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Abs t rac t .  One of the most interesting problems faced by Artificial In- 
telligence researchers is to reproduce a capability typical of living beings: 
that of learning to perform motor tasks, a problem known as skill acquisi- 
tion. A very difficult purpose because the overwhole behavior of an agent 
is the result of quite a complex activity, involving sensory, planning and 
motor processing. In this paper, I present a novel approach for acquir- 
ing new skills, named Soft Teaching, that is characterized by a learning 
by experience process, in which an agent exploits a symbolic, qualita- 
tive description of the task to perform, that cannot, however, be used 
directly for control purposes. A specific Soft Teaching technique, named 
Symmetries, was implemented and tested against a continuous-domained 
version of well-known pole-balancing. 

K e y w o r d s :  skill acquisition, knowledge-based feedback, adaptive agents. 

1 Introduction 
In this work we consider a framework where an artificial agent interacts with 
its environment by executing actions. Our aim is to have the agent performing 
a specific task by generating a proper control device. Generally speaking, the 
controller can be built in many ways (from direct encoding to the use of AI 
techniques); in this paper we are interested in the approaches that  exploit on- 
line learning methods. The reason is that  using learning methods less information 
is to be supplied explicitly to the agent, its lack being balanced by the capability 
of acquiring it autonomously, which simplifies the controller's production. 

In the literature, learning rules have already been used to acquire control 
knowledge either from examples, e.g. [13], or from the agent's experience, e.g. 
[14, 6]; this latter solution is known as adaption. In order to have adaption, one 
must find a form of feedback, that  can be "processed" by the agent's learning 
rule. Typically, adaption is obtained by means of Reinforcement Learning (RL). 
As the name suggests, however, the feedback returned in this case is quite poor: 
in fact, it is a scalar value, corresponding to a reward when the agent satisfies the 
goal condition or to a punishment when it enters a failure state. Then, in RL the 
focus of attention is mostly posed on how to learn a policy given that  the states 
of the underlying model are known, a hypothesis that  does not hold in most 
real-world tasks. To overcome this limit, RL was applied to agents implemented 
as neural networks, but so, convergence cannot be guaranteed anymore [12]. 

One feature that  is often overlooked when dealing with adaption is tha t  live 
agents (such as us) exploit a lot of knowledge to help their learning. We do not 
know how this knowledge is "encoded" in the brains but we know that  we use 
it to monitor our behavior, to recover from errors, to describe in words a task 
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we want to have accomplished and use such simple descriptions to guide its 
execution. This is the focus of interest of this work. 

2 S o f t  T e a c h i n g  

The Soft Teaching methodology is based on a particular use of knowledge that 
can be observed in our everyday experience. Let's see it with an example. Suppos- 
ing a human teacher has to explain the pole-balancing task to a human learner, 
(s)he would probably say something like "Manouver the cart, moving it left or 
right, so to keep the pole on it vertical". Note that this description does not 
contain any suggestion of what to do, "moving it left or right" is just the list 
of the possible actions that can be taken. We say that this description is non- 
operational because the learner still has to find a policy that allows him/her to 
achieve the goal. By using the above knowledge, however, the learner can crit- 
icize his/her behavior during training. We call such a mechanism the Human- 
Teacher-Human-Learner (or HTHL) interaction scheme: since the teacher cannot 
transfer his/her skill to the learner, it transfers some information that (1) makes 
the learner aware of what is to be achieved and (2) allows him/her to start and 
bias a learning process that leads to building some new actuative knowledge. 

Fig. 1. The proposed architecture. 

The architecture presented here (Fig. 1) is based on the HTHL scheme: the 
adaptive agent owns some qualitative knowledge (given in a symbolic notation) 
about the task and the domain, that can be turned into a very precise evaluator. 
The knowledge is supplied by a human teacher, who does not take part to the 
learning process, and is non-operational. The module that handles the qualitative 
knowledge is called teacher or teacher-on-line It is the "trait d'union" between 
the symbolic level, to which knowledge belongs, and the analogical level of the 
controller. In this framework, an adaptive agent can be trained by producing 
different kinds of feedback signals and/or using different training algorithms. 

