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Abstract .  We define a formula for estimating the coding costs of de- 
cision lists for propositional domains. This formula allows for multiple 
classes and both categorical and numerical attributes. For artificial do- 
mains the formula performs quite satisfactory, whereas results are rather 
mixed and inconclusive for natural domains. Further experiments lead 
to a principled simplification of the original formula which is robust in 
both artificial and natural domains. Simple hill-climbing search for the 
most compressive decision list significantly reduces the complexity of a 
given decision list while not impeding and sometimes even improving its 
predictive accuracy. 

1 Introduction 

The Minimum Description Length (MDL) Principle (Rissanen 86), also called 
the Minimum Message Length (MML) Principle (Georgeff & Wallace 84), has 
been successfully applied in Machine Learning for a broad variety of prob- 
lems (for a just a few selected papers see Quinlan & Rivest 89, Quinlan 93a, 
Forsyth et al. 94, Pfahringer 95a, Muggleton et al. 92). But recently also some 
problems with the MDL principle have been discovered (Quinlan 94, Quinlan 95). 
The problematic formula described in these papers is used by the C4.SP~ULES 
system for pruning the rule-sets of each class separately. Despite these theoret- 
ical concerns, in our own experimental experience (see e.g. results reported in 
Pfahringer 95a) we have found C4.5RULES to be a rather robust and reliable 
learner. The predictive accuracy of the induced ordered rule-sets (i.e. decision 
lists) is usually quite good, yet the rule-sets appear to be overly complex. 

In this paper we introduce an alternative MDL-based formula for decision 
lists based on the ideas of Kononenko 95. This formula will be described in 
section 2. Section 3 will describe the algorithmic usage of the new formula and 
the experimental setup. In section 4 we first report on good results in artificial 
domains. But for some of the natural domains results using this original formula 
are just unacceptable. A hypothesis and a few experiments to explain these 
unpleasant findings then lead to a simplified version of the original formula 
which is broadly successful. Section 5 summarizes conclusions and discusses open 
problems and further research directions. 
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2 E s t i m a t i n g  c o d i n g  l e n g t h s  o f  d e c i s i o n  l i s t s  

Empirical induction is always faced with the problem of overfitting the data, 
especially in the presence of noise or irrelevant attributes. The MDL principle 
is a possible solution as it simultaneously judges both the simplicity and the 
accuracy of a particular induced theory. This is done by summing up both the 
estimated coding length of the theory and the estimated coding length of the 
training data given the theory: 

Total coding length = Coding length to describe the model + 
Coding length to describe the data, 

given the model. 

A theory is called compressive, if and only if its coding length is smaller 
than the coding length of the original training data (using the null  theory). In 
Pfahringer 95b we have tried to pinpoint the origin of the problems described in 
Quinlan 94 and we have defined an alternative formula yielding some improve- 
ment. The main idea was to replace the global exception coding mechanism with 
a local one based on the sets of examples covered by each rule. In the following 
we will introduce an improved version of this formula using both better (i.e. 
smaller) coding length estimates in genera! and extending its applicability to 
multi-class problems and to both symbolic and numerical attributes. 

In Pfahringer 95b we used the entropy of the distribution of symbols in a 
string to estimate its coding cost, which is valid in a information-theoretic sense, 
but inefficient for finite-length strings, as is exemplified in Kononenko 95. That 
paper defines the following formula for estimating the coding length of strings 
of finite length N constructed from k different possible symbols with respective 
absolute frequencies Cl..Ck: 

el (s tr ing)  = log2 k - 1 + logs cl..c~ (1) 

The first part encodes the frequencies of the different symbols, which is sufficient 
information for constructing the decoder for the compressed string. The size of 
the compressed string itself is estimated by the second part of the formula. 

