
NeuroLinear: A System for Extracting Oblique Decision
Rules from Neural Networks

Rudy Setiono and Huan Liu

Department of Information Systems and Computer Science
National University of Singapore

Singapore 116290

Abs t rac t . We present NeuroLinear, a system for extracting oblique de-
cision rules from neural networks that have been trained for classification
of patterns. Each condition of an oblique decision rule corresponds to a
partition of the attribute space by a hyperplane that is not necessarily
axis-parallel. Allowing a set of such hyperplanes to form the boundaries
of the decision regions leads to a significant reduction in the number of
rules generated while maintaining the accuracy rates of the networks. We
describe the components of NeuroLinear in detail using a heart disease
diagnosis problem. Our experimental results on real-world datasets show
that the system is effective in extracting compact and comprehensible
rules with high predictive accuracy from neural networks.

1 I n t r o d u c t i o n

Neural networks have been widely used to solve classification problems. Com-
parisons between neural networks and decision trees algorithms for these prob-
lems have shown that in general neural networks can produce better accuracy
rates [1, 2, 3, 4]. Recent developments in algorithms that extract rules from neu-
ral networks have made neural network techniques even more attractive. The
extracted rules allow one to explain the decision process of a neural network.
It is not surprising that in the past few years great efforts have been devoted
to finding efficient and effective algorithms for extracting rules from a trained
neural network

Gallant 's connectionist expert systems [5] and Saito and Nakano's RN method
[6] are two early works that a t tempt to generate rules from neural networks.
These systems, however, do not actually extract rules from the networks; in-
stead, they try to generate an explanation for each particular outcome of the
networks.

The KT algorithm developed by Fu [7] is an algorithm that extracts rules
from a trained network. It searches for subsets of connections to a network's
unit with summed weight exceeding the bias of that unit. It is assumed that
the unit 's activation value is close to either 0 or 1. By searching for the proper
subsets of the input connections, sets of rules are generated to describe under
what conditions the unit 's activation will take one of the two values.

The MofN algorithm of Towell and Shavlik [8] clusters the weights of the
trained network into equivalence classes. Clusters that do not significantly affect

222

the unit's activation are eliminated. The complexity of the network is further
reduced by replacing the weights in all remaining clusters by the average weight
of the individual cluster. The rules are generated in a similar way as by Fu's KT
algorithm. However, because of the creation of clusters with averaged weights
and the removal of unneeded clusters, it can be expected that the rules extracted
will be simpler than those of KT algorithm.

An algorithm that extracts rules from networks that have been trained via
the backpropagation method with penalty is proposed by Blassig [9]. A penalty
term is added to the network's error function with the hope that a large number
of the weights will have zero values after training and thus can be removed. In
order to force the activation value of a unit to take on the value of either 0 or 1,
the network's weights are restricted to be -6, 0, or 6, and the unit's bias to be
either -3 or 3.

A simple rule extraction algorithm is presented by Setiono and Liu [10]. It is
claimed that the rules extracted from neural networks are comparable to those
generated by decision trees [11] in terms of accuracy and comprehensibility. The
basic idea behind the algorithm is the fact that it is generally possible to replace
the continuous activations of the hidden units by a small number of discrete ones.
Rule extraction is realized in two steps. First, rules that describe the network
outputs in terms of the discretized activation values of the hidden units are
generated. Second, rules that describe each discretized hidden unit activation
values in terms of the network inputs are constructed. By merging the rules
obtained in these two steps, a set of rules that relates the inputs and outputs of
the network is obtained.

While the algorithm can generate symbolic rules that mimic the predicted
outcome of the original network, it works only for data with binary inputs (the
implicit assumption, that the various hidden unit activation values are deter-
mined by only a small number of inpu t values, excludes problems with continu-
ous attributes where there can be infinitely many possible values taken by these
attributes). Data with some continuous attributes need to be preprocessed before
training the network. The preprocessing of the data entails dividing the values
of the continuous attributes into intervals. This is achieved by the ChiMerge
algorithm [12]. ChiMerge employs the X 2 statistic to determine the division of
the original intervals into their respective subintervals. All continuous attribute
values that fall in the same subinterval are then represented by a unique discrete
value for use as inputs to the neural network. Rules involving the discrete repre-
sentations of the inputs are generated from the network. Given the boundaries of
the subintervals furnished by ChiMerge, getting the rules in terms of the original
continuous attributes is trivial.