Indirect Supervised Learning In particular, this work introduces a subset 
of Soft Teaching methods called Indirect Supervised Learning (or simply ISL) 
methods. A training technique belongs to the ISL family if (1) it exploits a su- 
pervised learning rule and (2) the error is computed as a function of the difference 
between the action built by the controller and an alternative action generated 
by the teacher-on-line. This latter feature allows training to be performed on- 
line, keeping, on one hand, the advantages related to learning by interaction (of 
classical RL) and, on the other, overcoming some of the limits of the approaches 
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to teaching that  are already in the literature (Section 4). Indirect Supervised 
Learning is, then, a new learning paradigm in which the teacher returns sugges- 
tions in addition to reinforcements. The approach is somewhat similar to the 
one proposed by Clouse and Utgoff [4] (see Section 4), the difference is that  in 
our case the decision of when and what to suggest is taken automatically instead 
than by a human teacher (that is what "indirect" stands for). 

From an abstract perspective, the ISL teacher architecture is made of three 
main modules: a strategy generation module, a strategy evaluation module, and 
a model of the world. The main loop of the ISL algorithm is as follows: 

1. given a world si tuation and current controller, build a s t ra tegy S; 
2. produce a set of Mternative strategies to the one built  in step 1; 
3. evaluate each s t ra tegy using the model and the teaching knowledge; 
4. apply the best scoring s t ra tegy SI; 
5. if the effects are as those predicted by the model, update  the controller exploiting the applied 

s t ra tegy S t and the original s trategy S; otherwise, update  the model in a supervised way; 
6. if the trim is not over go to step 1. 

The idea of exploiting a world model is not new in control applications (see 
[10]), the real novelty stands in the way strategies are evaluated. All the strategies 
taken into account in the learning process are built in one of the two following 
ways. The first consists in getting a situation from the world, using the current 
controller to produce a first action and, at last, entering a loop in which, first, 
the next situation is predicted by the model, then, the controller is used to 
generate next action according to the prediction. Strategy's length is defined 
by the human teacher. The model of the world is intended to be a learning 
module. So far, however, in order to study the effect of ISL in skill acquisition 
avoiding any additional complication, a perfect model was used. Once a strategy 
is available, it is possible to produce a set of alternatives by modifying it so to 
investigate the surroundings of the search space. Of course, different methods 
can be applied to this aim. In the implementation, random variants were used. 

S y m m e t r i e s  Symmetries is an ISL method, used to better exploit the infor- 
mation contained in the best-scoring strategy. The idea is simple: in tasks like 
pole-balancing the domain is naturally symmetric, i.e. in absolute values, what 
the controller should do when the pole falls at its right is exactly what it should 
do when it falls at its left. A human learner realizes such a structure in the 
domain and exploits it. The same should happen in artificial learners. 

Symmetries goes beyond the current perceptions of the agent, elaborating its 
experience. Such an elaboration is to be done on-line because the only alternative 
is to accumulate long traces of execution to post-process. The method developed 
alternates experience to hypothetical reasoning: once S' was applied and the 
controller updated, a subset of the points that  are symmetric (w.r.t. 0) to the 
state that  caused S"s  generation are built (in the experiments on pole-balancing 
only z and 0 signs are changed). The strategy that  the agent would apply starting 
from each of them is built together with a proper symmetric version S~ of S'. 
Both are evaluated by the teacher-on-line: if S~ scores better than the strategy 
produced by the controller, it is used as a desired target by the update rule. The 
check is necessary because the current controller is not bound to be symmetric. 

S t r a t e g y  e v a l u a t i o n  Strategies are evaluated by means of the teacher's knowl- 
edge. The first step is to give it a spatial interpretation so to allow scalar evalua- 
tions. A thorough description of this process can be found in [1]. Then, a single 
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action can be evaluated by mapping on this space the input situations before and 
after the action was applied. Given an input x l  and a predicate P with a fuzzy 
semantics, we define P ' s  distance from truth as follows: d i s tF romTru th (P(x l ) )  
is 0 if P ( x l )  is true, the distance between x l  and the t ru th  set of P other- 
wise. For a better understanding let's consider predicate closeToEnd, whose 
semantics is as follows: closeToEnd(x) ~=* distance(x, END)  < threshold. 
closeToEnd(xl) returns threshold-distance(xl,  END),  where E N D  is a given 
constant. Distance from truth can be extended to conjunctions of predicates 
by using a Euclidean-like distance measure, e.g., if goal = P1 ~& ... ~& pn, 
distFromTruth(goal(xl)) will be }-~i=1 ..... n distFromTruth(Pi(xl)) 2. When the 
sum returns a value different than 0 (condition not satisfied) the translated sig- 
mold function (1 + e x p - ~ )  -1 - 1 is used to map it on the range [ -1 ,  0]. The 
negative interval accounts for the fact that  the evaluations can be used directly 
as negative reinforcements. Last, if the direction of movement is different than 
the desired one, the evaluation is discounted. 