Using this formula we can now define an MDL-based coding length estimate 
for decision lists. We assume that both the sender and the receiver know all 
examples and therefore all possible attributes, their types and values, and also 
the different possible classes. The sender only wants to transmit the correct 
classification of each example to the receiver. Furthermore we assume that the 
last rule of the decision-list has an empty set of conditions, therefore it acts 
as a kind of default rule, assigning some sensible classification to examples not 
covered by any previous rule. We use the majority class of all training examples 
not covered by any rule. Alternatively one could use the global majority class, 
especially in situations where the number of uncovered examples is very small 
thus leading to an unreliable class estimate. 
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Let us now define the total coding length of a decision-list as being just the 
sum of the coding lengths of its rules: 

cl(dl) = ~cl(rule~) (2) 

The coding length estimate of a single rule is the sum of the estimate for encoding 
the conditions of this rule and the estimate for the class-label string of the 
examples covered by this rule (using formula 1). Note that we do not explicitly 
encode the class being predicted by this rule, we just assume that the majority 
class of the covered examples will be assigned: 

el(rule) = el(tests) + el(class_label_string) (3) 

The coding length estimate for all tests of a rule is a bit complicated due to 
the different possible kinds of tests. Categorical attributes involve testing for 
membership in some subset of all possible values, numerical attributes are tested 
for being either greater-equal or less-than some threshold. Therefore the coding 
length estimate for all tests of a single rule is the sum of these three different 
possible kinds of tests: 

el(tests) = el(subset_tests) + cl(greaterequal_tests) + cl(lessthan_tests) (4) 

Subset tests are estimated by first selecting those attributes actually involved in 
subset tests out of all categorical attributes, and then encoding the respective 
subsets: 

cl(subsettests) = el(choose(involved, all_cat)) § ~cl(subset) (5) 

The coding length of binary choices such as which attributes are actually used, or 
which subset of all possible values is tested, is always computed using formula 1. 
Additionally, it should be noted that this encoding schema assigns equal cost to 
both testing a categorical attribute for a specific single value (attrX = valueY, 
encoded as a subset-test for just this value) and to testing whether a categorical 
attribute is different from a specific single value (attrX <> valueY, encoded as 
a subset-test for all other possible values). This is due to the symmetry properties 
of formula 1. 

Numerical tests are encoded in a similar fashion by first selecting the relevant 
subset of numerical attributes to be tested and than by encoding the respective 
thresholds. These thresholds are simply chosen from the set of all different values 
of the respective attribute actually occurring in training data passed down to this 
rule. This means we ignore possible values occurring only in examples already 
covered by earlier rules of the decision list. If there are n possible values, we can 
choose between n - 1 possible thresholds and therefore need log2(n - 1) bits for 
encoding a single threshold: 

cl(lessthan_tests) -= el(choose(involved, all_aura)) + Zcl(threshold) (6) 

cl(greaterequal_tests) = el(choose(involved, all_num) ) + Zcl( threshold) (7) 

e l ( t h r e s h o l d )  = l og2 ( -  - 1) (S) 
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This concludes the specification of the new formula (MDL0). To reiterate, its 
improvements are a better estimate based on the finite-length property of all 
encoded strings (as proposed in Kononenko 95), and its extended applicability. 
Now multiple classes as well as both categorical and numerical attributes are 
allowed in a domain. 

3 A l g o r i t h m i c  u s a g e  

For evaluating the formula introduced in the previous section, we have imple- 
mented the following simple greedy hill-climbing search for pruning a given deci- 
sion list (figure 1. The initial search starting point is the decision list returned by 
C4.5RULES having set all options of both C4.5 and C4.5RULES to their default 
values, except for enabling subsetting of categorical attributes. This results in 
a decision list being of exactly the syntax expected by our previously defined 
formula (see section 2). This initial decision list will also be used for comparison 
purposes later on. 

mdl_prune(decisio!ii_list,tr ainilig_examples) 
{ 

find best_basic.step 
if cl(prulied(decision_list,best_basic_step),trainilig_examples) <_ 

cl(decisioli_list,t r ailiing_examples) 
then mdl_prune(pruned (decision_list,best _basic_st ep),trainilig_examples) 
else return decisioli_list 

) 
cl(decisioli_list,tr ailiing_examples) 
{ see section 2 
} 

Fig. 1. Pseudo-code for the pruning of decision lists. 