An inherent problem introduced by the preprocessing of the data by ChiMerge
is that each condition of a rule involving a continuous attribute determines an
axis-parallel decision boundary. For many classification problems, it is often more
natural to allow oblique hyperplanes to form the boundaries of the decision re-
gions. In other words, instead of imposing the axis-parallel constraint, being able
to generate oblique decision hyperplanes makes it possible to let the learning al-

223

gorithm determine what kind of hyperplanes is more suitable for the data in
hand. Oblique hyperplanes are more general and they may substantially reduce
the number of rule conditions needed to describe the decision region. As a result,
a more compact and comprehensible set of rules can be obtained.

In this paper, we describe how a set of rules, where each rule condition is
given in the form of the linear inequality

E cixi < ~ (1)
i

where cl is a real coefficient, xi is the value of the attribute i, and y is a threshold,
can be extracted from a neural network. The neural network that we use is the
standard feedforward neural network with a single hidden layer. In contrast to
the tree growing algorithms which generate the rules in a level-by-level and
top-down fashion, rules are extracted from a network in two steps: from the
hidden layer to the output layer and from the input layer to the hidden layer.
Classification rules are obtained by merging the rules from these two steps.
Unlike the decision tree algorithms [13, 11] which consider smaller and smaller
subsets of the data to improve the accuracy of the rules, the neural network
approach for rule generation considers the entire training set as a whole. Our
experimental results show that more compact sets of rules with high accuracy
rates can be obtained by the network approach.

The organization of the paper is as follows. Section 2 describes NeuroLinear,
a system that we develop for extracting oblique decision rules from a neural net-
work. The steps are described in detail by way of an example using a real-world
dataset. Section 3 analyzes the merits of generating a set of classification rules
with NeuroLinear. It also highlights the differences between the rules generated
from a network and those from the decision-tree method C4.5 ([11]). Section 4
presents our experimental results on several real-word problems. Section 5 gives
a brief conclusion of the paper.

2 Rule extract ion with NeuroLinear

The process of extracting oblique decision rules from a neural network can be
summarized in the following steps:

1. Select and train a network to meet a prespecified accuracy requirement.
Remove the redundant connections in the network by pruning while main-
taining the accuracy.

�9 2. Discretize the hidden unit activation values of the network.
3. Extract rules that describe the network outputs in terms of the discretized

network activation values.
For each discretized hidden unit activation value, generate a rule in terms of
the network's inputs.
Merge the two sets of rules obtained above.

We shall use the Cleveland heart disease dataset to show the workings of Neu-
roLinear in detail.

224

2.1 N e u r a l n e t w o r k t r a i n i n g a n d p r u n i n g

The Cleveland heart disease data set can be obtained via anonymous ftp from
the repository at the University of California, Irvine [16]. It consists of 303 pat-
terns. Because we have not implemented a way to handle patterns with missing
at tr ibute values, we discard such patterns and use only the remaining 297 pat-
terns. Each pat tern is described by 13 attributes, 5 of which are continuous and
the remaining 8 discrete. The attributes are summarized in Table 1. Each of the
pattern is labeled either positive (presence of heart disease) or negative (absence
of heart disease).

Table 1. The attributes of the Cleveland heart disease data set and network input
units assigned to them.

Attribute Type Possible values/Range Network inputs
CI Continuous [29, 77]]21
92 Discrete 0 or 1]22
93 Discrete 1,2,3 or 4]23,]24, Zs,]26
C4 Continuous [94,200]]27
C5 Continuous [126, 564] Z~
96 Discrete 0 or 1 Z9
97 Discrete 0,1 or 2 5110,Zll,]212
Cs Continuous [71,202] Z13
99 Discrete 0 or 1 5114
Cl0 Continuous [0, 6.2] 5115
911 Discrete 1,2 or 3 Z16,Z17,Zls
~)12 Discrete 0,1,2 or 3 Z19,Z2o,Z21,Z22
7913 Discrete 3,6 or 7 512a, Z24, Z25

Since the problem is a binary classification problem, one output unit is suf-
ficient for the network. Positive patterns are given the target 1 and negative
patterns 0. A hidden layer of 4 units is found to be sufficient to give the network
a comparable accuracy rate to those reported in the literature. One input unit
is assigned to each continuous attribute. Values of the continuous attributes are
normalized such that their range is [0, 1]. Each value of a discrete at tr ibute with
n possible values is represented by an n-bit binary string, except when n = 2,
only 1 bit is used (see the last column of Table 1). With an additional input
unit to represent the hidden unit bias values, the total number of the network's
input units is 26.

