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Abst rac t .  We present in this paper the original notion of natural rela- 
tion, a quasi order that extends the idea of generality order: it allows the 
sound and dynamic pruning of hypotheses that do not satisfy a property, 
be it completeness or correctness with respect to the training examples, 
or hypothesis language restriction. 
Natural relations for conjunctions of such properties are characterized. 
Learning operators that satisfy these complex natural relations allow 
pruning with respect to this set of properties to take place before inap- 
propriate hypotheses are generated. 
Once the natural relation is defined that optimally prunes the search 
space with respect to a set of properties, we discuss the existence of 
ideal operators for the search space ordered by this natural relation. 
We have adapted the results from [vdLNC94a] on the non-existence of 
ideal operators to those complex natural relations. We prove those non- 
existence conditions do not apply to some of those natural relations, thus 
overcoming the previous negative results about ideal operators for space 
ordered by O-subsumption only. 

1 Introduction 

A search problem consists of a set of states (the search space), a set of operators, 
an initial state and a goal state. The goal state may not be explicitly described, 
but  may rather be specified through a set of properties it must satisfy. 

After [Mit82], "generalization problem is essentially a search problem '~. In 
the framework of definite semantics, the search space is a set of definite clauses, 
the initial state is given by a positive example of the target  concept and the 
operators are learning operators that  alter a hypothesis clause for the target  
concept into a set of new and possibly bet ter  hypotheses. The learning goal 
is classically defined in Inductive Logic Programming (ILP) as follows [MR94]: 
given a set E + of positive examples and a set E -  of negative examples for the 
target concept, a background knowledge B, find a hypothesis H such that  

Ve + C E  + :  B U H ~ e  + (H is complete) , 
Ve- E E - :  B U H [ A e -  (H is correct) . 
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In ILP, the cost of exhaustively exploring the search space in order to find a 
hypothesis that satisfies the completeness and correctness criteria is prohibitive, 
and several techniques have been developed to prune the search space, either 
statically (before search) or dynamically (during search). 

On the one hand, a well-known pruning technique [Mit82] is to exploit the 
generality ordering on the learning search space. For instance, given that the 
search proceeds bottom up with respect to a generality ordering, and that a 
given hypothesis H in the search space covers a negative example, it is not 
necessary to develop any of its generalizations, as none of them will ever meet 
the correctness criterion anymore. 

On the other hand, pruning techniques exploiting additional constraints on 
the expected target concept definition known as learning bias, have also been 
extensively studied in ILP (see [NRA+96] for a survey). In particular, language 
bias allows constraint setting on the syntax of the target concept definition. 
Handling language bias, by pruning hypotheses which are irrelevant with respect 
to a specific learning problem, adapts the learning process to the problem at 
hand, and enhances both the quality and the efficiency of learning. 

However, in learning systems that search a hypothesis space ordered by a 
generality relation, the handling of language bias may be expensive: hypotheses 
generated by the learning operator may not always satisfy the language bias, 
which therefore have to be tested at each learning step. Even worse, it may 
well be that a hypothesis does not satisfy a language bias, and that some of its 
descendants through the learning operator satisfy it: even if a hypothesis fails 
against the language bias test, its descendants nevertheless have to be generated 
and tested. 

In this paper, we study a smoother and more efficient way to integrate 
language bias handling in learning. As opposed to systems that only use a 
generality ordering to explore and prune the search space, the idea is to also 
take into account the language bias to order the search space. In that aim, we 
propose an extended definition for the learning task: given a set of properties 
P = {P1,. . .  ,Pn}, find a hypothesis H such that PI(H) A ... A Pn(H). The 
P~ necessarily include at least completeness or correctness with respect to the 
examples of the target concept. To deal with this new definition, new quasi- 
orders called natural relations are designed that allow optimal pruning with 
respect to training example coverage and a subset Pord of P.  This pruning is 
dynamic : when a generated hypothesis H does not satisfy Pord, all the descen- 
dants of H can be safely pruned. Roughly speaking, this amounts to pruning 
the search space with respect to both a generality relation and some language 
bias, as done previously with respect to a generality order only. This saves the 
cost of generating and testing inappropriate hypotheses. 

