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Abs t r ac t .  In this paper, we present a system, called ICC, that learns 
constrained logic programs containing function symbols. The particular- 
ity of our approach is to consider, as in the field of Constraint Logic 
Programming, a specific computation domain and to handle terms by 
taking into account their values in this domain. Nevertheless, an earlier 
version of our system was only able to learn constraints Xi -- t, where 
X~ is a variable and t is a term. We propose here a method for learning 
linear constraints. It has already been a lot studied in the field of Sta- 
tistical Learning Theory and for learning Oblic Decision Trees. As far as 
we know, the originality of our approach is to rely on a Linear Program- 
ming solver. Moreover, integrating it in ICC enables to learn non linear 
constraints. 

1 I n t r o d u c t i o n  

This paper  is mainly devoted to the problem of handling numeric da ta  in Induc- 
tive Logic Programming.  This involves several points: defining a formal frame- 
work for studying this problem, learning numeric relations, introducing func- 
tional terms. From the semantic point of view, a consensus has emerged about  
the semantics of definite logic programs in terms of Herbrand interpretations,  
whereas several semantics have been defined for normal logic programs tha t  can 
be based either upon the classical two-valued logics or upon multi-valued logics. 
Nevertheless, pure logic programs do not enable to express numeric expressions. 
In Prolog, recta-predicates, as for instance the primitive is a, have been defined 
to deal with numeric values, but the semantics of such programs can no longer 
be studied in terms of Herbrand interpretations. To deal with this problem, a 
new field, called Constraint Logic Programming,  has rapidly grown: it enables 
to express constraints that  are interpreted in a specific domain of computat ion,  
as for instance, the set of integers, or the reals. 

In this paper,  we propose a new approach for learning logic programs con- 
taining function symbols. Instead of relying on the syntactic form of terms, we 
propose to consider a domain of computat ion and to build new terms based on 
their values in this domain and on the interest of these values for discriminating 
positive and negative examples. In an earlier version [6], the prototype,  called 
ICC, tha t  we have developed in the framework of Constraint Logic Programming,  
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was limited to constraints Xi = t, where X~ is a variable and t is a term in which 
X~ does not occur. The main contribution of this paper  is to propose a method,  
based on Linear Programming techniques, to learn relevant linear constraints 
and to integrate it in the system ICC, in order to learn non linear constraints. 

This paper  is organized as follows. Section 2 recalls basic definitions about  
Constraint  Logic Programming.  In Section 3, the system ICC is described. In 
Section 4, a method to learn linear inequalities is proposed as well as the way it 
is integrated in Ice.  

2 B a s i c  d e f i n i t i o n s  

2.1 S y n t a x  

We briefly recall some basic notions about  constraint logic programming,  tha t  
can be found in [5, 2]. We consider: 

�9 an infinite set of variables ]2, 
�9 a set, denoted by ~ ,  of function symbols, 
�9 a set, denoted by FIc, of constraint predicate symbols, containing at least 

the predicate =,  
�9 a set, denoted by FIR, of predicate symbols definable by a program. 

A term over ]2 and ~ is inductively defined as follows: a variable v of )2 is a te rm 
and, if f is a function symbol of Z ,  if n is the ari ty of f ,  n >_ 0 and if t l , . . . ,  tn 
are terms then f ( t l , . . . ,  tn) is a term. 

A primitive constraint has the form p ( t l , . . . ,  tn), where p is a predicate symbol 
of Fic and t l , . . . ,  t,~ are terms. 
A constraint is a first-order formula built with primitive constraints. In the re- 
maining of the paper,  we consider only the c l a s s / : s  of constraints defined as the 
smallest set of constraints that  contains all primitive constraints and is closed 
under variable renaming, conjunction and existential quantification. 

An atom has the form p ( t l , . . .  ,t=), where p is a predicate symbol of H e  and 
tl ,  �9 �9 �9 tn are terms. 
A constrained atom is a pair (c,p), where c is a constraint and p is an atom. 