Given an n-dimensional input pattern xi, the predicted output of the network
at output unit p is computed as

225

where

- h is the number of hidden units in the network.
- wj is an n-dimensional vector of weights for the arcs connecting the input

layer and the j-th hidden unit, j = 1, 2 , . . . , h. The weight of the connection
from the t-th input unit to the j-th hidden unit is denoted by wjl.

- vj is a C-dimensional vector of weights for the arcs connecting the j-th
hidden unit and the output layer. The weight of the connection from the
j-th hidden unit to the p-th output unit is denoted by vpj.

- C is the number of output units.

The activation function of the hidden units is the hyperbolic tangent function

a(y) = @y - + (a)

while the activation function of the output units is the sigmoid function

~(y) = 1/(1 + e-Y). (4)

The hyperbolic tangent function allows the activation values of the hidden units
to be in the interval [-1, 1], while the range of the sigmoid function used at the
output units is [0, 1].

The network is trained by minimizing the cross-entropy error function with
weight decay [14]:

k C

O(w,v) =-EE(tpilogSpi-I-(1-tpi)log(1-Spi))+ P(w,v), (5)
i = t p = l

where k is the number of patterns in the training dataset, tpi is the binary-valued
target output for pattern xi at output unit p, and P(w, v) is the penalty term:

+ E + , P(w, v) E1
1 +/5w2< ~ 1 +/sv~j j=, p=l

j = l /=1 p=l
(6)

(q and e2 are two positive penalty parameters and/3 > 0).
The penalty term P(w, v) is added to the cross-entropy error function so that

relevant connections can be distinguished from those irrelevant ones by the their
magnitude. After training, it can be expected that the irrelevant connections will
have small magnitude and therefore, they can be removed from the network with
little or no effect on the accuracy of the network. Pruning is achieved by removing
those connections with small magnitude. We train and prune the network such
that it achieves an accuracy rate of at least 85 % on the training set.

Figure 1 depicts a pruned network for the Cleveland heart disease problem.
The network has been trained with 90% of the patterns randomly picked from
the dataset. The remaining 10% of the patterns are used to test the network's
generalization capability. The pruned network has only 2 hidden unit and 10
connections left. Only one input, Z2, is connected to the first hidden unit. A
total of seven inputs are connected to the second hidden unit. The accuracy
rates of this network are 86.14 % on the training data and 80.00 % on the
testing data.

226

Positive weight

Negative weight

0.90 s" 1 35 / --0.61 ~ --1.73

I -2 I - 4 I - 6 I - 7 I - 1 4 I - 15 I - 1 8 1-22

Fig. 1. A network with 10 connections and only 2 hidden units for the Cleveland heart
disease dataset. The accuracy rates on the training set and the testing set are 86.14
and 80.00 %, respectively. The discrete input of the network is 0 or 1 depending on the
original value of the corresponding nominal attributes (labeled with Z)). For example,
the second input 274 is equal to 1 if and only if the value of the attribute/)3 is 3. The
two inputs Z~ and 2715 correspond to the continuous attributes C4 and C10, respectively
(see Table 1).

2.2 Chi2: D i s c r e t i z a t i o n o f h i d d e n u n i t a c t i v a t i o n va lues

The range of the activation values of the network's hidden units is the interval
[- 1, 1], since they have been computed as the hyperbolic tangent of the weighted
inputs (cf. Function 3). In order to extract rules from the network, it is bet ter
that these activation values be grouped into a small number clusters while at
the same time preserving the accuracy of the network. We can expect to have
a more concise set of rules if the number of clusters required is smaller. Chi2,
an improved and automated version of ChiMerge, is the algorithm used for this
purpose.