On a more theoretical basis, ILP related works have studied different quasi- 
orderings for First Order Logic (FOL) search spaces: O-subsumption [Plo70], 
generalized subsumption [Bun88], T-implication [IA95], or logical implication 
[NCdW96], and have formalized learning operators as refinement operators that 
go through a quasi-ordered space of clauses [Sha81, Nib93, vdL95]. Given a 
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quasi-ordered space, [vdLNC94a] has defined the notion of ideal operator. In- 
tuitively, the ideality property for an operator ensures that given any hypoth- 
esis H of the search space, the set of alterations of H is finite, that none of 
such alterations of H is equivalent to H, and that the operator is complete. 
Ideality seems reasonable to expect from a learning operator, but it has been 
proved that no ideal operator exists for unrestricted search spaces ordered by 
8-subsumption [vdLNC94a] or by logical implication [vdLNC94b]. Given our 
natural relations, we then check whether some ideal operators may exist for the 
search space ordered by a natural relation, by adapting the conditions introduced 
in [vdLNC94a, vdLNC94b]. We find a number of favorable cases, in which those 
non-existence conditions do not apply. Finally, we exhibit an ideal operator for 
the search space ordered by a given natural relation. 

The paper is organized as follows. In section 2, we give general definitions 
necessary to introduce our framework. In section 3, we define _>p, the natural 
relation for a property set P. We discuss in section 4 the necessary conditions 
for the existence of ideal learning operators for sets ordered by a natural relation 
and, in section 5. As an illustration, in a specific case for which these conditions 
are met, a new ideal operator is proposed. We conclude by situating this work 
with respect to previous approaches in ILP and by describing its perspectives. 
For the sake of brevity, proofs have been omitted from this paper, but full proofs 
for all propositions can be found in [TR97]. 

2 D e f i n i t i o n s  

2.1 Ref inement  Opera to r  

In this paper, we consider a refinement operator as a binary relation on the 
search space. An operator 0 is then represented by the set of pairs (H,H'), 
such that H ~ E (O(H). Typically, the search space is a set of clauses S ordered 
by a generality relation _>. A binary relation (.O is an upward refinement operator 
for (S, _>) iff VC, D E S : C (_0 D ~ C _> D. In other words, (.0 is a refinement 
operator iff 

V C e S : { D c S I C O D  } C _ { D e S I C > _ D }  . 

In the same way, a binary relation O is a downward refinement operator for (S, :>) 
iffVC, D E S : COD ~ D >_ C. We note O(C) the set {D E S I COD}. Then, 
we will say that an operator O satisfies a relation 7~ iff O C_ 7~. [vdLNC94a] has 
introduced a class of theoretically interesting operators, ideal operators. 

2.2 Ideal l ty  

We present here a summary of definitions and results on ideal operators from 
[vdLNC94a, vdLNC94b, vdL95]. 

A refinement operator O is said ideal for (S, >) if it is locally finite, complete 
and proper for (S, _>). 
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1. A refinement operator (P is said locally finite for (S, >) iff VC E S : O(C) 
is finite and computable, i.e., for any hypothesis H of (S, >), the set of 
refinements of H through (P is finite and computable, which is the least we 
can expect for any practical implementation of (9. 

2o A downward refinement operator (9 is said complete for (S, >) iff VC, D E 
S : C > D =~ 3 E  E S : E E O * ( C ) A  E ,~ D, where (9* denotes the 
transitive closure of (9, and ~, denotes the equivalence relation of >. An 
upward refinement operator (9 is said complete for (S, >) iff VC, D E S : 
D > C =~ 3 E  E S : E E O*(C) A E ~ D. This means that, given any two 
comparable hypotheses C and D of (S, >), there exists a refinement chain 
from C to D. In other words, if the target concept definition belongs to 
(S, >), a complete learning operator will reach it. 

3. A refinement operator (9 is said proper for (S, 2) iff VC, D C S : D C 
O(C) ~ C ~ T~. This last property ensures that set of refinements of H does 
not contain any hypothesis equivalent to H. Intuitively, at each application 
of (9, the rank of hypotheses with respect to the quasi-order increases. 