A constrained clause is an expression a +-- c [] b l , . .  �9 bn, where c is a constraint 
and b l , . . ,  b= are atoms. 
A CLP program, also called a constrained program, is a collection of constrained 
clauses. 

Example 1. The following CLP program: 
fac to (X ,  Y) +--- X =- 0, r -- s(o). 
fac to (X ,  Y )  +- X = s(Z) ,  Y = T �9 X [] facto(Z,  T).  

defines factorial ( E  = {0, s, *}, H c  = {--} and FIR = {facto}) .  

The variable X is linked in the constrained clause A0 +- c l , . . . ,  Cm [] A 1 , . . . ,  A~, 
if X occurs in A0 or, if there is a primitive constraint cl or an a tom Aj  tha t  
contains the variables X and Y such that  Y is linked in C. A constrained clause 
C is linked if all its variables are linked. 
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2.2 T h e  c o n s t r a i n t  d o m a i n  a n d  i ts  s e m a n t i c s  

In the field of Constraint Logic Programming, we usually consider a specific 
constraint domain over which computation is performed. A (Z,  IIc)-strueture 7) 
is composed of a non-empty set D, an assignment of a function f~  : D '~ ~ D, 
for each f E Z,  and an assignment of a function Pz) : D ~ --* (True,  False},  for 
each p E T/c. 

Example 2. In Example 1, a (Z,  Hc)-s t ruc ture  can be defined on the domain D 
of positive integers. It interprets the function 0 by the positive integer 0, the 
function s as the usuM function successor on the set of positive integers, the 
function * as the usual multiplication on the set of positive integers. 

If 7) is a (Z,  Hc)-s t ructure ,  a 7)-atom has the form p ( d l , . . . ,  d~), where p E [IF 
and dl E D, 1 < 1 < n. The set of a l l / ) -a toms is called the 7)-base. 

Let 7) be a ( Z , / / c ) - s t r u c t u r e  and let t be a ground term. The interpretation of 
the ground term t, w.r.t. 7), denoted by I~(t) ,  is defined as follows: if f C S and 
if t l , . . .  ,t~ are terms, then I ~ ( f ( t l , . . .  ,t~)) = f ~ ( I ~ ( t l ) , . . . ,  I~)(t~)), 

In the following, Const(F) denotes the set of constants of D appearing in the 
expression F and TermE(D' )  (where D'  is a set of constants of D) denotes the 
set of terms built with constants of D ~ and function symbols of Z.  

If 7) is a (Z,  Hc)-s t ructure ,  a valuation v is a function: Y --* D. 
Let v be a valuation, v = { X 1 / d l , . . . , X , J d ~ }  where dl , . . . ,d ,~  e D. The set 
of inverse valuations of v, denoted by V - l (v ) ,  is defined by: v -1 e V - l ( v )  iff 
v -1 = ( d l / X i , , . . .  ,d~/Xi , ,}  with v(Xi j )  = dj. 
Let A -- p ( d l , . . . ,  dn) be a / ) - a tom and let v be the valuation { X 1 / d l , . . . ,  X J d , } .  
If v -1 e V - l ( v ) ,  v -1 = { d l / X i l , . . .  ,d~/Xi , ,} ,  then v--l(A) denotes the atoms 

. . . 

Let 7) be a (Z,  Tic)-structure and let T be a set of terms. An inverse interpre- 
tation of a constant d w.r.t T is the subset of T composed of the terms t that  
satisfy I~(t)  -- d. This set is denoted by ITl(d) .  

3 T h e  s y s t e m  I c e  

The learning task of ICC is specified by: 

1. a set Z of function symbols and a set Tic of constraint predicates, 

2. a (~ ,  Hc)-s t ruc ture  7), 
3. a set BASE of basic predicates defined by a set, denoted by BK +, of 7)-atoms, 
4. a set TARG of target predicates, specified by two sets of 7)-atoms: E + and 

E-  with E + N E-  = 0. The set E = E + U -~E- represents the intended inter- 
pretation and in the following,/-/p denotes the set BASE LI TAR(]. 
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A :D-atom e is D-covered with respect to E + U BK + by a constrained clause C 
= A0 ~-- c [] A 1 , . . . ,  An iff there exists a valuation v which satisfies c and such 
that  v(Ao) = e and v(Ai) E E + U BK + for i = 1 . . .  n. Such a valuation is called 
a covering valuation for e. 