Two basic operations are used for pruning a decision list: deleting a single 
test from the conditions of one rule or deleting a complete rule by itself. As 
long as the the total coding length does not increase, always the most compres- 
sive basic pruning step is chosen. Even though one might think that  pruning 
complete rules is logically redundant as a basic step (a rule could be pruned 
by iteratively pruning all its tests), it can still make a big difference in greedy 
hill-climbing search. Pruning a single test effectively generalizes a rule thereby 
possibly increasing its coverage. This causes fewer examples to be passed on to 
rules further down the list. Quite contrary, deleting a complete rule causes more 
examples to be passed on, namely all those that  used to be covered by the now 
deleted rule. 
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Additionally, as we allow for subset tests, one might even add a third pruning 
operator, namely deleting values from subsets. This would result in even more 
fine-grained pruning possibilities. We plan to implement such a pruning operator 
for further experiments. 

4 E x p e r i m e n t a l  R e s u l t s  

Ten complete 10-fold stratified cross-validation runs were carried out in each 
experiment reported below. We always list the mean predictive accuracies and 
the mean decision list sizes (simply measured as the total  number of tests used) 
for both C4.5rtuLEs and MDL-PRUNE. 

4.1 Ar t i f i c i a l  D o m a i n s  

Our initial experiments were carried out using two artificial data-sets: the parity 
of 5 boolean attributes in the presence of an additional 5 irrelevant boolean 
attributes and the 2-4 multiplexor in the presence of an additional 4 irrelevant 
attributes. Experiments involved different levels of class noise, where class noise 
is simulated by flipping the class bit of N% of the examples drawn at random. 
In all experiments all possible 1024 (2 ]~ examples were used. 

Domain Noise Error Size 
C4 MDL0 C4 MDL0 

Parity5-5 0% 0.00 0.00 160.0 80.0 
5% 8.59 7.96 222.3 148.4 

10% 18.70 22.38 305.6 262.6 
20% 33.29 43.58 259.4 154.6 

Mux2-4-4 0% 0.00 0.00 46.4 22.4 
5% 6.39 5.66 70.7 59.6 

10~0 11.53 11.39 80.5 52.3 
20% 25.39 24.31 97.9 16.6 

Table  1. PARITY5-5 and MUX2-4-4: Average predictive error rates and average 
rule-set sizes for C4.5RULES and MDL_PRUNE at various levels of class noise. 

Table 1 shows the average predictive errors and the average rule-set sizes for 
both C4.5RULES and MDL-PRUNE. W e  see that  MDL_PRUNE performs quite sat- 
isfactorily. Rule-sets are always significantly smaller, sometimes even producing 
a five-fold reduction in size. And except for Parity5-5 at the 20% class noise 
level error rates are never dramatically worse, usually their difference is not 
statistically significant (as judged by a paired t-test). 
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4.2 Natural  Domains 

For experiments involving more natural  domains we have chosen a few stan- 
dard databases available from the UCI repository (Merz & Murphy 96). These 
selected databases range from small to mid-size with regard to number  of ex- 
amples. Some databases comprise solely categorical attr ibutes,  whereas others 
comprise solely numerical attributes,  and finally there are a few comprising both  
categorical and numerical attributes.  The selected databases also show a good 
mix of two-class and multi-class problems. 

Domain Cases Classes 

Audiology 226 24 
Breast-w 699 2 
Credit-a 690 2 
Diabetes 768 2 
Glass 214 6 
Hypo 3163 2 
Labor 57 2 
Lymph 148 4 
Mush 8124 2 
Sick 3772 2 
Sonar 208 2 
Soybean 683 19 
Vote 435 2 

Cat Num Error 
C4 MDL0 

70 0 84.82 53.49 
0 9 4.56 5.43 
9 6 15.59 14.56 
0 8 27.15 29.97 
0 9 32.76 55.14 