Given a dataset where each pattern is described by the values of the contin-
uous attributes .41, .42, . . . and the class label of each pat tern is known, Chi2
finds discrete representations of the patterns. Using the X 2 statistic, Chi2 di-
vides the range of the attributes into subintervals and assigns all values that fall
in a subinterval a unique discrete value. The merging of adjoining subintervals
takes place one at a time and attribute by attribute in a round robin fashion.
This is intended to eliminate the ordering bias of attributes. The output of Chi2
is discretized data that preserve the discriminating power of the original data.
Irrelevant attributes can be detected by their single intervals at the end of dis-
cretization and they can be removed. The outline of the algorithm is as follows:

227

T h e Chi2 a l g o r i t h m

1. Let Chi-0 be an initial critical value.
2. For each attribute Ai:

(a) Sort the data according to the the input values of attribute i.
(b) Form an initial set of intervals such that each interval contains only one

unique value.
3. Initialize all attributes as "unmarked".
4. For each unmarked attribute .4i:

(a) For each adjoining pair of subintervals, compute the)/2 values:

X2 = f i ~ (Aij - E'J)2
i----1 j--1 Eij (7)

where:
k: the number of classes,
Aij : the number of samples in the ith interval, j t h class,

k Ri: the number of samples in the ith interval = ~-'~j=l Aij.
2 Cj: the number of samples in the j t h class = ~i=1 Aij.

E i j : expected frequency of Aij, E i j = Ri • Cj/N. If Ri or Cj = 0, Eij
is set to 0.05,

N: the total number of samples.
(b) Find two subintervals with the lowest X 2 value. If this value is less

than Chi-0 and if merging the subintervals does not introduce conflicting
data 1, then merge these subintervals, and repeat from Step 4(a). Else if
merging the subintervals will introduce conflicting data, mark attribute
i.

5. If there is still an unmarked attribute, then increase Chi-0 and repeat Step
4.

Only one parameter is required for Chi2. This parameter is the initial critical
value Chi-0. This value is used to determine if the null hypothesis that the
subintervals and the class labels are independent can be rejected. If the test
statistic (Eqn. 7) exceeds the critical value Chi-0, the null hypothesis is rejected.
Otherwise, the null hypothesis is not rejected and the subintervals are merged.
The critical value Chi-0 is determined by ~, the significance level of the test.
For example, if ~ = 0.50 and the number of classes in the data is 3, the critical
value is 1.386. If no inconsistency in the data is introduced after merging of the
subintervals with the initial value of Chi-0, the critical value Chi-0 is increased,
i.e., the significance level is reduced to check the possibility of further merging
of subintervals.

For the activation values of the two hidden units of network depicted in
Figure 1, the subintervals found by Chi2 are:

1 Conflicting data occur when there are two or more patterns from different classes
with the same discretized attribute values.

228

- Hidden unit 1 :2 subintervals [0.0, 0.77), [0.77, 1].
- Hidden uni t 2 : 3 subintervals [-1 .0 , 0.05), [0.05, 0.47), [0.47, 1].

A pa t t e rn can thus be represented by a pair of integers (i , j) where i and
j denote the subintervals into which its first and second hidden unit ac t iva t ion
values fall, respectively. I f no conflicting d a t a is allowed in Chi2, it is possible
to ob ta in rules t ha t preserve the accuracy ra te of the ne twork for the original
da tase t using their discrete representat ions.

2 . 3 R u l e e x t r a c t i o n

Rules are first genera ted to describe the network ou tpu t s in t e rms of the dis-
cretized hidden unit ac t ivat ion values. Since there are only 2 intervals in the first
h idden uni t and 3 intervals in the second hidden unit found by Chi2, a maxi -
m u m of only 6 combina t ions are possible. A set of s imple rules will be able to
dist inguish the posi t ive pa t t e rns f rom the negat ive ones. T h e rules are ob ta ined
by X2R [15], an a lgor i thm tha t generates a set of rules wi th 100 % accuracy
(provided t ha t there are no conflicting pa t te rns) f rom d a t a wi th discrete inputs .
Using the no ta t ions i and j to denote the ac t ivat ion values a t the hidden units ,
the rules are:

- Rule 1: I f j = 3, then Negative.
- Rule 2: I f i = 1 and j = 2, then Negative.
- Defaul t rule: Posit ive.

Rules in t e rms of the inputs tha t describe each possible values of i and j can
be ob ta ined using the weights of the network (see Figure 1). For the first h idden
unit , we have tha t

1.03 Z~ < 5-1(0.77) = 1.02 ~ i = 1

1.03 Z~ _> 5-1(0.77) = 1.02 ~ i = 2

(5 -1 (.) is the inverse of the hyperbol ic t angent funct ion (3)). Since 272 is b inary-
valued, the above two rules can be simplified as: 272 = 0 if and only if i = 1. For
the second hidden unit, the condit ions are:

0.90 Z4 + 1.76 Z6 - 1.35 2-7 - 0.61 2714 - 1.73 2-15 "~ 0.84 2-18 + 1.28 Z22 < 0.05 ~ j = 1

0.05 <

0.90 2-4 + 1.76 2-6 - 1.35 :/7 - 0.61 2-14 - 1.73 Z15 + 0.84 2-18 + 1.28 2-22 < 0.51 r j = 2

0.90 Z4 + 1.76 2-6 - 1.35 177 - 0.61 2-14 - 1.73 2-15 + 0.84 2-18 + 1.28 2-22 _> 0.51 ~=~ j = 3

The 2 cont inuous inputs Z7 and Z15 are the normal ized values of the a t t r ibu tes
C4 and C10, respect ively (see Table 1). The equat ions t h a t relate the normal ized

229

and the original attributes are

C4 - 94

106
C10

Substituting these relations for the conditions of Rules 1 and 2, we have

- Rule 1: If 71.02 14 + 138.20 I6 - C4 - 47.83 I i4 - 21.87 Cio + 65.93 Zis +
100.36 122 >_ -53.95, then Negative.

- Rule 2. If 12 = 0 and -90 .07 _< 71.02 14 + 138.20 16 - C4 - 47.83 114 -
21.87 Clo + 65.93 Zis + 100.36 122 < -53.95, then Negative.

- Default rule: Positive.

The accuracy of these rules on the training dataset is the same as that of the
pruned network, i.e. 86.14 %. Although it cannot be guaranteed that the accuracy
rate on the testing set will always be the same as the network's accuracy, for
the set used in the experiment, the accuracy rates of the rules and the pruned
network are identical.

3 Analysis

The result presented in the previous section indicates that NeuroLinear is ef-
fective in extracting oblique classification rules from a pruned neural network.
When desired, it is possible to analyze the extracted rules further. For each pos-
sible combination of the discrete attribute values, a set of rules involving only the
continuous attributes can be generated. The discrete inputs 12, Z14 and Z18 each
can have an input value of 0 or 1. The inputs I4 and 16 can have the paired-values
of (0, 0), (0, 1), or (1, 0). Hence, the various combinations of the discrete inputs
could produce a total of 24 rule sets involving only the continuous attributes.
Let us consider some of these rule sets:

1. The case when 12 = 14 = 16 = I 14 : I 1 8 : 122 : 0 (or equivalently,
92 = 0 ,93 = 2 or 4 ,99 = 0,911 = 2 or 3,912 = 1,2 or 3):

- Rule 1-2: If C4 + 21.87 C10 _< 90.07, then Negative.
- Default rule: Positive.

(Rule 1-2 above is the disjunction of Rules 1 and 2).
2. The case when 12 = 1, I4 = 26 = I 1 4 : I 1 8 : I 2 2 : 0 (or equivalently,

92 = 1 ,93 = 2 or 4 ,99 = 0,911 = 2 or 3,912 = 1,2 or 3):
- Rule 1: If C4 + 21.87 C10 ~ 53.95, then Negative.
- Default rule: Positive.

3. The case when 12 = 14 = 1,16 = I14 = Zls = 122 = 0 (or equivalently,
92 = 1 ,93 = 3 ,99 = 0,911 = 2 or 3,912 = 1,2 or 3):

- Rule 1: If C4 + 21.87 C10 _< 124.97, then Negative.
- Default rule: Positive.

230

4. The case when 272 = 276 = 1,274 = 2714 = ZIs = 2722 = 0 (or equivalently,
:D2 : 1,'D3 -: 1,~)9 = 0 , ~) 1 1 : 2 or 3,:D12 = 1,2 or 3):

- - Rule 1: If C4 + 21.87 C10 < 192.15, then Negative.
- Default rule: Positive.

The above rules clearly show that positive patterns and negative patterns
are separated by the oblique line C4 + 21.87 C10. For the different values of
the discrete attributes, the threshold value is determined by the boundaries of
the subintervals found by Chi2 and by the weights of the network between the
discrete inputs and the hidden layer. Let us consider a pattern having its relevant
discrete inputs all equal to 0 and label it the "base" case. According to the first
set of rules above, such a pattern will be classified as negative if its continuous
attributes satisfy the condition C4 + 21.87 C10 _< 90.07. Let us now consider
another pattern where the values of the relevant inputs are the same as the base
pattern, expect for 272 = 1. The pattern actually corresponds to a female patient
if 272 = 0, male otherwise. The second set of rules indicates that for a male
patient having identical values for the other relevant discrete attributes, once
the value of C4 + 21.87 C10 exceeds 53.95, he will be diagnosed as positive. C4.5
rules obtained from a decision tree, where a discrete or a continuous at tr ibute
may be used as the branching attribute at any node in the tree, does not allow
this kind of analysis.