The aim of I ce  is to find a constrained program, built over E ,  H e ,  and / / p  
which :D-covers the positive examples and which :D-covers no negative ones. 

The method used to build linked constrained clauses is a classical one, tha t  
consists in iteratively adding to the body of the clause, either a constrained 
a tom or a constraint until no negative example is :D-covered. We recall here 
the way relevant constraints are built. A similar method has been developed for 
building relevant constrained atoms. For more details, see [6]. 

Since a clause must :D-covers at least a :D-uncovered positive exampl% the first 
step of the algorithm is to choose (randomly) a :D-uncovered positive example 
e E E + and to build a clause which :D-covers e and as many :D-uncovered positive 
examples as possible. The positive example e enables us to build a set of relevant 
constraints and a set of relevant constrained atoms, and then a classical entropy 
measure [10] enables to choose the best constraint or the best constrained atoms. 
Therefore, let e E E + be a :D-uncovered positive example, let C be a clause tha t  
:D-covers e and some negative examples, and let v be a covering valuation for e. 
The set of primitive constraints, denoted by Constr, tha t  can be added to C in 
order to refine it, is computed as follows: 

A l g o r i t h m  1. Main Algorithm of ICC. 
1- Compute  the set T = TermE(Const(v)). 
2- Compute  D '  = {I9(t)lt E T}. 
3- Build PC = {pi(dil , . . . ,  di. )}Ip{ E IIc, dij E D', pi(d~l,... , d{.) t rue in :D}. 
4- Compute  ITI(PC) = {ITl(Cc)lcc E PC} 
5- Remove trivial constraints from ITI(PC) 
6- Compute  Constr = U v _ ~ e v _ l ( v ) v - I ( I T I ( P C ) )  

Example 3. Biases are introduced in ICe to reduce the set T,  which have en- 
abled Ice  to learn the following constrained logic programs,  respectively defining 
factorial and member. 

Learned program 

facto(X, Y )  ~ -  X = 0, Y = 8 ~ c c ( 0 ) .  7 6 
facto(X,  Y )  *-- Z = pred(X),  T = div(Y, X )  [] facto(Z, T). 
member(X, Y) ~-- X = head(Y). 
member(X, Y) ~-- Z = X, T = body(Y) [] member(Z, T). 

12 6 

As has been mentioned in the introductory section, the constraints learned 
by ICC have been limited to expressions Xi = t, where Xi denotes a variable and 
t a term. In Section 4, we present a method for learning linear inequalities and 
in Section 5, we explain how it is integrated in ICC. 
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4 L e a r n i n g  l inear  c o n s t r a i n t s  

Let us suppose that  we have built the clause bo *-- c [] b l , . . ,  b~ and let us call 
X1, . . . ,  X~ the numeric variables that have been introduced in this clause. Our 
goal is to find a linear constraint: 

cl:ao + a l  *X1 --~ . . . - 4 - a n , X n  < 0 
such that  the clause b0 +- e, e' [] b l , . . ,  b= :D-covers a maximum of positive exam- 
ples and a minimum of negative examples. The problem 7 ) that  must be solved 
can be, more generally, stated as follows: 

Let X1 . . . .  , Xn be n numeric variables. Let [vi, labi]l<i<,~ be m examples where 
vl denotes a valuation: {X1 , . . . ,  X=} --~ D and lab~ E {+, - } ,  depending whether 
vl represents a positive example or a negative one. 
Find a0, . . . ,  a= such that: 

�9 the number 
a~ * v~(X~) 

�9 the number 
a~ * ~(X~) 

of valuations vi that satisfy labi = + and ao + al * vi(X1) -}-... -[- 
< 0 is maximal, and 
of valuations v~ that satisfy labi = - and ao + al * vi(X1) + . . .  + 
> 0 is maximal. 