There are two situations in which ideal operators do not exist: there exist 
uncovered infinite chains or infinite cover set in the search space. 

The notion of cover is used to represent the immediate successors or prede- 
cessors of a hypothesis with respect to >. 

Defini t ion 2.1 (cover). C covers D iff C > /) and there is no E such that 
C > E > D. We call C an upward cover of D and D a downward cover of C. 

Defini t ion 2.2 (cover sets).  A downward (resp. upward) cover set of a clause 
C in (S, _>) is a maximal set of non-equivalent downward (resp. upward) covers 
of C. 

Example 2.3 (downward cover sets). Let us consider a set {a, b, c, d, e} ordered 
as shown on figure 1. a has two possible downward cover sets: {b, d} or {c, d} (b 
and c are equivalent and so, they cannot appear in the same cover set). 

1 
e 

Figure  1. Example of quasi-ordered set. 

It has been proved that a cover set of a hypothesis has to be included in its 
set of refinements through an ideal operator. As a consequence, two problems 
may raise: 
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- the cover set cannot be computed: given two hypotheses C and D, such 
that  D is more general than C, there is an infinite number of hypotheses in 
between C and D, therefore completeness is lost1; 

- the cover set is infinite, which implies, tha t  the production of an ideal oper- 
ator would be infinite also and hence, the operator uncomputable.  

The first case is formalized through the notion of uncovered infinite chain. 

D e f i n i t i o n  2.4 ( u n c o v e r e d  in f in i t e  cha ins ) .  An uncovered infinite (strictly) 
descending chain for (S, >_) is an infinite set (Di}i>_l where D~ E S such that  
D1 > D2 > 0.. > Dn > Dn+l > . . .  > C and C has no upward cover E in S 
covered by all Di. An uncovered infinite (strictly) ascending chain for (S, >) is 
an infinite set {Ai}i>_l,Ai E S such that  C > . . .  > An+l > An > . . .  > A2 > A1 
and C has no downward cover F in S covering all Ai. 

Example 2.5 (uncovered infinite descending chain). Figure 2 illustrates the de- 
scending chain definition on an example: under 0-subsumption, {Di}i>2 is an 
uncovered infinite descending chain of C with: 

C : q(Xl) +- p(X1,X1) , 
D,~ : q(Xl) e-- {p(Xi, Xj ) l l  <_ i , j  <_ n, i  r j }  . 

D2 : q(X1) +-" p(Xl,  X2),p(X=, Xl)  

J 
D3: q(Xl) +-- p(X1,X2),p(X1,X3),p(X2,X1),  

p(X2, x3),p(X3, xl),p(x3, x2) 

~. E :  q(X1) +'-p(X1,X2),p(X2,X1), 
On : q(Xl) ~- {p(Xi, Xj)I1 4_ i , j  <_ n,i  # j}  p(X2,X2) 

iC s ,~ ' '~  ... "%%%% 

C : q(Xl) +- p(X1, X1) 

F i g u r e  2. Uncovered infinite descending chain. 

1 One may think, for instance,of the set ]R of reals: for a given real, it is impossible 
to build a real immediately greater. 
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2.3 Properties 

As quoted in the introduction, we indifferently include in the set of expected 
properties for the target concept completeness and correctness with respect to 
training examples and language bias constraints. As quoted in the introduction, 
we can find in ML and ILP literature a large range of language restrictions that 
a target concept definition should satisfy. We detail in the following the ones 
we have focused our study on. This list is largely representative of language 
biases classically used in ILP. Besides, as we will see in next section, it can be 
considered as indicative, as our framework is general enough to integrate new 
properties. 

- A hypothesis must, or must not cover a given example. 
- One may impose a (upper or lower) bound on 

�9 number of existential variables (variables not occurring in the head of 
the clause), 

�9 number of literals in the body of the clause, 
�9 depth [MF90]. The depth of a clause is the maximal depth of its terms. 

Variables and constants have depth zero. A term f ( . . . ,  ti , . . .) has depth 
one plus the maximal depth of ti. 

�9 level [DMR92]. The level of a clause is the maximum of the level of 
its variables. Variables of the head have level zero. The level of an 
existential variable V is one plus the minimal level of variables appearing 
in the first literal containing V. 

