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Abs t rac t .  We present NeuroLinear, a system for extracting oblique de- 
cision rules from neural networks that have been trained for classification 
of patterns. Each condition of an oblique decision rule corresponds to a 
partition of the attribute space by a hyperplane that is not necessarily 
axis-parallel. Allowing a set of such hyperplanes to form the boundaries 
of the decision regions leads to a significant reduction in the number of 
rules generated while maintaining the accuracy rates of the networks. We 
describe the components of NeuroLinear in detail using a heart disease 
diagnosis problem. Our experimental results on real-world datasets show 
that the system is effective in extracting compact and comprehensible 
rules with high predictive accuracy from neural networks. 

1 I n t r o d u c t i o n  

Neural networks have been widely used to solve classification problems. Com- 
parisons between neural networks and decision trees algorithms for these prob- 
lems have shown that  in general neural networks can produce better  accuracy 
rates [1, 2, 3, 4]. Recent developments in algorithms that  extract rules from neu- 
ral networks have made neural network techniques even more attractive. The 
extracted rules allow one to explain the decision process of a neural network. 
It is not surprising that  in the past few years great efforts have been devoted 
to finding efficient and effective algorithms for extracting rules from a trained 
neural network 

Gallant 's connectionist expert systems [5] and Saito and Nakano's RN method 
[6] are two early works that  a t tempt  to generate rules from neural networks. 
These systems, however, do not actually extract rules from the networks; in- 
stead, they try to generate an explanation for each particular outcome of the 
networks. 

The KT  algorithm developed by Fu [7] is an algorithm that  extracts rules 
from a trained network. It searches for subsets of connections to a network's 
unit with summed weight exceeding the bias of that  unit. It is assumed that  
the unit 's activation value is close to either 0 or 1. By searching for the proper 
subsets of the input connections, sets of rules are generated to describe under 
what conditions the unit 's activation will take one of the two values. 

The MofN algorithm of Towell and Shavlik [8] clusters the weights of the 
trained network into equivalence classes. Clusters that  do not significantly affect 
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the unit's activation are eliminated. The complexity of the network is further 
reduced by replacing the weights in all remaining clusters by the average weight 
of the individual cluster. The rules are generated in a similar way as by Fu's KT 
algorithm. However, because of the creation of clusters with averaged weights 
and the removal of unneeded clusters, it can be expected that the rules extracted 
will be simpler than those of KT algorithm. 

An algorithm that extracts rules from networks that have been trained via 
the backpropagation method with penalty is proposed by Blassig [9]. A penalty 
term is added to the network's error function with the hope that a large number 
of the weights will have zero values after training and thus can be removed. In 
order to force the activation value of a unit to take on the value of either 0 or 1, 
the network's weights are restricted to be -6, 0, or 6, and the unit's bias to be 
either -3 or 3. 

A simple rule extraction algorithm is presented by Setiono and Liu [10]. It is 
claimed that the rules extracted from neural networks are comparable to those 
generated by decision trees [11] in terms of accuracy and comprehensibility. The 
basic idea behind the algorithm is the fact that it is generally possible to replace 
the continuous activations of the hidden units by a small number of discrete ones. 
Rule extraction is realized in two steps. First, rules that describe the network 
outputs in terms of the discretized activation values of the hidden units are 
generated. Second, rules that describe each discretized hidden unit activation 
values in terms of the network inputs are constructed. By merging the rules 
obtained in these two steps, a set of rules that relates the inputs and outputs of 
the network is obtained. 

While the algorithm can generate symbolic rules that mimic the predicted 
outcome of the original network, it works only for data with binary inputs (the 
implicit assumption, that the various hidden unit activation values are deter- 
mined by only a small number of inpu t values, excludes problems with continu- 
ous attributes where there can be infinitely many possible values taken by these 
attributes). Data with some continuous attributes need to be preprocessed before 
training the network. The preprocessing of the data entails dividing the values 
of the continuous attributes into intervals. This is achieved by the ChiMerge 
algorithm [12]. ChiMerge employs the X 2 statistic to determine the division of 
the original intervals into their respective subintervals. All continuous attribute 
values that fall in the same subinterval are then represented by a unique discrete 
value for use as inputs to the neural network. Rules involving the discrete repre- 
sentations of the inputs are generated from the network. Given the boundaries of 
the subintervals furnished by ChiMerge, getting the rules in terms of the original 
continuous attributes is trivial. 