In the following, Zn + denotes the inequality ao + Z~=~aj * v i (X j )  g O, whereas 

Z n [  denotes the inequality ao +Z~=la j * v i ( X j )  > O. In these inequalities, v i (X j )  
are numeric values whereas a0, . . . ,  a .  become variables. 

Example 4. Let us suppose that  we have two variables: X1 represents the radius 
of a circle and X2 represents the length of a square. Let us consider the target 
concept, expressing the following relation between a circle and a square: "the 
square can be drawn inside the circle". The set of examples is defined by: 
{[1, 3, 3, +], [2, 3, 3, +1, [3,3,3, +], [4, 3, 3, +1, [5, 3, 3, +], [6, 3, 3, +1, 

[7, 3, 3, - ] ,  [8, 3, 3, -1, [9, 3, 3, -1, [10, 3, 3, - ] ,  [11, 3, 3, - ] ,  [12, 3, 3, - ]}  
where a tuple [i, Cl, c2, l] represents the i-th example (v~, labi) with v~ = {X1/c l ,  
X2/e2} and lab~ = l. 

In the best case, we would like to find a0, al ,  a2 such that  for each i = 1..6, En + 
is satisfied (for example En + = a0 + al * 3 + a2 * 3 < 0) and for each j = 7..12, 
Z n y  is satisfied (for example ~n~- = a0 + al * 5 + a2 * 2 > 0). 

A solution to Zn + UZn'( would give the equation of an hyperplane that  separates 
the positive examples from the negative ones. Nevertheless, in many cases, this 
set has no solutions and we only aim at maximizing the number of inequalities 
that  are satisfied. We solve this problem by using linear programming techniques, 
that  can be expressed as follows: 

LPg : m a x i m i z e  ~=lCjX j  
subject to 

Z~=laljxj  < bi, l o t  i = 1 ,2 , . . .  , m  
lj < xj < uj, f o r  j = 1 , . . . , n  

where xj is a real or an integer. 
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The problem 7 ) differs from the general LPg problem for two reasons: first, 
our objective function is only to maximize the number of satisfied inequalities; 
secondly, strict inequalities appear in Z n ~ .  

Therefore, we replace the set [Zn +] {iltab , =+} by the following set [In~'+]{iltab, =+}: 
-t'+ ~ = l a j  v i (Xj )  <_ o'i * C, ZJ~ i : ao + * 

where C denotes a fixed constant the value of which will be very high and where 
~ri takes either the value 0 or 1. The underlying idea is that  if the value of C is 
high enough, the inequality ao + E']=la j * v~(Xj )  < a~ * C will be satisfied with 
Gi----1. 

I I - -  
In the same way we built the set [Zn i ]{qlab~=-} containing the following in- 
equalities: 

Z n  i''- : ao + ~ = l a j  * v i ( X j )  _> c - Gi * C 
where e is a sufficiently low value which allows to remove the strict inequalities. 

I1+ [:Z-nil-, The set of inequalities [Zn i ]{illab~=+} U t i J{ill~b~=-} contains (n + 1) + m 
variables, a0, . . . ,  a,~, G1, . - . ,  a,~. Let us recall that  the number n is the number 
of numeric variables that have been introduced in the clause, whereas m is the 
number of positive and negative instances. 

Minimizing ~ l a i  enables to maximize the number of inequalities that  are 
satisfied among [Zn+]{illab~=+} U [Zn~-]{ql~b~=-}. 

The linear problem that is solved can thus be stated as follows: 

m i n i m i z e  z m l a i  
sub jec t  to 

ao + Z~=la j * v i ( X j )  < Gi * C, i -- 1 , . . . ,  m and  labl = +, 
ao + ~ = l a j  * v i ( X j )  > e - Gi * C, i = 1 , . . . ,  m and  labl = - 
aj  E D,  f o r  all j = O , . . . , n ,  
Gi E {0,1}, f o r  all i = 1 , . . . , m .  