18 7 0.86 0.89 
8 8 14.91 33.33 

18 0 21.62 32.29 
22 0 0.00 0.00 
22 7 1 .71  1.76 

0 60 29.66 35.91 
35 0 7.80 27.75 
16 0 4.71 4.89 

Size 
C4 MDL0 
8.3 4.1 

21.4 11.1 
35.1 27.2 
50.0 30.3 
44.3 34.7 
18.5 13.1 
7.5 1.52 

20.5 9.4 
19.3 16.8 
49.5 29.6 
20.6 10.1 
63.7 35.5 
16.7 13.1 

Table  2. Properties, average predictive error rates and average rule-set sizes for 
C4.5RULES and MDL_PRUNE for various natural domains. 

The properties of and the experimental  results in these naturM domains are 
listed in table 2. Even though we see the expected reduction in rule-set sizes just  
as we have experienced in artificial domains, the predictive error rates are less 
satisfactory. Rule-set size reduction is accompanied by a major  degradation of 
predictive performance in some of the domains (see e.g. soybean,  l a b o r ,  lymph, 
or g l a s s ) .  

Wha t  is the reason of this at t imes abysmal performance? The first hypothesis 
was the suspicion tha t  our coding schema for numerical tests (cf. equations 6 to 
8) was indeed overly simplistic and too inefficient, thus leading to overly general 
rule-sets. But mediocre performance in solely categorical domains (e.g. soybean  
and lymph) ruled out this hypothesis as a single cause. 

4.3 Modifying the coding length estimator 

Inspecting the well-performing data-sets we see that  these include all data-sets 
with more than  1000 training examples overall. Therefore we may  conclude tha t  
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a small number of available training examples might be one of the culprits. To 
clarify the impact of a small training set samples we devised the following ex- 
periment: can we increase the number of available examples in a sensible way? 
Simple-minded duplication of examples might seriously distort experimental re- 
suits, because identical examples could be present in both the training and the 
test set, thus leading to a measure of rote learning capability only. More sophisti- 
cated, one could just duplicate the examples once after they have been assigned 
to the different cross-validation folds. Instead of actually duplicating examples, 
the same effect can easily be simulated inside the compression formula by mod- 
ifying equation 3 in the following way: 

cl(rule) = cl(tests) q- fdup * cl(class_label_string) (9) 

By simply multiplying the original class-label string with a duplication factor 
fd~p we can easily simulate even vast artificial training sets. It is interesting to 
note that most practical systems using some MDL-based formula either inter- 
nally weigh the two summands differently (Quinlan 93a) or even allow the user 
to specify weights explicitly (Cohen 95, Oliveira & Sangiovanni-Vincentelli 95). 

::l\ 
\ 

26 

24 

22 

2C 

C4.5rules -e-- 
MDL1 -~-- 

\ 
\ 

, , i / 
2 3 5 10 50 

DuplicaUon Factor 

Fig. 2. Lymphgraphy: average error rates for various duplication factors. 

Figures 2 and 3 depict the average predictive error rates and decision lists 
sizes respectively for various settings of fdup in the lymph domain in comparison 
to the base error rates and sizes achieved by C4. Srules.  We can clearly see that 
the predictive error steadily decreases until it is statistically insignificant for fdup 
being 10. And even a much larger setting for fdup still results in a significant 
almost two-fold reduction of the original rule-set's size. 

How can this behaviour be explained? Certainly, for a duplication factor 
equal to 50, the explicit theory coding cost as computed by equations 4 to 8 is 
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Fig. 3. Lymphgraphy: average rule-set sizes for various duplication factors. 

d(dO = C,a(~uUO 

cl(rule) = cl(class_label_string) 
( N + k - l )  ( N )  

el(string) = log2 \ k -  I + 1~ cl..ck 

Fig. 4. The final simplified coding length estimation formula (MDL1). 

neglectably small. But the experimental results are very reasonable, still. How 
can this be the case? Why is the resulting theory not overfitting the data? 

One of the reasons is simply the fact that  we start  with the decision list 
produced by C4 .5 ru l e s ,  and that  we only prune this list. So the original list 
forms an upper bound on the syntactic complexity, the pruned list can never be 
more complex. But there is also an additional, more subtle explanation. 