An inherent problem introduced by the preprocessing of the data by ChiMerge 
is that each condition of a rule involving a continuous attribute determines an 
axis-parallel decision boundary. For many classification problems, it is often more 
natural to allow oblique hyperplanes to form the boundaries of the decision re- 
gions. In other words, instead of imposing the axis-parallel constraint, being able 
to generate oblique decision hyperplanes makes it possible to let the learning al- 
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gorithm determine what kind of hyperplanes is more suitable for the data  in 
hand. Oblique hyperplanes are more general and they may substantially reduce 
the number of rule conditions needed to describe the decision region. As a result, 
a more compact and comprehensible set of rules can be obtained. 

In this paper, we describe how a set of rules, where each rule condition is 
given in the form of the linear inequality 

E cixi < ~ (1) 
i 

where cl is a real coefficient, xi is the value of the attribute i, and y is a threshold, 
can be extracted from a neural network. The neural network that  we use is the 
standard feedforward neural network with a single hidden layer. In contrast to 
the tree growing algorithms which generate the rules in a level-by-level and 
top-down fashion, rules are extracted from a network in two steps: from the 
hidden layer to the output  layer and from the input layer to the hidden layer. 
Classification rules are obtained by merging the rules from these two steps. 
Unlike the decision tree algorithms [13, 11] which consider smaller and smaller 
subsets of the data  to improve the accuracy of the rules, the neural network 
approach for rule generation considers the entire training set as a whole. Our 
experimental results show that  more compact sets of rules with high accuracy 
rates can be obtained by the network approach. 

The organization of the paper is as follows. Section 2 describes NeuroLinear, 
a system that  we develop for extracting oblique decision rules from a neural net- 
work. The steps are described in detail by way of an example using a real-world 
dataset.  Section 3 analyzes the merits of generating a set of classification rules 
with NeuroLinear. It also highlights the differences between the rules generated 
from a network and those from the decision-tree method C4.5 ([11]). Section 4 
presents our experimental results on several real-word problems. Section 5 gives 
a brief conclusion of the paper. 

2 Rule  extract ion with  NeuroLinear  

The process of extracting oblique decision rules from a neural network can be 
summarized in the following steps: 

1. Select and train a network to meet a prespecified accuracy requirement. 
Remove the redundant connections in the network by pruning while main- 
taining the accuracy. 

�9 2. Discretize the hidden unit activation values of the network. 
3. Extract  rules that  describe the network outputs in terms of the discretized 

network activation values. 
For each discretized hidden unit activation value, generate a rule in terms of 
the network's inputs. 
Merge the two sets of rules obtained above. 

We shall use the Cleveland heart disease dataset to show the workings of Neu- 
roLinear in detail. 
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2.1 N e u r a l  n e t w o r k  t r a i n i n g  a n d  p r u n i n g  

The Cleveland heart disease data  set can be obtained via anonymous ftp from 
the repository at the University of California, Irvine [16]. It consists of 303 pat- 
terns. Because we have not implemented a way to handle patterns with missing 
at tr ibute values, we discard such patterns and use only the remaining 297 pat- 
terns. Each pat tern is described by 13 attributes, 5 of which are continuous and 
the remaining 8 discrete. The attributes are summarized in Table 1. Each of the 
pattern is labeled either positive (presence of heart disease) or negative (absence 
of heart disease). 

Table 1. The attributes of the Cleveland heart disease data set and network input 
units assigned to them. 