4 E x p e r i m e n t a l r e s u l t s

We report our experiments with NeuroLinear in this section. Five datasets from
the machine learning data repository at the University of California, Irvine
are used to compare the performance of NeuroLinear to that of C4.5rules [11].
C4.5rules is chosen because the code is widely available and it has been com-
monly used by researchers in the machine learning community. It has been re-
ported that C4.5rules performs well on many datasets. The datasets and the
characteristics of their attributes are given in Table 2.

Table 2. Datasets used in the experiments.

Dataset Size Attributes
Discrete Continuous

Australian Credit Approval 690 8 6
Boston Housing Data 506 1 12

Cleveland Heart Disease 297 5 8
Wisconsin Breast Cancer 699 0 9

Sonar Target 208 0 60

Following Towell and Shavlik [8], for each dataset, ten repetitions of ten-fold
cross validation were performed using NeuroLinear. Each neural network was

231

given a set of initial weights randomly generated in the interval [-1 , 1]. For all
networks, the following values were fixed: the number of hidden units was 4, the
number of output unit was 1. The penalty parameters el and c2 were set at 0.1
and 10 -3, respectively. The value of/3 was 10. We list the average predictive
accuracy rates of 100 neural networks for the 5 test datasets in Table 3.

Table 3. Average predictive accuracy rates (%) and its standard deviation. Each
average has been computed from 100 pruned neural networks.

Dataset Accuracy (Std. Dev.)
Australian Credit Approval

Boston Housing Data
Cleveland Heart Disease
Wisconsin Breast Cancer

Sonar Target

83.84 (5.96)
81.52 (8.82)
78.92 (5.79)
94.57 (4.84)

88.63 (11.56)

C4.5rules was run to perform ten-fold cross validation with its default pa-
rameter values. The results from C4.5rules and NeuroLinear are summarized in
Tables 4 and 5 below.

Table 4. Accuracy rates (%) of C4.5rules and NeuroLinear.

Dataset C4.5rules NeuroLinear P-value
Australian Credit Approval 84.22 (2.93) 83.64 (5.74) 0.60

Boston Housing Data 83.81 (5.90) 80.60 (9.12) 0.28
Cleveland Heart Disease 75.45 (7.17) 78.15 (6.86) 0.24
Wisconsin Breast Cancer 95.28 (2.51) 95.73 (3.75) 0.71

Sonar Target 85.61 (8.64) 85.39 (12.77) 0.96

In the two tables, the average accuracy rates and the average number of rules
obtained by C4.5rules and NeuroLinear are given. The figures in parentheses
are the standard deviations. The P-values are computed for testing the null
hypothesis that the means of two groups of observations are equal. The P-values
for the accuracy rates in Table 4 show that there is no significant difference
in the mean accuracy rates of C4.5rules and NeuroLinear. On the other hand,
the large differences in the numbers of rules of C4.5rules and NeuroLinear in
Table 5 clearly demonstrate the effect of using oblique hyperplanes as the rule
conditions. Their corresponding small P-values verify the significance of these
differences.

232

Table 5. Number of rules of C4.5nfles and NeuroLinear.

Dataset C4.5rules NeuroLinear P-value
Australian Credit Approval 14.60 (2.88) 6.60 (4.40) 0.0001

Boston Housing Data 15.20 (3.01) 3.05 (3.23) 0.0001
Cleveland Heart Disease 12.90 (2.85) 5.69 (4.25) 0.0001
Wisconsin Breast Cancer 8.90 (1.20) 2.89 (2.52) 0.0001

Sonar Target 9.70 (1.57) 7.03 (3.73) 0.0003

Comparing the predictive accuracy rates of NeuroLinear to those of the
pruned networks from which they are extracted, we note that they are not
identical. This is not unexpected, while the decision surface of the networks
can be highly nonlinear, the decision boundaries produced by NeuroLinear are
piece-wise linear. The fidelity of the extracted rules, however, is high. Towell
and Shavlik [8] define fidelity as the ability of the extracted rules to mimic the
behavior of the network from which they are extracted.

