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Abstract 

OO-Method is an OO Methodology that blends the use of formal specification 
systems with conventional OO methodologies based on practice. In contrast to other 
approaches in this field ([Jun95,Esd93]), a set of graphical models provided by the 
methodology allows analysts to introduce the relevant system information to obtain the 
conceptual model through a requirements collection phase, so that an OO formal specification 
in Oasis ([Pas92, Pas95-1]), can be generated at any time. This formal specification acts as 
a high-level system repository. Furthermore, a software prototype which is functionally 
equivalent to the Oasis specification is also generated in an automated way. This is achieved 
by defining an execution model which gives the pattern for obtaining a concrete 
implementation in a declarative or an imperative software development environment 
(depending on the user choice). The methodology is supported by a CASE workbench. 

1. Introduction 

In the context of the object paradigm, several OO methodologies have 
emerged to deal with the set of OO methods to be used to model and correctly 
implement an information system. Two main approaches can be distinguished: 

�9 what could be called conventional OO methodologies, that come from 
practical use in industrial software production environments, which do not have a 
formal basis and which often use classical structured concepts together with the 
introduction of OO features ([Wir90],[Rum91],[Jac92], [Boo94],[Co194]). Recent 
proposals are trying to create a unified framework for dealing with all the existing 
methods (UML [BRJ96]), with the implicit danger of providing users with an 
excessive set of methods that have an overlapping semantics. 

�9 use of OO formal specification languages ( Oblog [Ser87,Esd93], Troll 
[Jun91,Har94], Albert [Dub94], Oasis), which have a solid mathematical background 
and deducible formal properties such as terms of soundness and completeness. 

Our contribution to this state of the art is based on the idea that these two 
approaches can be mixed. This mixing offers some advantages: the use of such OO 
formal languages can help designers to detect and eliminate ambiguities and 
elements of dubious utility. The use of conventional OO methodologies permits us to 
take advantage of the accumulative experience coming from the industrial context. 
The research work developed at the DSIC-UPV has been directed towards designing 
and implementing an OO sofb~vare production environment that aims to combine the 
pragmatic aspects attached to the so called conventional methods, with the good 
formal properties of the OO specification languages. 
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In contrast to other works in this area ([Wie93,Kus95]), our approach is to 
use this combination of approaches in a graphic, OO conceptual modeling 
environment which collects the system properties considered relevant for building a 
formal, textual OO specification in an automated way. This formal OO specification 
constitutes a high-level system repository. Furthermore, the definition of a concise 
execution model and the mapping between the specification language and the 
execution model notions, makes it possible to build an operational implementation of 
a software production environment allowing for real automated prototyping, by 
generating a complete system prototype (including statics and dynamics) in the 
target software development environment. A CASE workbench which supports this 
working environment in a unified way is currently available for prototyping 
purposes. 

This blend has produced the OO-Method methodology presented in this 
paper and is based on OASIS as a formal OO specification language. Our intention 
is to give a clear description of the most relevant features of the approach, 
introducing the basic ideas on OO conceptual modeling that are in the basis of the 
work in section 2, and explaining the main OO-Method features as a methodological 
approach in section 3. The methods used to capture the system properties in order to 
produce what we will call a conceptual model will be shown. Subsequently we will 
show how to represent this model in a particular software development environment 
according to an abstract execution model, which will fix the operational steps to 
follow when we want to give a concrete system implementation. A software 
prototype which is functionally equivalent to a system specification can be obtained 
in the context of the methodology. We will describe the code generation strategy 
used. Finally, a view of the CASE tool that has been built to support the 
methodology will also be introduced. 