- One may impose a hypothesis to be 

�9 range-restricted (variables of the head must appear in the body), 
�9 connected [Qui90] (level is defined for all variables of the hypothesis), 
�9 reduced for 8-subsumption (C is reduced iff f18 : Ct~ C C). 

In the above list, some of the language biases have been specifically developed 
for FOL languages. On the one hand, those language biases have an interest as 
they allow to express meaningful information about the expected form of the 
concept. For instance~ the range-restriction property states that a meaningful 
definition for the concept "X is the grandfather of Y,,  should contain constraints 
on X and Y. On the other hand, those language biases define subsets of FOL 
for which the coverage test of hypotheses with respect to examples is (relatively) 
efficient. Finally, any hypothesis that fails against a language bias does not have 
to be checked against examples, which may save a lot of computation efforts. 

Now the use of bias in ILP is motivated, we show in next section that the 
only way to prune the search space with respect to a given property is to explore 
it with an operator that satisfies a relation "induced" by this property, namely, 
its natural relation. 
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3 N a t u r a l  R e l a t i o n s  

Idestam-Almquist [IA95] says "Implication is the most natural  and straightfor- 
ward basis for generalization in inductive learning, since the concept of induction 
can be defined as the inverse of logical entailment". We give here a more formal 
justification of why logical implication is the most natural  relation to order a 
search space of hypotheses when solutions are defined with respect to at least 
completeness or correctness criteria. We extend the notion of natural  relation 
to other properties. 

3.1 Private property 

The aim is to explore a small search space without risking to miss a solution. 
It is safe to stop the refinement of a given H that  does not satisfy the expected 
properties (and therefore to prune the search space), iff no descendant of H 
will ever satisfy those properties. This intuition is illustrated on figure 3, and 
formalized in the following definition. 

(a) (b) (c) 

F i g u r e  3. Private and non private properties. Figure (a) illustrates tha t  safe 
pruning is not possible with respect to non private property. In case (b), pruning 
is sound and (c) shows how pruning operates. 

D e f i n i t i o n  3.1 ( p r i v a t e  p r o p e r t y ) .  A property P is said private with respect 
to the relation T~ iff 

v 

Let us assume the property P is expressed by a F 0 L  formula. The parameters 
of the property are the free variables in this formula. 

2 If F is a formula, then VF denotes the universal closure of F, which is the closed 
formula obtained by adding a universal quantifier for every variable having a free 
occurrence in F [Llo87]. The semantic of F is the negation of F. 
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Example 3.2 (length o/clause). Let us consider the property that bounds the 
length of clause to k literals, expressed as IHI < k. The property LENGTHk is 
private with respect to the relation 7~ iff 

VH, H'  E S : Vk E IN : (H n H'  A IHI > k ~ IH'I > k ) . 

A relation 7~ that satisfies this property is, for instance, the one defined by: 
H ~ H ~ iff there exists a literal L such that H ~ -- H U {L). 

3.2 Na tu r a l  re la t ion  

A property is private for many relations. For instance, the empty and identity 
relations make any property private and are, as a consequence, of little interest, 
as far as the pruning of the search space is concerned. Indeed, an operator 
satisfying the identity relation applied to a given hypothesis H, generates at 
most H itself.We will consider in the following that a natural relation for a 
given property is one of the largest relations that make this property private. 

Def in i t ion  3.3 (na tura l  re lat ion) .  7~ is a natural relation for the property P 
iff 

1. P is private with respect to the relation 7~; 
2. if a relation 7~ ~ exists such that P is private with respect to the relation 7~ ~ 

and 7~ ~ 7~ t, then 7~ = 7~ ~. 

Let us try to give a more precise characterization of this natural relation. We 
will see in the following that the natural relation of a property is indeed unique. 
Two hypotheses are "naturally" related if, for all possible instantiations of the 
property parameters, either the first hypothesis satisfies the property or the 
second one does not. 

P ropos i t ion  3.4. A property P has a single natural relation, denoted >p.  >p 
is defined by 

vc, D s: c _>p D .  v (P (c )v  P(D)) . 