5 C o n c l u s i o n

We have presented NeuroLinear, a system for generating classification rules us-
ing neural networks. The three components of NeuroLinear make it possible to
generate oblique decision rules, these are

1. An efficient neural network training and pruning algorithm.

2. Chi2 algorithm for discretization of hidden unit activation values.

3. X2R algorithm for generating perfect rules from a small dataset with discrete
attributes values.

Comparisons of experimental results using real-world datasets reveal that
NeuroLinear can achieve similar accuracy rates as C4.5rules with far fewer rules.
It can be expected that the smaller rule-set will enable one to explain the clas-
sification process in a more meaningful and comprehensible way.

We may refer to patterns having all relevant discrete at tr ibute values equal
to zero as the base level. Hence, a set of base-level rules that involves only the
continuous attributes can be obtained. Similar sets of rules for other patterns
with one or more of nonzero discrete attributes are generated by NeuroLinear.
These rules differ from those of the base-level rules only in the threshold values.
The different thresholds for the various combinations of the discrete attributes
values provide potentially valuable information regarding the patterns in the
dataset. This interesting feature of the rules extracted by NeuroLinear is not
possessed by those of C4.5rules.

233

Acknowledgment

We wish to thank the reviewers for their valuable comments and suggestions and
S. Murthy of Siemens Corporate Research for pointing out an error in an earlier
version of this paper.

References

1. T.G. Dietterich, H. Hild, and G. Bakiri, "A comparative study of ID3 and back-
propagation for English text-to-speech mapping," in Machine Learning: Proceedings
of the Seventh International Conference, Austin, Texas, 1990.

2. D.H. Fisher and K.B. McKusick. "An empirical comparison of ID3 and back-
propagation," in Proceedings of 11th Int. Joint Conf. on AI, pp. 788-793, 1989.

3. J.R. Quinlan. "Comparing connectionist and symbolic learning methods," in S.J.
Hanson, G.A. Drastall, and R.L, Rivest, eds., Computational Learning Theory and
Natural Learning Systems, Vol 1 (A Bradford Book, The MIT Press, 1994) pp. 445-
456.

4. J.W. Shavlik, R.J. Mooney, and G.G. Towell, "Symbolic and neural learning al-
gorithms: An experimental comparison", Machine Learning, vol. 6, no. 2, 111-143,
1991.

5. S. Gallant, "Connectionist expert systems," Comm. of the ACM, vol. 31, no. 2, pp.
152-169, Feb. 1988.

6. K. Saito and R. Nakano, "Medical diagnosis expert system based on PDP model,"
in Proc. IEEE Intl. Conf. on Neural Networks, IEEE Press, New York, pp. I255-I266,
1988.

7. L. Fu, "Rule learning by searching on adapted nets," in Proc. of the Ninth National
Conference on Artificial Intelligence, (1991) pp. 590-595.

8. G.G. ToweU and J.W. Shavlik, "Extracting refined rules from knowledge-based neu-
ral networks," Machine Learning, vol. 13, no. 1, pp. 71-101, 1993.

9. R. Blassig. "GDS: Gradient descent generation of symbolic classification rttles," in
Advances in Neural Information Processing, Vol. 6, (Morgan Kanfmarm, Los Angeles
CA, 1994) pp. 1093-1100.

10. R. Setiono and H. Liu, "Symbolic representation of neural networks," IEEE Com-
puter, March 1996, pp. 71-77.

11. J.R. Quinlan. C4.5: Programs for Machine Learning, San Mateo, CA: Morgan
Kaufmann, 1993.

12. R. Kerber, "ChiMerge: Discretization of numeric attributes," in The Proc. of the
Ninth National Conference on AL AAAI Press/The MIT Press, 1992, pp. 123-128.

13. L. Breiman, J.H. Friedman, R.A. Olshen, and C.J. Stone, Classification and Re-
gression Trees, Wadsworth & Brooks/Cole Advanced Books & Software, 1984.

14. J. Hertz, A. Krogh, and R.G. Palmer, "Introduction to the theory of neural com-
putation," Redwood City, CA: Addison Wesley, 1991.

15. H. Liu and S.T. Tan, "X2R: A fast rule generator," in Proceedings of [EEE Inter-
national Conference on Systems, Man and Cybernetics, IEEE Press, 1995.

16. P.M. Murphy and D.W. Aha, UCI repository of machine learning databases
[machine-readable data repository], Department of Information and Computer Sci-
ence, University of California, Irvine, 1992.