If one investigates the way the size of the class-label string of a single rule 
is estimated by equation 1, one notices that  even absolutely correct rules are 
assigned some non-zero cost. If all but one of the absolute class frequencies ci 
are zero, equation 1 can be simplified to: 

cl(string) (lO) 

Therefore, even in the optimal case of absolutely correct rules we get some rea- 
sonable implicit accounting for the size an induced theory. 

This immediately suggests the following simplification of our rule-set com- 
pression estimation. We can replace the original coding length estimation of 
single rules (equation 3) by simply: 

cl(  u ) = d(cZass_tab D ring) (11) 
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Domain Error Size 
C4 MDL1 C4 MDL1 

(Mu0) Mux24 0% 0.00 0.00 46.4 24.0 
(Mul)  Mux24 10% 10.74 10.85 92.0 59.0 
(Mu2) Mux24 20% 22.87 23.39 98.4 80.8 
(Pa0) Par5 0% 0.00 0.00 160.0 80.0 
(Pal )  Par5 10% 17.99 16.85 295.7 167.1 
(Pa2) Par5 20% 29.72 27.21 298.7 202.2 
(AU) Audiology 84.69 73.19 8.1 6.0 
(BW) Breast-w 4.55 4.69 20.8 12.3 
(CR) Credit-a 15.26 15.24 37.0 24.7 
(DI) Diabetes 26.80 27.15 49.0 39.8 
(GL) Glass 33.83 33.08 44.6 28.1 
(HY) Hypo 0.88 0.89 18.2 10.1 
(LA) Labor 14.91 14.56 7.7 3.9 
(LY) Lymph 21.62 21.96 20.2 11.2 
(MU) Mush 0.00 0.00 19.2 8.8 
(SI) Sick 1.69 1.24 49.5 31.4 
(SO) Sonar 29.18 29.51 21.5 16.4 
(SY) Soybean 7.54 7.26 64.3 39.2 
(VO) Vote 4.80 4.69 16.1 9.0 

T a b l e  3. Average predictive error rates and average rule-set sizes for C4.5rtULES and 
the modified MDLI_PRUNE for various domains. 
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Fig .  5. Error rates and rule-set sizes for artificial domains. 
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Fig. 6. Error rates and rule-set sizes for natural domains. 

This means that  we do not compute theory costs explicitly anymore! Therefore 
equations 4 to 8 are superfluous now, too. All the cost estimates are now just  
based on the number of subsets of training examples being produced by a given 
decision list and on how different classes are distributed over these subsets. 
Figure 4 summarizes this simplified version which will be called MDL1 in the 
following. 

We have rerun all experiments using this simplified formula HDL1 and report 
the final results in both table 3 and figures 5 and 6. The figures are provided 
for simplified relative comparisons. Both error rates and decision list sizes are 
mapped into the range of [0, 1] by dividing all values by the respective max- 
imal value. Error rates are depicted upwards from zero, whereas decision list 
sizes printed downwards. Both are grouped together for each domain and both 
C 4 . 5 r u l e s  and MDL1. Smaller impulses indicate smaller error rates and smaller 
decision list sizes respectively. 

The simplified formula MI)L1 seems to do pretty well across all domains. Pre- 
dictive accuracy is n e v e r  significantly worse and in a few domains even improves 
somewhat. More importantly, the reduction in terms of size is still quite sat- 
isfactory, the pruned decision lists are approximately half as complex in most 
domains. Only for the two artificial domains there is some indication of over- 
fitting in the presence of noise, as the sizes of the pruned decision lists tend to 
converge to the upper bound provided by C4.5RULES. 