Attribute Type Possible values/Range Network inputs 
CI Continuous [29, 77] ]21 
92 Discrete 0 or 1 ]22 
93 Discrete 1,2,3 or 4 ]23, ]24, Zs, ]26 
C4 Continuous [94,200] ]27 
C5 Continuous [126, 564] Z~ 
96 Discrete 0 or 1 Z9 
97 Discrete 0,1 or 2 5110,Zll,]212 
Cs Continuous [71,202] Z13 
99 Discrete 0 or 1 5114 
Cl0 Continuous [0, 6.2] 5115 
911 Discrete 1,2 or 3 Z16,Z17,Zls 
~)12 Discrete 0,1,2 or 3 Z19,Z2o,Z21,Z22 
7913 Discrete 3,6 or 7 512a, Z24, Z25 

Since the problem is a binary classification problem, one output  unit is suf- 
ficient for the network. Positive patterns are given the target 1 and negative 
patterns 0. A hidden layer of 4 units is found to be sufficient to give the network 
a comparable accuracy rate to those reported in the literature. One input unit 
is assigned to each continuous attribute. Values of the continuous attributes are 
normalized such that their range is [0, 1]. Each value of a discrete at tr ibute with 
n possible values is represented by an n-bit binary string, except when n = 2, 
only 1 bit is used (see the last column of Table 1). With an additional input 
unit to represent the hidden unit bias values, the total number of the network's 
input units is 26. 

Given an n-dimensional input pattern xi, the predicted output  of the network 
at output  unit p is computed as 
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where 

- h is the number of hidden units in the network. 
- wj is an n-dimensional vector of weights for the arcs connecting the input 

layer and the j-th hidden unit, j = 1, 2 , . . . ,  h. The weight of the connection 
from the t-th input unit to the j-th hidden unit is denoted by wjl. 

- vj is a C-dimensional vector of weights for the arcs connecting the j-th 
hidden unit and the output layer. The weight of the connection from the 
j-th hidden unit to the p-th output unit is denoted by vpj. 

- C is the number of output units. 

The activation function of the hidden units is the hyperbolic tangent function 

a(y) = @y - + (a) 

while the activation function of the output units is the sigmoid function 

~(y) = 1/(1 + e-Y). (4) 

The hyperbolic tangent function allows the activation values of the hidden units 
to be in the interval [-1, 1], while the range of the sigmoid function used at the 
output units is [0, 1]. 

The network is trained by minimizing the cross-entropy error function with 
weight decay [14]: 

k C 

O(w,v) =-EE(tpilogSpi-I-(1-tpi)log(1-Spi))+ P(w,v), (5) 
i = t  p = l  

where k is the number of patterns in the training dataset, tpi is the binary-valued 
target output for pattern xi at output unit p, and P(w, v) is the penalty term: 

+ E + , P(w, v) E1 
1 +/5w2< ~ 1 +/sv~j j=, p=l 

j = l  /=1  p=l 
(6) 

(q and e2 are two positive penalty parameters and/3 > 0). 
The penalty term P(w, v) is added to the cross-entropy error function so that 

relevant connections can be distinguished from those irrelevant ones by the their 
magnitude. After training, it can be expected that the irrelevant connections will 
have small magnitude and therefore, they can be removed from the network with 
little or no effect on the accuracy of the network. Pruning is achieved by removing 
those connections with small magnitude. We train and prune the network such 
that it achieves an accuracy rate of at least 85 % on the training set. 

Figure 1 depicts a pruned network for the Cleveland heart disease problem. 
The network has been trained with 90% of the patterns randomly picked from 
the dataset. The remaining 10% of the patterns are used to test the network's 
generalization capability. The pruned network has only 2 hidden unit and 10 
connections left. Only one input, Z2, is connected to the first hidden unit. A 
total of seven inputs are connected to the second hidden unit. The accuracy 
rates of this network are 86.14 % on the training data and 80.00 % on the 
testing data. 
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Negative weight 

0.90 s" 1 35 / --0.61 ~ --1.73 

I -2  I - 4  I - 6  I - 7  I - 1 4  I - 15  I - 1 8  1-22 

Fig. 1. A network with 10 connections and only 2 hidden units for the Cleveland heart 
disease dataset. The accuracy rates on the training set and the testing set are 86.14 
and 80.00 %, respectively. The discrete input of the network is 0 or 1 depending on the 
original value of the corresponding nominal attributes (labeled with Z)). For example, 
the second input 274 is equal to 1 if and only if the value of the attribute/)3 is 3. The 
two inputs Z~ and 2715 correspond to the continuous attributes C4 and C10, respectively 
(see Table 1). 