Therefore, a property P is private with respect to the relation 7~ iff 7~ =v >p. 
This result justifies why we have chosen the largest relation as natural relation: 
a relation makes a property private iff this relation is included in the natural 
relation of the property. Therefore, safe and dynamic pruning of the search 
space with respect to a given property can only be achieved through an operator 
which satisfies its natural relation. 

Remark 3.5. Giventhe definition of downward refinement operator (section 2.1), 
if 50 is downward with respect to >p then P is private with respect to (9. 

We assume, in the remainder of this paper, that any property can be ex- 
pressed as f ( H )  Tt k where 
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- f is a function from the search space S to a domain ~Df; 
- T~ is a quasi-order on :Dr x :Dr; 
- k E :Dr (k represents the parameter of the property P). 

Table 1 shows our properties expressed in this framework. For each property of 
this table, the dual property can be considered3~ 

Table 1. Properties expressed in our framework. 

COVEn, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  H ~ e 
RANGE-RESTRICTEDb . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  RR(H) = b 
C O N N E C T E D b  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Connected(H) = b 
REDUCEDb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Reduced(H) = b 
LENGTH, . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  IHI _<~ n 
VARSn . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Nv(H) _<~ n 
D E P T H d  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Depth(H) < ~  d 
LEVELI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  Level(H) _<lN 

This assumption on the form of the property allows the simplification of the 
expression of natural relation. 

P ropos i t ion  3.6. Let P be a property defined by VC E S : P(C)  r f (C)  Tr k. 
The natural relation of P is also defined by 

VC, D E S : C >-p D ~ f (C)  Tt f ( D )  

Example 3.7. Let us consider the property COVERe stating that a hypothesis H 
covers an example e, H ~ e. Function f is here identity, Tr is identified to ~ ,  the 
parameter of the function is e. By direct application of the above proposition, the 
natural relation for COVERe is defined by VC, D E S : C >-Cover D ~ C ~ D. 

Thus, saying that an operator makes COVERe private is equivalent to imposing 
that this operator satisfies a generality ordering. This justifies that a refine- 
ment operator must satisfy a generality ordering. The notion of natural relation 
extends that of generality order to all properties a target concept must satisfy. 
Table 2 lists the natural relations for all the target concept properties we address. 

Now that the natural relation for a single property has been characterized, 
we explore how to compute the natural relation of its dual property and then, 
and the natural relation of a conjunction of properties, as there are usually more 
than one imposed on the target concept definition. 

3 For a given property P, we call the dual P, the property P. 
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Table 2. Natural relations. 

Property Relation 
P VC, D 6 S : C >p  D r 

COVERe C ~ D 
RANGE-RESTRICTED RR(C) = RR(D) 
CONNECTED Connected(C) = Connected(D) 
REDUCED Reduced(C) = Reduced(D) 

LENGTH. 
VARS. 

ICI _<N IDI 
Nv(C) < ~  Nv(D) 

DEPTHp Depth(C) ___~q Depth(D) 
LEVELI Level(C) _<~ Level(D) 

Proposition 3.8 (dual  p rope r ty ) .  Let P be a property and, ~p, its natural 
relation, VC, D 6 S : D >p C r C >-~ Do 

The natural relation of a dual property is the inverse relation of the natural 
relation. After remark 3.5, a downward operator with respect to >p  makes 
this property private and allows the dynamic pruning of hypotheses that do not 
satisfy this property. Therefore, the corresponding upward operator deals with 
the dual property. 

Example 3.9. The natural relation for the dual of the property COVEP~ VC, D 6 
S : C > ~ D t v  D ~ C .  

Proposition 3.10 (conjunction of properties). Let P1 and P2 be two prop- 
erties, >p~ and >-P2, their respective natural relation, 

VC, D 6 S : C >pIAp2 D c~ C >pI D A C >p2 D . 

Example 3.11. By the expression of the completeness criterion as a conjunction 
of COVEae~ for ei ranging over the set of positive examples of the target concept, 
the natural relation for completeness is logical entailment, as expected. 