In order to evaluate a strategy the evaluations of each single step are com- 
bined by means of a discounted sum evaln = goodness(an) + 7 evaln_l where 
an is the action taken at time-step n and 7 E [0, 1] is a discount factor. 

T h e  l e a r n e r  tn the experiments, the learner was implemented as a Neural Net- 
work: this choice does not restrict the set of functions that  can be approximated 
because it is well-known [7] that  a three-layered neural network can approx- 
imate any function. Different models were tried; the ones that  gave the best 
results belong to the Locally Receptive Fields family (or LRFNs, see [2]). They  
perform a piecewise approximation, being each hidden neuron's activation region 
a closed area of the input space. Then, every update has a local effect, leaving 
the knowledge acquired for situations far from the current one unchanged. This 
locality turned out to be very important  to overcome unlearning, to find condi- 
tions that  allow to check if the hidden neurons number is sufficient to represent 
the desired control function, and to dynamically grow the network during the 
learning process (see [10, 5]). The networks were implemented by means of the 
Fuzzy-Neural system already described in [2]: a same network topology allows 
to implement, alternatively, Fuzzy Controllers (FCs) and Radial Basis Function 
Networks (RBFNs). A network can be interpreted as a fuzzy knowledge base and 
the learning process preserves the rules' structure. In all experiments the same 
initial controller, made of 25 random rules, was used. 

[region] 
test1 
goal 
failure 

[context i] 
X 
THETA 

[static-condll 
fluxpipe 

= ( T H E T A  > 0); 
= ( i n c l i n a t i o n ( )  = =  0); 
= ( ( T H E T A  > 0.2094384) ]1 (X > =  2.4)); 

= any; 
---- less; 

= (~:ertical 0 ~ k~p -- off()); 

3 E x p e r i m e n t a l  r e s u l t s  

The method described in this paper was tested against pole-balancing [1]. The 
reason is that  it is one of the most classical RL testbeds; it is well understood and 
allows comparisons with other techniques. Furthermore, although it is simpler 
than most real-world tasks, it allows to face many of the difficulties shown by 
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continuous-domained control problems. The pole-balancing simulator is, depend- 
ing on the experiment, exactly the one made freely available by Rich Sutton 1 
(we will call it RS, for short) or a variant of it that can handle continuous ac- 
tions. In all experiments the controller has the same four inputs (X,) ( ,  8, ~/: the 
position of the cart, its time derivative, the inclination of the pole, and its time 
derivative. The goal is to keep the pole balanced for 100,000 timesteps. For each 
experiment, the generalization ability of the learned controllers was checked by 
starting part of the trials in situations different than those used during train- 
ing. Generalization tests are extremely interesting because interacting with the 
world, the experience is limited to the portion of the input space directly faced 
during the exploration. As we will see, using Simmetries it is possible to increase 
the speed of learning allowing a neural approximator to learn a continuous pole- 
balancing control function in half the number of training trials required by RS 
to learn a policy in which only two alternative actions are allowed. The learned 
controllers also show very good generalization performances. The domain knowl- 
edge is reported above. It is a coding of: the goal is to keep the pole balanced; if 
you bump against the ends of the track or the pole's inclination is greater than a 
certain angleyou fail. It is encoded by keywords aOAL and FAILURE. The other 
sections are used to give more information about the behavior desired when the 
agent is in a particular context (see [1] for details). For the sake of simplicity 
only the case (THETA>0) is reported (the other being symmetric). 

E x p e r i m e n t s  in the  RL f ramework .  Different experiments were carried on 
using a traditional reinforcement function. They were done for comparison pur- 
poses. First of all, RS was tried. The reinforcement function used by this system 
returns -1 in case of failure and 0 otherwise. The state space is divided in 162 
boxes; for each input situation the box containing it is selected and an action 
is produced according to this selection (see [3]). In RS all the experiments start 
from situation (0, 0, 0, 0) and training stops after 100 trials if the goal is not 
reached. RS learned to balance the pole in a number of trails n E [58, 79]. 

Then, I checked if two classical reinforcement functions (one returning -1 for 
failures and 0 otherwise and the other returning -1 for failure, 1 for success and 
0 otherwise) could guide a LRFN in learning to balance a pole without using any 
particular RL technique, i.e. simply using it instead of a teacher. The task is 
much more difficult than before because a continuous function is to be acquired. 
In both cases the LRFN shows no learning performance. 