2.2 Chi2:  D i s c r e t i z a t i o n  o f  h i d d e n  u n i t  a c t i v a t i o n  va lues  

The range of the activation values of the network's hidden units is the interval 
[ -  1, 1], since they have been computed as the hyperbolic tangent of the weighted 
inputs (cf. Function 3). In order to extract rules from the network, it is bet ter  
that  these activation values be grouped into a small number clusters while at 
the same time preserving the accuracy of the network. We can expect to have 
a more concise set of rules if the number of clusters required is smaller. Chi2, 
an improved and automated version of ChiMerge, is the algorithm used for this 
purpose. 

Given a dataset where each pattern is described by the values of the contin- 
uous attributes .41, .42, . . .  and the class label of each pat tern is known, Chi2 
finds discrete representations of the patterns. Using the X 2 statistic, Chi2 di- 
vides the range of the attributes into subintervals and assigns all values that  fall 
in a subinterval a unique discrete value. The merging of adjoining subintervals 
takes place one at a time and attribute by attribute in a round robin fashion. 
This is intended to eliminate the ordering bias of attributes. The output  of Chi2 
is discretized data  that  preserve the discriminating power of the original data. 
Irrelevant attributes can be detected by their single intervals at the end of dis- 
cretization and they can be removed. The outline of the algorithm is as follows: 
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T h e  Chi2  a l g o r i t h m  

1. Let Chi-0 be an initial critical value. 
2. For each attribute Ai: 

(a) Sort the data  according to the the input values of attribute i. 
(b) Form an initial set of intervals such that  each interval contains only one 

unique value. 
3. Initialize all attributes as "unmarked". 
4. For each unmarked attribute .4i: 

(a) For each adjoining pair of subintervals, compute the )/2 values: 

X2 = f i  ~ (Aij - E'J)2 
i----1 j--1 Eij (7)  

where: 
k: the number of classes, 
Aij : the number of samples in the ith interval, j t h  class, 

k Ri: the number of samples in the ith interval = ~-'~j=l Aij. 
2 Cj: the number of samples in the j t h  class = ~i=1 Aij. 

E i j :  expected frequency of Aij, E i j =  Ri • Cj/N. If Ri or Cj = 0, Eij 
is set to 0.05, 

N: the total number of samples. 
(b) Find two subintervals with the lowest X 2 value. If this value is less 

than Chi-0 and if merging the subintervals does not introduce conflicting 
data  1, then merge these subintervals, and repeat from Step 4(a). Else if 
merging the subintervals will introduce conflicting data, mark attribute 
i. 

5. If there is still an unmarked attribute, then increase Chi-0 and repeat Step 
4. 

Only one parameter is required for Chi2. This parameter is the initial critical 
value Chi-0. This value is used to determine if the null hypothesis that  the 
subintervals and the class labels are independent can be rejected. If the test 
statistic (Eqn. 7) exceeds the critical value Chi-0, the null hypothesis is rejected. 
Otherwise, the null hypothesis is not rejected and the subintervals are merged. 
The critical value Chi-0 is determined by ~, the significance level of the test. 
For example, if ~ = 0.50 and the number of classes in the data  is 3, the critical 
value is 1.386. If no inconsistency in the data  is introduced after merging of the 
subintervals with the initial value of Chi-0, the critical value Chi-0 is increased, 
i.e., the significance level is reduced to check the possibility of further merging 
of subintervals. 

For the activation values of the two hidden units of network depicted in 
Figure 1, the subintervals found by Chi2 are: 

1 Conflicting data occur when there are two or more patterns from different classes 
with the same discretized attribute values. 
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- Hidden unit  1 :2  subintervals  [0.0, 0.77), [0.77, 1]. 
- Hidden uni t  2 : 3  subintervals  [ -1 .0 ,  0.05), [0.05, 0.47), [0.47, 1]. 