4 I d e a l  O p e r a t o r s  f o r  n a t u r a l l y  o r d e r e d  s e t s  

In the previous section, we have defined the notion of natural relation for a 
property. This natural relation characterizes the set of operators that allow 
dynamic pruning of the search space with respect to this property. As quoted in 
the introduction, there is no ideal operator for unrestricted search space ordered 
by 0-subsumption or logical implication. The open question is now whether 
some of those complex natural relations are a sound basis for ideal operators, 
i.e., whether we may overcome the previous negative results about the existence 
of ideal operator for unrestricted search space ordered by a natural relation. 
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Notation 4.1. We denote by >~ the natural relation obtained by combining the 
generality ordering G with the property represented as f (H)  7~ k. 

For instance, >-~l denotes the conjunction of tg-subsumption and natural re- 
lation of LENGTHk. In the following, we restrict the natural relation for correct- 
ness/completeness (logical implication) to O-subsumption, which is equivalent to 
logical implication for most of the practical problems (see [Got87]). 

When looking for an ideal operator for a conjunction of properties Pa and 
Pb, a simple case is when their respective natural relations axe included (i.e., 
when one property implies the other). 

P r o p o s i t i o n  4.2. Let >_a and >_b be quasi-orders such that VC, D E S : C >a 
D ::~ C ~b D. An operator is ideal for (S, >~ N ~>_b) iff it is an ideal operator 
for <S, >o>. 

There are two direct applications for this proposition. Firstly, if there is no 
ideal operator for (S, _>a), then looking for an ideal operator for (S, >a n _>b} is 
pointless. Secondly, if we find an ideal operator for (S, _>a N ->c} for a given _>e, 
then this one is ideal for (S, >_a A kb A ->c) too. 

In both cases, we do not have to consider ---~b, since it has no incidence on 
the construction of ideal operators for (S, _>a N >_b). 

Example 4.3. Since C _>0 D ~ Depth(C) < ~  Depth(D), there exists no ideal 
operator for (S, >0 --depth)" 

Now that  this simple case is solved, let us adapt the non-existence condi- 
tions for ideal operators (section 2.2) to natural relations defined in the previous 
section. By doing so, we aim at finding a general method for discriminating fa- 
vorable cases, i.e., natural relations for which an ideal operator may exist, from 
others. Theorem 4.7 and proposition 4.8 are the sufficient non-existence condi- 
tions of an ideal operator (existence of an uncovered infinite chain and infinite 
cover sets). 

The first result is a general observation about uncovered infinite chains for 
~-subsumption. 

L e m m a  4.4. Let {Di}i_>l be an uncovered infinite chain of a clause C for 8- 
subsumption. In {Di}i>l, the number o/variables increases infinitely. 

Remark 4.5. This lemma points out that  some simple quantities infinitely in- 
crease in an uncovered infinite chain, that  chain being ascending or descending: 
number of variables, length, and number of occurrences of at least one predicate 
symbol. Intuitively, the only way to have an uncovered infinite chain is to add 
to a clause new Iiterals with new variables. 

We now focus on relations defined by conjunctions of two relations with one 
of them being the natural relation > f  of a property expressed as f (C) R k  where 
/ is a function from the search space to a countable (possibly infinite) set. 
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L e m m a  4.6. Let {Di}~>_l be an uncovered infinite chain of C for (S, >_7 N >_f). 
There exists a n such that, for all i great enough, f (Di)  = n. 

We are now able to identify quasi-ordered sets which do not contain uncovered 
infinite chains. 

T h e o r e m  4.7. If  (S, >I) contains uncovered infinite chains then there is a sub- 
set of S in which hypotheses have the same value by f and their number of 
variables is not bounded. 

Unfortunately, the absence of such chains does not necessarily imply the exis- 
tence of ideal operators: a quasi-ordered set without uncovered infinite chain 
may contain some clauses which have an infinite cover set (definition 2.2). We 
give here a sufficient condition to have an infinite cover set. 

P r o p o s i t i o n  4.8 (infinite cover  se t s ) .  If, for a given clause C of S (ordered 
by >~), we have an infinite number of clauses D which are incomparable under 
t?-subsumption and such that C >o D and there is no E such that C >e E >o D, 
and f (C)  = f (D) ,  then the downward cover set of C is infinite. 