2. The OO-Method Approach 

Nowadays, it is considered mandatory for an OO methodology to cover the 
following aspects: 

�9 Classes and objects 
. Abstraction 
�9 Encapsulation 
. Inheritance and Aggregation to deal with complex classes 
. Interobjectual Communication 

However, the cun'ent proposals share a common weakness: the value of the 
conceptual modeling efforts when the development step is reached is unclear, mainly 
because it is not possible to produce an accurate code which is functionally 
equivalent to the system requirements specification. We should be able to produce 
code in an interactive way from the very beginning of the requirements specification 
step, and not generate only static templates for the component system classes as most 
OO CASE tools already do. We should be able to generate a complete programming 
environment including statics and dynamics. This kind of functional rapid 
prototyping would allow analysts to show the users a comprehensive image of the 
application state at any given moment, making it possible to detect analysis errors or 
misunderstandings as soon as they are originated. Furthermore, system designers 
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would have a validated starting point for their development tasks, avoiding having to 
start from scratch. 

If we work in a declarative environment, the programs generated are 
theories of a given logic where the three concepts of machine computation, logic 
deduction and satisfaction in a theory's standard model are equivalent. In this case, a 
final soW~vare product which is formally equivalent to the system specification can be 
obtained using declarative programming languages with a well-defined declarative 
and operational semantics and with equivalent results between them. 

If the target environment is imperative, we lose the quoted declarative 
properties. However, we can generate a prototype which is functionally equivalent to 
the requirements specification, if we clearly define a mapping between the 
conceptual and the execution model. This automated prototyping policy (introduced 
as a code generation strategy later on in this paper) constitutes an important 
improvement with respect to the current state of the art of the field. 

In summary, all these ideas lead us to the OO-Method proposal. OO-Method 
is an OO methodology, which is intended to overcome these problems and whose 
contribution is based on the following basic principles: 

1. to give support to the OO conceptual modeling notions, 
2. to join OO formal method concepts with practical and widely used OO 

methodologies, 
3. to provide an automated prototyping environment, including complete 

code generation (data and behaviour) in both declarative and imperative 
programming environments. 

3. The Methodology 

O0-Method is an Object-Oriented Software Production Methodology whose 
phases are shown in Figure 1. Basically, we can distinguish two components: the 
conceptual model and the execution model. 

When facing the conceptual modeling step of a given Information System, 
we have to determine the components of the object society without being worried 
about any implementation considerations. The problem at this level is to obtain a 
precise system definition, and this is the conceptual model. 

Once we have an appropriate system description, a well-defined execution 
model will fix the characteristics of the final software product, in terms of user 
interface, access control, service activation, etc., in  short, all the implementation- 
dependent properties. 

In this context, we start with an Analysis step where three models are 
generated: the Object Model, the Dynamic Model and the Functional Model. They 
describe the Object Society from three complementary points of view within a well- 
defined OO framework. For these models we have preserved the names used in many 
other well-known and widely-used OO methodologies, even if the similarities are 
purely syntactic as can be seen throughout this paper. 

From these analysis models, a corresponding formal and OO Oasis 
specification (the OO-Method design tool) can be obtained in an automated way. 
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This is done through an automatic translation process. The resultant Oasis 
specification acts as a complete system repository, where all the relevant properties 
of the component classes are included. 

According to the execution model, a prototype which is functionally 
equivalent to the specification is built in an automated way. This may be done in 
both declarative (Prolog-based) [Can95] and imperative environments (specially 
those visual OO programming environments that are widely used nowadays). The 
code generation strategy is independent of any concrete target development 
environment, even if at the moment our selected environment for automated code 
generation are Visual C++, Delphi, Java, Visual Basic and PowerBuilder. 

O0-Method  

Conceptual 
Model 

Execution 

Model 

Automated Translation 

@ @ ~Automated Translation 

Fig. 1. Phases of OO-Method. 

Next, we explain the characteristics of the three models (object, dynamic 
and functional) that constitute the conceptual model, introduce the execution model 
features and explain the conversion strategy from the former to the latter. 