A pa t t e rn  can thus be represented by a pair  of integers ( i , j )  where i and 
j denote  the subintervals  into which its first and second hidden unit  ac t iva t ion  
values fall, respectively. I f  no conflicting d a t a  is allowed in Chi2, it is possible 
to ob ta in  rules t ha t  preserve the accuracy ra te  of  the ne twork  for the original  
da tase t  using their  discrete representat ions.  

2 . 3  R u l e  e x t r a c t i o n  

Rules are first genera ted  to describe the network ou tpu t s  in t e rms  of  the dis- 
cretized hidden unit  ac t ivat ion values. Since there are only 2 intervals in the  first 
h idden uni t  and 3 intervals in the second hidden unit  found by Chi2, a maxi -  
m u m  of only 6 combina t ions  are possible. A set of  s imple  rules will be  able to 
dist inguish the posi t ive pa t t e rns  f rom the negat ive  ones. T h e  rules are ob ta ined  
by X2R [15], an a lgor i thm tha t  generates  a set of rules wi th  100 % accuracy  
(provided t ha t  there are no conflicting pa t te rns)  f rom d a t a  wi th  discrete inputs .  
Using the no ta t ions  i and j to denote  the ac t ivat ion values a t  the  hidden units ,  
the rules are: 

- Rule 1: I f j  = 3, then Negative.  
- Rule 2: I f  i = 1 and j = 2, then Negative.  
- Defaul t  rule: Posit ive.  

Rules in t e rms  of the inputs  tha t  describe each possible values of  i and j can 
be ob ta ined  using the weights of  the network (see Figure 1). For the first h idden 
unit ,  we have tha t  

1.03 Z~ < 5-1(0.77)  = 1.02 ~ i = 1 

1.03 Z~ _> 5-1(0.77)  = 1.02 ~ i = 2 

(5 -1 (.) is the inverse of the hyperbol ic  t angent  funct ion (3)). Since 272 is b inary-  
valued,  the above two rules can be simplified as: 272 = 0 if and only if i = 1. For 
the second hidden unit,  the condit ions are: 

0.90 Z4 + 1.76 Z6 - 1.35 2-7 - 0.61 2714 - 1.73 2-15 "~ 0.84 2-18 + 1.28 Z22 < 0.05 ~ j = 1 

0.05 < 

0.90 2-4 + 1.76 2-6 - 1.35 :/7 - 0.61 2-14 - 1.73 Z15 + 0.84 2-18 + 1.28 2-22 < 0.51 r j = 2 

0.90 Z4 + 1.76 2-6 - 1.35 177 - 0.61 2-14 - 1.73 2-15 + 0.84 2-18 + 1.28 2-22 _> 0.51 ~=~ j = 3 

The  2 cont inuous inputs  Z7 and Z15 are the normal ized  values of the a t t r ibu tes  
C4 and C10, respect ively (see Table  1). The  equat ions  t h a t  relate the normal ized  



229 

and the original attributes are 

C4 - 94 

106 
C10 

Substituting these relations for the conditions of Rules 1 and 2, we have 

- Rule 1: If 71.02 14 + 138.20 I6 - C4 - 47.83 I i4  - 21.87 Cio + 65.93 Zis + 
100.36 122 >_ -53.95,  then Negative. 

- Rule 2. If 12 = 0 and -90 .07  _< 71.02 14 + 138.20 16 - C4 - 47.83 114 - 
21.87 Clo + 65.93 Zis + 100.36 122 < -53.95,  then Negative. 

- Default rule: Positive. 

The accuracy of these rules on the training dataset is the same as that  of the 
pruned network, i.e. 86.14 %. Although it cannot be guaranteed that  the accuracy 
rate on the testing set will always be the same as the network's accuracy, for 
the set used in the experiment, the accuracy rates of the rules and the pruned 
network are identical. 