5 N a t u r a l  O p e r a t o r s  

We are now able to characterize natural relations for which we may expect to 
construct an ideal operator. The next step is to identify such relations among 
the ones we have considered before. Finally, we may then exhibit one ideal 
operator. 

Notation 5.1. The notation for operators associated to natural orderings is simi- 
lar to that of natural orderings (notation 4.1). G denotes the generality ordering 
the natural relation is based on, and f refers to the property denoted as f ( H ) ~ k  
(see table 1 for the possible values of f) .  P5 denotes a downward refinement op- 

erator, )~5 denotes a upward operator with respect to (S, >~/. The operator P5 

searches through a space ordered by >5" Stating that P5 is ideal means that pg 

is ideal for (S, >5)" 

After example 4.3, there exists no ideal operator for (S, >0depth/. As tg- 
subsumption ordering does not imply any of the other natural relations of table 
2, we therefore look for ideal operators for conjunctions of tg-subsumption and 
one such relation. 

Remark 4.5 provides guidelines on how to abort uncovered infinite chains 
for 8-subsumption: breaking those chains amounts to bounding the number of 
variables (with VARSv), the number of literals (with LENGTH,) or the number 
of occurrences of predicate symbols. 

No language bias allows the bounding of the latter quantity. This leads us to 
introduce the new following language bias: for each predicate symbol p of a given 
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alphabet A, and a given clause C, we define Occ(p, C) as the number of occur- 
rences of the predicate symbol p in clause C. This language bias, called MAX- 
Occ,  consists in bounding the following value: #(C) = max{Occ(p,C)}pcA. 
This bound can be global for all predicate symbols in A, or specific bounds can 
be defined for each predicate symbol~ For instance, one may specify that at most 
three benzene rings should appear in the body of a clause describing an active 
molecule in the mutagenesis application. 

Given these three properties, we will now apply theoretical results of the 
previous section in order to identify relevant combinations to break uncovered 
infinite chains of 8-subsumption. 

P ropos i t i on  5.2. Neither (S, >~l ), nor (S, > ~ } ,  nor (S, >_~} contain uncovered 
infinite chains. 

Theorem 4.7 cannot be applied for range-restriction, connection, reduction, 
depth and level: for these properties, the number of variables may increase 
infinitely. So, the existence of uncovered infinite chains is possible and, indeed, 
the uncovered infinite chain of example 2.5 is also an uncovered infinite chain 
for those properties. 

Now that we may ensure that no uncovered infinite chain may occur neither 
for (S, >_~1), nor for (S, >0Nv ) and {S, >e _ , ) ,  we still have to consider the possible 
existence of infinite cover sets. 

Proposition 5.3. Some clauses in (S, >_oNv } have an infinite downward cover 
set. 

By exploiting the previous results, we may now build ideal operators for all 
, >--gv, >--~" In the following, we will only provide the charac- three orders ->~1 0 

terization of operator p~. A similar technique may give us p~ (which is similar 

to Shapiro's operator P0), )~1' )~0Nv' )~ and others operators associated to more 
complex combination of properties (see [TR97] for a full description of those 
ideal operators). 

We introduce terms or literals which are most general (see [ShaSl] for a 
similar approach). 

Defini t ion 5.4. t is a most general term with respect to a clause C and a 
variable X iff C >0 C { X / t }  and there is no u such that u >0 t and C >0 
C{X/u} ;  L is a most general literal with respect to a clause C, iff C >e CU {L}. 

One may notice that a most general literal with respect to a clause C does 
not unify with any literal in C (adding L to C that unifies with a literal in C 
would produce a clause which is O-equivalent). 

We may now introduce as an illustration the downward refinement operator 
p~, based on 8-subsumption and MAX-OCC. 

Definition 5.5 (ope ra to r  p~). Let C be a clause of S. Then, D e p~ (C) when 
exactly one of the following holds: 
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1. D = C { X / t }  where X is a variable of C and t is a most general term with 
respect to C and X. 

2. D = C{X1/X2)  and ICI = [D h where X1 and X2 are variables of C. 
3. D = C U {p}, where p is a predicate symbol of arity zero and p does not 

occur in C. 
4. D = C U {p( . . . .  Yi,. . .)),  where p is a predicate symbol (which is not a 

symbol without argument) such that Occ(p, C) = 0. 
5. D = C t2 {p(. . . ,Yi, . . . )},  where p is a predicate symbol (which is not a 

symbol without argument) such that Occ(p, C) = It(C) > 0, and ~ are new 
variables. 

