the behavioural dictionary gives the
circumstances in which it happens. Thus using the 02 query language, histori-
cal requests can be expressed for retrieving particular events but also causality
relationships between events.

5 R e l a t e d w o r k

Motivated by needs of particular applications, our method addresses a specific
issue. However its general objective could be compared to that of historical or
temporal database approaches [LZ88, CI94, JSS94]. Actually, in both cases, the
motivation is to preserve objet history. Nevertheless, our method boosts this
objective by fully capturing the object behaviour, and not only its various states
over time. In fact, it could be seen as an additional tool for an improved man-
agement of temporal databases for several reasons. First of all, the behavioural
meta-schema provides the precise context in which temporal data could be better
interpreted. Complementing temporal data, the behavioural dictionary could be
used for extending query capabilities. Finally our method can be seen as a mod-
elling aid for defining schema of temporal databases. Through a static analysis
of behavioural specifications along with simulations of real behaviours, relevant
states which must be necessarily preserved can be exhibited.
On the other hand, temporal database approaches provide us with possible tar-
get models for enhancing our method, without altering its general principles.

In spite of different motivations, let us notice a similarity between our method
and research work in data mining field, interested in exhibiting sequential pat-
terns [AIS93, AS94, SA95]. For such a discovering, sequences of events describing
the behaviour and actions of users or systems are collected. This list of transac-
tions, each of which encompassing various database operations resembles more
closely to the trace structure used when enhancing our method with IFO~. But of
course these approaches place major emphasis on defining suitable mechanisms
and non expensive algorithms for extracting knowledge.

345

6 C o n c l u s i o n

This paper presents a method for elaborating the behavioural specification dic-
tionary of applications. It could be used with different modelling approaches
such as OMT or IFO> A meta-schema describing behavioural abstractions is
defined with the structural concepts of the chosen modelling approach. From
this meta-schema, storage structures for various target systems could be yielded
by applying transformation mechanisms. Instanciation of the behavioural dic-
tionary could then be performed in an automated way.
The motivation behind our proposal is dealing with particular applications in
which object behaviour must be carefully observed, and more precisely with a
dam management application, currently developped at the CEMAGREF. Apart
from storing various information about dams (related to their environment as
well as their own material structure), our main concern is supporting dam en-
gineering. Dam engineering aims to control dam behaviour over time, i.e. dam
ageing, in order to prevent accidents and avoid incidents. To better understand
deteriorations, specialists attempt to exhibit relationships between causes and
effects resulting in degradations of structural properties of dams or appurtenant
structures. In fact, they try to build up scenarios representing anomalous be-
haviours by taking experience from critical history of existing dams [Dam94].
These scenarios are behavioural patterns, and their management is based on the
proposed method.
Of course the next step is now to define manipulation capabilities in order to
compare real behaviours to patterns. Finally, we intend to define an aided tool
for exhibiting behavioural patterns from actual bahaviours. This last perspective
really meets a data mining objective.

Acknowledgements
The authors wish to thank Rosine Cicchetti for her guidance and her support
in this work. We are also grateful to Patrice Meriaux and Paul Royet from the
Cemagref for their assistance and helpful comments on a preliminary work which
originates our proposal. Finally, many thanks to Philippe Castell for his help.

R e f e r e n c e s

[AH87]

[AISga]

[AS94]

[BM91]

S. Abiteboul and R. Hull. IFO: A Formal Semantic Database Model. ACM
Transactions on Database Systems, 12(4):525-565, December 1987.
R. Agrawal, T. Imielinsld, and A. Swami. Mining association miles between
sets of items in large databases. In ACM-SIGMOD, pages 207-216, Wash-
ington, D.C., May 1993.
R. Agrawal and R. Srikant. fast association for mining association rules. In
Proc. of VLDB'9g, Santiago, Chile, September 1994.
M. Bouzeghoub and E. M~tais. Semantic Modelling of Object-Oriented
Databases. In Proc. o/ VLDB'91, pages 3-14, Barcelona, Spain, Septem-
ber 1991.

346

[Boo91]

[CI94]

ICY90]

[Dam94]

[Deu90]

[Ha90]

[Har88]

[Hoa85]
[JSS94]

[LNR87]

[LZS8]

[PTCL93]

[RBP + 91]

[SA95]

[Saa91]

[SM88]

[SM91]

[SM92]

[Som91]
[SSES7]

[TPC94a]

[TPC94b]

G. Booch. Object-Oriented Design with Applications. Benjamin/Cumming
Comp, 1991.
J. Clifford and T. Isakowitz. On the semantics of (bi)temporal variable
databases. In Proc. o] EDBT'9~, volume 779 of Incs, pages 215-230, Cam-
bridge, UK, March 1994. Springer Verlag.
P. Coad and E. Yourdon. Object-Oriented Analysis. Yourdon Press Com-
puting Series, 1990.
International Commission On Large Dams. Ageing of dams and appurtenant
works, volume bulletin 93. Committee on Dam Ageing, 1994.
O. Deux. The Story of 02. IEEE Transactions on Knowledge and Data
Engineering, 2(1):91-108, March 1990.
D. Harel and al. STATEMATE: A working environment for the development
of complex reactive systems. IEEE Transaction on Software Engineering,
16(4):403-414, 1990.
D. Harel. On Visual Formalisms. Communications of the ACM, 31(5):514-
530, 1988.
C.A.R Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.
C. Jensen, M. Soo, and R. Snodgrass. Unifying temporal data models via a
conceptual model. In]ormation Systems, 19(7):513-547, 1994.
J.Y. Lingat, P. Nobecourt, and C. Rolland. Behaviour management in
database application. In Proc. of VLDB'87~ Brighton, UK, September 1987.
P. Loucopoulos and R. Zicari. Special issue on temporal databases. Data
Engineering Bulletin, 11(4), December 1988.
P. Poncelet, M. Teisseire, R. Cicchetti, and L. Lakhal. Towards a Formal
Approach for Object-Oriented Database Design. In Proe. of VLDB'93, pages
278-289, Dublin, Ireland, August 1993.
J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, and W. Lorensen.
Object-Oriented Modeling and Design. Prentice-Hall, 1991.
R. Srikant and R. Agrawal. Mining generalized association rules. In Proc.
of VLDB'95, Zurich, Switzerland, September 1995.
G. Saake. Descriptive Specification of Database Object Behaviour. Data
Knowledge Engineering, 6:47-73, 1991.
S. Shlaer and S.J. Mellor. Object-Oriented Systems Analysis: Modeling the
World in Data. Yourdon Press, Prentice Hall, 1988.
M. Siegel and S. Madnick. A Metadata Approach to Resolving Semantic
Conflicts. In Proc. o] VLDB'91, Barcelona, Spain, September 1991.
S. Shlaer and S.J. Mellor. Object Lifeeycles Systems Analysis: Modeling the
World in State. Yourdon Press, Prentice Hall, 1992.
I. Sommerville. Software Engineering. Addison-Wesley, 1991.
A. Sernadas, C. Sernadas, and H. D. Ehrich. Object-Oriented Specification
of Databases: An Algebraic Approach. In Proc. of VLDB'87, pages 107-116,
Brighton,UK, August 1987.
M. Teisseire, P. Poncelet, and R. Cicchetti. Dynamic Modelling with
Events. In Proe; of CAiSE'9:t, volume 811 of lncs, pages 186-199, Utrecht,
The NetherLands, June 1994. Springer Vertag.
M. Teisseire, P. Poncelet, and R. Cicchetti. Towards Event-Driven Mod-
eking for Database Design. In Proc. of VLDB'94, Santiago, Chile, Septem-
ber 1994.