3.1Conceptual model 

Object Model 

The Object Model is represented by means of a Class Configuration 
Diagram (CCD), a graphic model where system classes are declared, including their 
attributes and services. Aggregation and inheritance hierarchies are also graphically 
depicted representing class relationships. Additionally, agents are introduced to 
specify who can activate each class service. Classes are the basic modeling units. A 
class is represented by a rectangle with three areas: 

�9 a header with the class name. 
�9 a static component where attributes are declared. 
�9 a dynamic component where services are introduced, distinguishing 

among new and destroy events, and among private and shared events. 

Shared events are connected by solid lines in the CCD. Client classes 
(agents) of a given service are represented by dotted lines joining every potential 
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client class with the corresponding server class, capturing the client system view in 
an easy and intuitive way. 

OO-Method deals with complexity by introducing aggregation and 
inheritance hierarchies. 

We represent the aggregation relationship between two classes including its 
cardinality (minimum and maximum) to determine how many components can be 
attached to a given container and how many containers a component class can be 
associated with. See Figure 2. 

M~n~U~ 
"n: n ~  

N 
Fig. 2. Aggregation relationship. 
Fig. 3. Inheritance relationship. 

Specialization Generalization 

/ '% / %. new / destiny ~ndltion / \ 
t 

Inheritance is graphically depicted as an arrow from a given subclass to its 
superclass. This arrow can be labeled with a condition of specialization, or with the 
events that activate/cancel the child role, respectively. See Figure 3 I. 

Next, the CCD corresponding to a classical Library Information System is 
shown in the Figure 4. As a basic explanation (for reasons of brevity), we assume 
that as usual in such a System, there are readers, books and loans relating a book to 
the reader who orders it. Readers can 'play the role' of unreliable readers, if  their 
return dates expire. Librarian and reader instances are declared as active objects. 

1 This is how inheritance is dealt with in Oasis, distinguishing between permanent 
and temporal specialization. The permanent case refers to child instances created 
when the ancestor instance is created, and they need a condition which is built on 
constant attributes. Temporal specialization (role) appears when a superclass event 
happens or a condition built on variable attributes holds. 
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Fig. 4. CCD that represents the Object Model of the Library Information System. 

Dynamic Model 
The Dynamic Model is used to specify valid object lives and interobjectual 

interaction. To describe valid object lives, we use State Transition Diagrams (STDs, 
one for each class). To deal with object interaction, we introduce an Object 
Interaction Diagram (OID), one for the whole System. 

State Transition Diagram 

STDs are used to describe correct behaviour by establishing valid object 
lives. By valid life, we mean a right sequence of states that characterizes the correct 
behaviour of the objects for every class. In this context states denote the different 
available situations for class objects, and are depicted using a circle labeled with the 
state name. 

When an object does not exist, a blank circle represents this "state" of  non 
existence, and will be the source of initial transition labeled by the corresponding 
new event. A bull's eye is used to represent the post-mortem state. 

L I B : d e s t m y j e a d ~  

[ LIB:return when b~k_count= 1 

LIE:'oan 

LIB:loan if book count< 10 

Fig.5 STD for a READER. 

Transitions represent valid changes of state that can be constrained by 
introducing conditions. They follow the syntax shown below: 
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event I action I transaction [if  precondition] [when control condition ] 

where precondition is a condition defined on the object attributes that must hold for a 
service to occur and a control condition is a condition that avoids the possible non- 
determinism for a given action. An example of STD can be seen in Figure 5. 

Object Interaction Diagram 

The object interactions are represented by diagrams of this kind. We declare 
two basic interactions: 

�9 triggers, which are services of objects which are activated in an 
automated way when a condition is satisfied by an object of the same or 
another class. 

�9 global interactions, which are transactions involving services of 
different objects. With these global interactions, interobjectual 
transactions can be declared. Formally, they can be seen as a local 
service of the aggregation among the classes providing the services that 
constitute the global interaction. 

Basically, we represent classes in the OlD as boxes with a header including 
the class name. Class services are declared as smaller boxes inside the corresponding 
class box. The class service boxes are connected when one of the previous types of 
interactions is defined. Triggers are introduced by starting the corresponding solid 
line in the header of the class and ending it in the triggered action, and global 
interactions are introduced by connecting the involved services with a common 
global interaction identifier (Glid). The general model for an OID can be seen in 
Figure 6 and 7. 