5 Integration in ICe 

As has already been mentioned, ICC is based on a top-down strategy: while 
negative examples are extensionally covered, the current clause is refined by 
adding a literal to its body. Let us suppose that  the variables X1, . . . ,  Xn have 
already been introduced in the clause. Each time a new numeric variable is 
introduced, the system ICC calls the system lp_solve, developed by M.R.C.M. 
Berkelaar 1. When Ip_solve succeeds in solving the associated linear problem, 
the values of ai enables to compute the number of positive instances and the 
number of negative instances that  are :D-covered by the learned inequality which 
in turn, enable to compute the gain of this linear constraint. The literal that  is 
introduced in the body of the clause is chosen, according to an entropy measure, 
among: 

* the set of relevant constraints built by ICC, 

1 Eindhoven University of Technology, Eindhoven, The Netherlands 
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the set of relevant constrained atoms built by ICC, 
if possible, the inequality ao + al * Xjl  +.  �9 + ap * Zj~ ~ 0, which expresses 
a relation between the numeric variables Xj l ,  . . . ,  Xj~, which have already 
been introduced in the clause. 

In the system ICC, it is possible to introduce function symbols, as for instance 
the function square : I~ --* IXI. In this case, ICC searches for constraints c I : 
a0 + Z ~ l a l  * Xi ~ 0, where the variables Xi are either numeric variables which 
appear in the clause, or terms built with variables appearing in the clause. 

Example 5. Let us consider, for instance, the concept contains(O, R) meaning 
that  the object 0 can be drawn inside a circle of radius R and let us consider the 
basic predicate square(O, N)  expressing that O is a square and that  its length 
is N. If the function sqr (that computes the square of a number) is given, then 
ICC learns the following program: 

contains(a, b) ~-- square(a, b). 
contains(a, b) ~ square(a, d), 0.92.sqr(b) -0.40.sqr(d) -hb + 1.91.d +5.82 > 0. 

6 C o n c l u s i o n  

The system ICC is a system that builds, if possible, a constrained logic program, 
that  T~-covers the positive examples and :D-covers no negative examples. It has 
been implemented in Sicstus Prolog on a Sun 4. 

The experiments that  we have made have already given positive results. Nev- 
ertheless, even if the system lp_solve that  we use is efficient, so that  searching 
for linear inequalities does not seem very expensive, the search space in ICC is, 
in general, very large due to the introduction of new terms. Biases have been 
introduced, as for instance the limitation of the depths of terms. Nevertheless, 
they are fixed before the learning process and we would like to study more dy- 
namic biases linked to the learning problem and specifying terms or atoms that  
seem relevant. 

C o m p a r i s o n  w i t h  o t h e r  works:  Some systems already deal with the problem 
of learning constrained logic programs, as for instance, [11, 8]. In [11], the system 
combines a version space strategy with a divide-and-conquer strategy and the 
constraints that  are learned mainly express bounds for variables. The strategy 
developed in [8] is an extension of Golem [7] to handle numeric constraints. 

The problem of learning linear inequalities has already been a lot studied in 
the literature. It has been studied from a theoretical point of view, in [12]. There 
are two main differences with the Support Vector machines, defined in [12]: first, 
we intend to minimize the number of misclassified examples whereas their aim is 
to minimize the empirical risk; secondly, our method relies on Linear Program- 
ming techniques which is, as far as we know, originM. This has also been studied 
in the field of learning decision trees, as for instance [1, 9]: generally, the under- 
lying systems start from an initial inequation and perturb the coefficients until 
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the impurity measure reaches a local minimum; in OC1 [9], a non deterministic 
step enables to get out the locM minimum. 

FinMly, the idea of changing the feature space in order to learn non linear 
constraints has already been introduced in [12] and in [4]. Nevertheless, in our 
framework the functions that  can be introduced in the equations depends on 
the underlying Constraint Logic Programming language, whereas in [4], the set 
of functions is reduced to the product between variables and to the square of a 
variable. 
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