To give an idea for the improved intelligibility of induction results due to the 
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IF pension = none 

THEN outcome = bad 

IF longterm-disability-assistance = no 

THEN outcome = bad 

IF contribution-to-health-plan= none  

THEN outcome = bad 

IF w a g e - i n c r e a s e - f i r s t - y e a r  > 2 .3  
AND w a g e - i n c r e a s e - f i r s t - y e a r  < 2 .65  

THEN outcome = bad 

IF pension <> none 

AND longterm-disability-assistance <> no 

AND contribution-to-health-plan<> none 

THEN outcome = good 

IF default 

THEN outcome = bad 

Fig. 7. An initial decision list for labor negotiation settlements as returned by 
C4.5RULES. 

IF pension <> none 

AND longterm-disability-assistance <> no 

AND contribution-to-health-plan<> none 

THEN outcome = good 

IF default 

THEN outcome = bad 

Fig. 8. The pruned decision list for labor negotiation settlements as returned by the 
modified MDL 1_PRUNE. 

additional compression achievable over C4.SRULES when using the new formula, 
we list an example rule-set from the l a b o r  negotiation domain. This is a rather 
small database of final settlements in labor negotiations in Canadian industry. 
The initial decision-list induced by C4.SRULES is depicted in figure 7. 

The new formula allows to considerably prune and simplify this rule-set to a 
much smaller rule-set of comparable predictive accuracy being depicted in figure 
8. It is interesting to note that  part of the simplification could have been achieved 
by simply removing logical redundancies. In the l a b o r  example the first three 
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rules of the original set taken together are just the negation of the single rule 
predicting the opposite class. The supplied default rule would have predicted 
correctly anyway in these cases. On the other hand, pruning of the remaining 
fourth original rule for class bad is certainly not simply a removal of some logical 
redundancy. 

So one might speculate that  part of the additional amount of simplification 
gained is due to the global view on decision list simplification inherent in our 
approach. Whereas C4. Sru les  only optimizes sets of rules predicting the same 
class, we simplify decision lists as a whole. Thereby the interactions between 
the different subsets of rules and the default rule are taken into account in an 
implicit manner. 

5 Conc lus ions  

We have successfully engineered a new coding lengths formula for decision-lists, 
which allows for significant simplification of decision lists without impeding their 
predictive performance. Simpler decision lists are usually more intelligible as 
exemplified by an example given in the previous section. The final, simplified 
formula (figure 4) does not take into account theory cost explicitly, but it does 
so implicitly to a limited degree. This is one of the probable reasons impeding 
its original formulation. It also sets limits to the applicability of such a scheme 
to problems different from propositional rule-set pruning. When inducing and 
pruning a propositional decision-list in C4.5, a set of rather strong biases is in- 
volved in the search for an accurate decision list. Every single rule is of limited 
complexity, because its number of test-conditions is bounded by the total num- 
ber of attributes. Additionally, the only disjunctions being induced are so-called 
internal value disjunctions. This prevents from having the complete theory com- 
plexity being shifted into a single rule of high explicit, but low implicit cost. 
However in the context of constructive induction, such a shift is possible. There- 
fore one would have to extend the formula to cope with arbitrarily complex 
attributes possibly derived by constructive induction. Application of the new 
formula in an ILP context might also be problematic. Although the number of 
possible conditions in a rule is usually bounded in an ILP system, too, these 
bounds tend to be much looser in general. More directly applicable scenarios 
being on our list for further research include variations on the search process 
itself like: 

- Starting directly from a (pruned or unpruned) decision tree. 
- Inducing a decision list from scratch using the new formula as its search 

heuristic. 

Another promising direction should be the construction of a similar formula 
applicable to the prediction of continuous class values. This seems to be a preva- 
lent problem in practise and has therefore got some attention in the Machine 
Learning community recently (Kramer 96, Quinlan 93b, Weiss & Indurkhya 95). 
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Instead of relying on the probably overly simple MDL1 formula of figure 4, 
one could t ry  to estimate the appropriate value for fs,p of equation 9 for a given 
domain. Cross validation in a kind of wrapper approach (Kohavi 95) should be 
the right tool for this task. 

Comparison to other pruning methods which are not based on a variation of 
the MDL principle are also necessary. A good starting point for this endeavour 
should be the work described in Fiirnkranz 96. 
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