I event1 I I event2 I I event3 I 

t I I 
Fig. 6. Trigger Relationships 

I event1 

l i  

I 

Functional Model 

Fig. 7. Global Interaction 

After declaring object attributes and services in the Object Model and valid 
life cycles and object interactions in the Dynamic Model, the aim of the Functional 
Model is to capture semantics attached to any change of state in an easy and an 
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intuitive way. This model specifies the effect of an event on its relevant attributes 
through an interactive dialogue. The value of every attribute is modified depending 
on the action that has been activated, the involved event arguments and the current 
object state. 

The specification of an action effect should be made declaratively, as 
proposed in Oasis. However, a good specification requires a solid formal basis for 
any analyst. To solve this situation, the OO-Method provides a model where the 
Analyst only has to categorize every attribute among a predefined set of three 
categories and introduce the relevant information depending on the corresponding 
selected category. 

This classification of attributes [Pas96-2] is a contribution of this method 
and gives a clear and simple strategy for dealing with the task of generating the 
Execution Model. At the same time, it opens the door to being able to include this 
information in an Oasis specification in an automated way. 

There are three types of attributes: push-pop, state-independent and 
discrete-domain based attributes. 

Push-pop attributes are those whose relevant events increase or decrease 
their value by a given quantity. Events that reset the attribute to a given value can 
also exist. 

An example of this category is the book_.number of the reader class, with 
REA:loan as increasing action and REA:return as decreasing one (REA is a variable 
of type reader). 

Attribute : book_number Category : push-pop 
Action T~cpe Action Effect Evaluation Condition I 

Incr. REA:loan + 1 I Decr.  REA:retum - 1 

Fig. 8. Push-pop attribute book_number of the reader class. 

State-independent attributes have a value that depends only on the latest 
action that has occurred. Once a relevant action is activated, the new attribute value 
of the object involved is independent of the previous one. In such a case, we consider 
that the attribute remains in a given state, having a certain value for the 
corresponding attribute. We can introduce the attribute bookshelf of the book class as 
an example. A book has a bookshelf assigned when the event locate(B) is activated. 
When this event occurs, bookshelf takes the argument value independently of any 
previous value. 

Attribute : bookshelf Category ; state-independent 
t Carrier Action Action Effect Evaluation Condition 

LIB:locate(B) =B 

Fig. 9. State-independent attribute bookshelf of the book class. 

Discrete-domain valued attributes take their values from a limited domain. 
The different values of this domain model the valid situations that are possible for 
objects of the class. Through the activation of carrier actions (that assign a given 
domain value to the attribute) the object reaches a specific situation. The object 
abandons this situation when another event occurs (a "liberator" event). As an 
example, let's consider the available attribute of the book class. The available value 
tells us what the current book situation is. The carrier event (loan) lets the object into 
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a situation where available has the value false. The situation is abandoned when the 
event return is activated. 

Attribute : available Cate~,ory : discrete-domain valued 
I Actual Value Action New Value Evaluation Condition 

TRUE REA:loan FALSE 
FALSE REA:return TRUE 

Fig. 10. Discrete-valued attribute available in the book class. 

All this information, which constitutes the system description, has a textual 
representation in Oasis. The specification is obtained at any moment by executing an 
automated process of translation that converts the collected graphic information into 
a textual OO specification that constitutes a complete, formal System Repository. 

3.2 Execution Model  

Once all the relevant system information in the specification that we have 
called conceptual model is collected, the execution model has to accurately state the 
implementation-dependent features associated to the selected object society machine 
representation. More precisely, we have to explain the pattern to be used to 
implement object properties in any target software development environment. 

Our idea at this point is to give an abstract view of an execution model that 
will set the programming pattern to follow when dealing with the problem of 
implementing the conceptual model. This execution model has three main steps: 

1. access control: first, as users are also objects, the object logging in the 
system has to be identified as a member of the corresponding object society. 