3 Analysis 

The result presented in the previous section indicates that NeuroLinear is ef- 
fective in extracting oblique classification rules from a pruned neural network. 
When desired, it is possible to analyze the extracted rules further. For each pos- 
sible combination of the discrete attribute values, a set of rules involving only the 
continuous attributes can be generated. The discrete inputs 12, Z14 and Z18 each 
can have an input value of 0 or 1. The inputs I4 and 16 can have the paired-values 
of (0, 0), (0, 1), or (1, 0). Hence, the various combinations of the discrete inputs 
could produce a total of 24 rule sets involving only the continuous attributes. 
Let us consider some of these rule sets: 

1. The case when 12 = 14 = 16 = I 14  : I 1 8  : 122 : 0 (or  equivalently, 
92  = 0 ,93  = 2 or 4 ,99  = 0,911 = 2 or 3,912  = 1,2 or 3): 

- Rule 1-2: If C4 + 21.87 C10 _< 90.07, then Negative. 
- Default rule: Positive. 

(Rule 1-2 above is the disjunction of Rules 1 and 2). 
2. The case when 12 = 1, I4 = 26 = I 1 4  : I 1 8  : I 2 2  : 0 (or equivalently, 

92 = 1 ,93 = 2 or 4 ,99  = 0,911 = 2 or 3,912 = 1,2 or 3): 
- Rule 1: If C4 + 21.87 C10 ~ 53.95, then Negative. 
- Default rule: Positive. 

3. The case when 12 = 14 = 1,16 = I14 = Zls = 122 = 0 (or equivalently, 
92 = 1 ,93 = 3 ,99  = 0,911 = 2 or 3,912 = 1,2 or 3): 

- Rule 1: If C4 + 21.87 C10 _< 124.97, then Negative. 
- Default rule: Positive. 
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4. The case when 272 = 276 = 1,274 = 2714 = ZIs = 2722 = 0 (or equivalently, 
:D2 : 1,'D3 -: 1,~)9 = 0 , ~ ) 1 1  : 2 or 3,:D12 = 1,2 or 3): 

- -  Rule 1: If C4 + 21.87 C10 < 192.15, then Negative. 
- Default rule: Positive. 

The above rules clearly show that positive patterns and negative patterns 
are separated by the oblique line C4 + 21.87 C10. For the different values of 
the discrete attributes, the threshold value is determined by the boundaries of 
the subintervals found by Chi2 and by the weights of the network between the 
discrete inputs and the hidden layer. Let us consider a pattern having its relevant 
discrete inputs all equal to 0 and label it the "base" case. According to the first 
set of rules above, such a pattern will be classified as negative if its continuous 
attributes satisfy the condition C4 + 21.87 C10 _< 90.07. Let us now consider 
another pattern where the values of the relevant inputs are the same as the base 
pattern,  expect for 272 = 1. The pattern actually corresponds to a female patient 
if 272 = 0, male otherwise. The second set of rules indicates that  for a male 
patient having identical values for the other relevant discrete attributes, once 
the value of C4 + 21.87 C10 exceeds 53.95, he will be diagnosed as positive. C4.5 
rules obtained from a decision tree, where a discrete or a continuous at tr ibute 
may be used as the branching attribute at any node in the tree, does not allow 
this kind of analysis. 

4 E x p e r i m e n t a l  r e s u l t s  

We report our experiments with NeuroLinear in this section. Five datasets from 
the machine learning data  repository at the University of California, Irvine 
are used to compare the performance of NeuroLinear to that  of C4.5rules [11]. 
C4.5rules is chosen because the code is widely available and it has been com- 
monly used by researchers in the machine learning community. It has been re- 
ported that  C4.5rules performs well on many datasets. The datasets and the 
characteristics of their attributes are given in Table 2. 

Table 2. Datasets used in the experiments. 

Dataset Size Attributes 
Discrete Continuous 

Australian Credit Approval 690 8 6 
Boston Housing Data 506 1 12 

Cleveland Heart Disease 297 5 8 
Wisconsin Breast Cancer 699 0 9 

Sonar Target 208 0 60 

Following Towell and Shavlik [8], for each dataset, ten repetitions of ten-fold 
cross validation were performed using NeuroLinear. Each neural network was 
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given a set of initial weights randomly generated in the interval [ -1 ,  1]. For all 
networks, the following values were fixed: the number of hidden units was 4, the 
number of output  unit was 1. The penalty parameters el and c2 were set at 0.1 
and 10 -3, respectively. The value of/3 was 10. We list the average predictive 
accuracy rates of 100 neural networks for the 5 test datasets in Table 3. 