6. D = C U {L}, where L has a predicate symbol p such that 0 < Occ(p, C) < 
It(C) and L is a most general literal with respect to C. 

This operator is ideal [TR97]. Let us informally illustrate some of its features 
on the clause C: q +- p(X1,X2),p(X2,X1).  C is known as a clause with an 
uncovered infinite ascending chain under 0-subsumption (see [vdLNC94a] for 
further details). First in this chain is the clause DI: 

q +- p(X1, X2),p(X2, X1),p(Y~, Y2),p(Y2, Y3),p(Y3, Y1) 

Along this chain, Di+l >e Di (by definition of uncovered infinite ascending 
chain) and #(Di+I) _ ~  it(Di) (see remark 4.5). Therefore, these clauses are 
incomparable for _>~: uncovered infinite chains are broken. Di are still more 
specific than C and should be computable from C by our ideal operator. As- 
suming that p is the only predicate symbol and the constant a is the only function 
symbol, p~ applied on C will compute the following clauses: 

q +- p(a, X2),p(X2, a) (applying subcase 1) 
q +- p(X1, a),p(a, X1) (applying subcase 1) 
q +- p(X1, X2),p(X2, X1),p(Y1, Y2) (applying subcase 5) 

Further applications of p~ on the third refinement will yield the clause D1. 
To sum up, the search space ordered by ~ does not have uncovered infinite 

chains any more and our operator is complete. Note that, by construction, p~ 
satisfies the natural relation of MAx-Occ, and the search space can be indiffer- 
ently pruned with respect to MAX-Occor coverage of positive examples. 

Remark 5.6. These operators exactly compute the cover set with respect to the 
associated natural relation. This does not prove ideality [vdL95], but they are 
as efficient as possible, since the minimal number of refinements is computed: in 
order to have an ideal operator O, one must have for every hypotheses of S the 
cover set of H included in the set of refinements of H,  as we compute here the 
exact cover set of H. 

6 Conclus ion and Future Research 

In this paper, we have introduced new relations, called natural relations, that 
allow the optimal pruning of the search space; we have adapted non-existence 
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conditions of ideal operators to these natural relations. Moreover, we have de- 
signed a new language bias, MAx-Occ, which breaks uncovered infinite chains 
for 0-subsumption. Finally, we have proposed a new ideal operator that ideal 
for unrestricted search space ordered by combination of 0-subsumption and our 
natural relation. 

The approach of [Sha81] is similar to our. It introduces a language bias, size, 
the aim of which is to make the refinement operator computable: Therefore, 
strong restrictions are set on size: size is valued in lN, and for a given n E IN, 
the set of hypotheses such tha~ size(H) -= n is finite. As opposed, we do not set 
any restriction on the language bias used, except that the property should be 
expressed as f ( H )  7~ k. 

We have adopted the framework introduced in [vdLNC94a], as [CBS95] ("em- 
pirical ordering") and [ELMS96] (quasi-ordering on DATALOG clauses). Our 
approach differs in that we have extended generality orderings in order to take 
into account the necessity to prune the search space with respect to language 
biases. This leads us to exhibit ideal operators for unrestricted search spaces. 

Future work will extend our results for t?-subsumption to logical entailment. 
We also plan to overcome negative results of this paper by considering more 
complex conjunctions of properties. 

Ideality has been defined initially to guarantee sound exploration of the 
search space. Our claim in that paper is that operators that dynamically prune 
their search space with respect to a set of properties may be ideal. We expect 
that this pruning capacity will yield efficient and adapted learning procedures. 
By any means, we will consider our natural relations with respect to other class 
of operators, such as optimal operators. 

Finally, our aim is to produce an interactive learning system which provides 
most interesting operators given a learning task expressed as the set of properties 
which must be satisfied by the target concept. Such a system is in the line of 
generic learning architectures such as 7-/M_TL:U [NRA+96], in which a prelimary 
version of private bias handling has been implemented. 
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