2. object system view." once the user is connected, he must have a clear 
representation of which classes he can access. In other words, his object 
society view must be clearly stated, precising the set of object attributes and 
services he will be allowed to see or activate, respectively. 

3. service activation: finally, after being connected and having a clear object 
system view, the object will be able to activate any available service in the 
user's world view. Among these services, we will have event or transaction 
activation served by other objects, or system observations (object queries). 

Any service execution is characterized as the following sequence of actions: 

1. object identification: as a first step, the object acting as server has to be 
identified. This object existence is an implicit condition for executing 
any service, except if we are dealing with a new 2 event. At this moment, 
their values (those that characterize its current state) are retrieved. 

2. introduction o f  event arguments: the rest of the arguments of the event 
being activated must be introduced. 

3. state transition correctness: we have to verify in the STD that a valid 
state transition exists for the selected service in the current object state. 

2 Formally, a new event is a service o f  a metaobject representing the class, which 
acts as object factory for  creating individual class instances. This metaobject (one 
for  every class) has as main properties the class population attribute, the next old 
and the quoted new event. 
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4. precondition satisfaction: the precondition associated to the service that 
is going to be executed must hold. If  not, an exception will arise, 
informing that the service cannot be activated because its precondition 
has been violated. 

5. valuation fulfilment: once the precondition has been verified, the 
induced event modifications are effective in the selected persistent 
object system. 

6. integrity constraint checking in the new state: to assure that the service 
activation leads the object to a valid state, we must verify that the (static 
and dynamic) integrity constraints hold in this final resulting state. 

7. tn'gger relationships test: after a valid change of state, and as a final 
action, the set of rules condition-action that represent the internal system 
activity have to be verified. If  any of them holds, the corresponding 
service activation will be triggered. It is the analyst's responsibility to 
assure the termination and confluence of such triggers. 

The previous steps guide the implementation of any program to assure the 
functional equivalence among the object system description collected in the 
conceptual model and its reification in a software programming environment 
according to the execution model. 

Next, we are going to present the code generation strategy used in the 
implementation of the previous execution model in a well-known Windows95 
environment, which opens up the possibility of creating a CASE tool that, starting 
from a set of graphical OO models obtained during the conceptual modeling step 
(according to OO-Method) can generate a functional software prototype at any time. 

3.3 Code generation strategy 

Once an abstract execution model has been introduced, we will have 
different concrete implementations of this execution model for different software 
development environments. In this paper, we focus on the implementation of the 
execution model in a Windows95 context, but it must be noted that other concrete 
and alternative implementations are currently being been developed emphasizing one 
using Java in an intranet environment. It is important to note that the representation 
of the conceptual model in the selected execution model is done according to the 
principles introduced above, thus generating a prototype in an automated way by 
adapting the code generation strategy that we present to the particularities of the 
target development environment. 

The execution model implementation selected for a Windows95 
environment keeps in mind the main principles attached to such a environment. 
Basically, this means that we have: 

�9 to reproduce the user's mental image of the system, within an OO world view. 
Users generally expect an application to operate in accordance with its nature, 
and the OO paradigm provides an operational framework to properly represent a 
system as a society of interacting objects, where every individual object can 
access other system component objects and can activate those services it is 
allowed to. To ensure this consistency, the interfaces built have to resemble the 
user's environment. They also have to be consistent, complying with the 
standards in presentation (what the user sees), behaviour (how the application 
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reacts), sequencing (how the dialogs are sequenced) and functionalities (how 
actions are carried out). Finally they have to be transparent, meaning that the 
purely technical application mechanisms must be completely transparent to the 
user. 

�9 to give control to the user. It is the user who must control the application and not 
the contrary. 