Table 3. Average predictive accuracy rates (%) and its standard deviation. Each 
average has been computed from 100 pruned neural networks. 

Dataset Accuracy (Std. Dev.) 
Australian Credit Approval 

Boston Housing Data 
Cleveland Heart Disease 
Wisconsin Breast Cancer 

Sonar Target 

83.84 (5.96) 
81.52 (8.82) 
78.92 (5.79) 
94.57 (4.84) 

88.63 (11.56) 

C4.5rules was run to perform ten-fold cross validation with its default pa- 
rameter values. The results from C4.5rules and NeuroLinear are summarized in 
Tables 4 and 5 below. 

Table 4. Accuracy rates (%) of C4.5rules and NeuroLinear. 

Dataset C4.5rules NeuroLinear P-value 
Australian Credit Approval 84.22 (2.93) 83.64 (5.74) 0.60 

Boston Housing Data 83.81 (5.90) 80.60 (9.12) 0.28 
Cleveland Heart Disease 75.45 (7.17) 78.15 (6.86) 0.24 
Wisconsin Breast Cancer 95.28 (2.51) 95.73 (3.75) 0.71 

Sonar Target 85.61 (8.64) 85.39 (12.77) 0.96 

In the two tables, the average accuracy rates and the average number of rules 
obtained by C4.5rules and NeuroLinear are given. The figures in parentheses 
are the standard deviations. The P-values are computed for testing the null 
hypothesis that  the means of two groups of observations are equal. The P-values 
for the accuracy rates in Table 4 show that there is no significant difference 
in the mean accuracy rates of C4.5rules and NeuroLinear. On the other hand, 
the large differences in the numbers of rules of C4.5rules and NeuroLinear in 
Table 5 clearly demonstrate the effect of using oblique hyperplanes as the rule 
conditions. Their corresponding small P-values verify the significance of these 
differences. 
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Table 5. Number of rules of C4.5nfles and NeuroLinear. 

Dataset C4.5rules NeuroLinear P-value 
Australian Credit Approval 14.60 (2.88) 6.60 (4.40) 0.0001 

Boston Housing Data 15.20 (3.01) 3.05 (3.23) 0.0001 
Cleveland Heart Disease 12.90 (2.85) 5.69 (4.25) 0.0001 
Wisconsin Breast Cancer 8.90 (1.20) 2.89 (2.52) 0.0001 

Sonar Target 9.70 (1.57) 7.03 (3.73) 0.0003 

Comparing the predictive accuracy rates of NeuroLinear to those of the 
pruned networks from which they are extracted, we note that  they are not 
identical. This is not unexpected, while the decision surface of the networks 
can be highly nonlinear, the decision boundaries produced by NeuroLinear are 
piece-wise linear. The fidelity of the extracted rules, however, is high. Towell 
and Shavlik [8] define fidelity as the ability of the extracted rules to mimic the 
behavior of the network from which they are extracted. 

5 C o n c l u s i o n  

We have presented NeuroLinear, a system for generating classification rules us- 
ing neural networks. The three components of NeuroLinear make it possible to 
generate oblique decision rules, these are 

1. An efficient neural network training and pruning algorithm. 

2. Chi2 algorithm for discretization of hidden unit activation values. 

3. X2R algorithm for generating perfect rules from a small dataset with discrete 
attributes values. 

Comparisons of experimental results using real-world datasets reveal that  
NeuroLinear can achieve similar accuracy rates as C4.5rules with far fewer rules. 
It can be expected that  the smaller rule-set will enable one to explain the clas- 
sification process in a more meaningful and comprehensible way. 

We may refer to patterns having all relevant discrete at tr ibute values equal 
to zero as the base level. Hence, a set of base-level rules that  involves only the 
continuous attributes can be obtained. Similar sets of rules for other patterns 
with one or more of nonzero discrete attributes are generated by NeuroLinear. 
These rules differ from those of the base-level rules only in the threshold values. 
The different thresholds for the various combinations of the discrete attributes 
values provide potentially valuable information regarding the patterns in the 
dataset. This interesting feature of the rules extracted by NeuroLinear is not 
possessed by those of C4.5rules. 
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