To properly implement the set of system classes in a standard Windows95 
software development environment, we have to deal with a static and a dynamic 
point of view. The static one will fix the relational database schema corresponding to 
the system specification. This automated relational generation is out of the scope of 
this presentation and is explained in depth in [Pas95-2]. In short, every class is 
converted into a relation, having the attribute information included in the class 
specification. Aggregation and inheritance are treated by defining the corresponding 
foreign keys according to the collected complex class properties. Next, we are going 
to focus on dynamics explaining the appearence of the prototype which is 
automatically generated. 

The code generation process creates four types of windows as we can see in 
Figure 11: 

Fig.ll Overview of the generated code structure. 

Access Control Window: this is the log-in window, where the 
corresponding active user has to be identified. This is done by 
introducing its object identifier, class name and password. The 
identification is verified on the database to ensure that the object exists. 
Once the object is incorporated to the system, it will see the available 
system class services through menu items of the main menu. 

Fig.12 Access Control Window 

Main Window; it characterizes the system view that the connected object 
has. All the services of the classes are requested through it. It has the 
following options: 

0 the typical File item option of Windows applications. 
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<> for every class, a pull-down menu including an item for 
observations (queries), a section with its descendent classes (if 
any) and a last section with the available class services. 

0 an interactions item, which allows for the activation of global 
interactions. 

Fig.13 Main Window. 

�9 Event  window, where the corresponding arguments are introduced and 
the induced actions are executed through the OK control button. 

�9 Observations window; this screen is intended to be a Query By Example 
pattern where the user can see the results of any query done over the 
current object state. 

Finally, we will give a quick look at the OO-Method CASE tool. 

4. The OO-Method CASE Tool 

The OO-Method CASE Tool [Pas96-1] provides an operational 
environment that supports all the methodological aspects of OO-Method. It 
simplifies the analysis, design and implementation of Information Systems from an 
object-oriented perspective, providing a comfortable and friendly interface for 
elaborating the OO-Method models taking advantages of Windows95. The CASE 
Tool is being used at this moment in the resolution of real complex systems, in the 
context of a R&D project carried out jointly by the Valencia University of 
Technology and Consort S.A. 

The most interesting contribution of this CASE environment is its ability to 
generate code in well-known industrial software development environments from the 
system specification, what constitutes an operational approach of the ideas of the 
automated programming paradigm: analysts collect information, and can generate a 
formal OO system specification, and a complete (including statics and dynamics) 
software prototype which is functionally equivalent to the quoted system 
specification whenever the analysts want. 

When the CASE Tool is executed, we are placed on a blank blackboard that 
represents the CCD where we can draw classes and their properties. By selecting one 
of the classes on the CCD the user can change to the STD dynamic model. The OID 
completes the dynamic model. In addition to these static and dynamic points of view 
the user has to fill the functional model information through friendly and interactive 
dialogs. 
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The Figure 14 shows a picture of the CASE Tool. The main menu of the 
tool has the typical items of an editing tool and also allows the user to enter in 
textual mode the OO-Method models. Two remarkable items are the Project item 
that includes the options for the Analysis (object, dynamic and functional models), 
Design (Oasis code, generated in an automated way) and Implementation (Visual 
C++, Delphi,... code) steps, and the View item which allows the user to manage the 
complexity of the graphic diagrams. 

Fig. 14 OO-Method CASE Tool 

5. Conclusions 

The main aspects of the presented work are the following: 

1. A complete OO methodology for dealing with all the Software Production 
Process phases has been introduced. This methodology uses a formal OO 
specification language (Oasis) as a central, well-defined repository, from which 
executable application prototypes can be obtained at any given moment. 

2. A CASE tool for Rapid Prototyping is provided. It is embedded in the 
methodological OO context of OO-Method, having as basic property that the 
collection of system requirements generates a prototype to be run by final users in 
order to validate this process of requirements engineering. 

3. On the basis of our approach, we find an operational environment blending 
classical, widely-used OO methods with formal specification languages, 
complementing their different backgrounds: software development practice on 
the one hand, and a mathematical theory background on the other hand. 
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