Last and due to the fact that in most of the experimens below the initial 
situation is different than (0, 0, 0, 0), RS was started in situations respectively 
equal to (0, 0, r, 0) and (r, 0, r, 0), where r stands for a random value. Strangely 
enough, in case (0, 0, r, 0) the agent is not able to keep the pole balanced for 
more than the initial timestep. In the other case, instead, learning takes place 
but it takes over 100 trials two attempts out of three. At the third attempt it 
learns in 72 trials. 

E x p e r i m e n t s  in the  ISL f ramework .  Due to strategy random generation, 
typical of the ISL framework, each experiment was repeated up to 5 times. In 
all experiments the same ~eaching knowledge and the same initial LRFN were 
used. However, depending on the antecedent composition rule chosen, the net 
could be either a FC or a RBFN. A few words are, now, to be spent about the 

1 ftp.gte.com. 
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distribution of the initial situations faced during training and test. Depending on 
how close a situation is to satisfying the failure condition, we can characterize 
initial situations by their degree of difficulty. Random generation affects only 
two input variables: x, the cart's position and ~, the pole's inclination. Since 
value is always very close to 0, the difficulty mostly depends on x. Then, for a 
better evaluation of the results we must take into account the distribution of the 
initial situations produced w.r.t, this feature. 

Table 1. Symmetries off. The columns report: the parameter values (strategy length 
and 7); the (avg.) first successful trial; the (avg.) successful test trials starting in 
(0, 0, r, 0}; the (avg.) successful test trials starting in (r, 0, r, 0}. 

configuration first success {0, 0, r, o} - (r, 0, r, 0} 
1 step 
7--  0.9 392 0 out of 10 0 out of 10 
5 steps 
[7 -- 0.9 114 4.33 out of 10 0.33 out of 10 
i10 steps 
rT=o 
7 = 0 . 1  
7 = 0 . 4  
7 = 0 . 5  
7 = 0 . 9  

308 
311 
348 
398 
304 

4.5 out of 10 
0.25 out of 10 

0 out of 10 
8.75 out of 10 
7.66 out of 10 

1 out of 10 
0 out of 10 

0.66 out of 10 
2.5 out of 10 
2 out of 10 

To this aim, the domain [-2.4, 2.4] was split in three ranges: peril = [-2.4, -2.0]U 
[2.0, 2.4] semiperil = [ -2 .0 , -1 .6 ]  t2 [1.6, 2.0], and safe = [-1.6,  1.6], ordered 
from the closest to the farthest from failure. The distribution is as follows: 
73% of initial situations belong to safe, 16% belong to semiperil, and the last 
11% to peril. Since a situation belonging to peril can be non-recoverable (pole 
falling towards the end of the track), in the worst case (all peril situations non- 
recoverable) the maximum performance expected is 89%; more frequently, when 
half of the peril situations cannot be recovered a maximum 94.5% performance 
can be obtained. However, when the starting situation is of the same type as 
during training ((0, 0, r, 0}), a 100% performance is expected. 

Simmetries was applied both to RBFNs and to FCs. In both cases, the num- 
ber of trials required dropped considerably w.r.t, training without Symmetries 
but RBFNs showed a stabler performance, i.e. the speed of learning of the same 
initial controller in different trials all configured in the same way did not vary too 
much. This is why most of the experiments were done on RBFNs. Their  learning 
behavior was incredibly good. First of all, the speed of learning was always much 
higher than without Symmetries dropping from about 300 trials (see Table 1) to 
a value in between the 20th and the 40th trial~ Note that  these speeds are even 
higher than those of RS (and let's recall that  RS's learning problem is easier 
and that  the number of rules it uses is 162 vs. the 25 rules used here). The 
second nice feature of the learning process was that  in the case in question the 
pole's oscillation was always reduced very quickly to an almost unperceivable 
movement. During tests, the controllers did from 9 to 10 successful trials out of 
10 in (0, 0, r, 0) and (in the average) 6 trials out of 10 in (r, O, r, 0}, for an overall 
96% of success in (0, 0, r, 0} and 60% otherwise. 

However, using RBFNs one must pay attention to limit the update to the 
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Table 2. Test performances of the set of controllers saved every 20,000 timesteps. 

cntr. saved at avg. perf. in avg. perf. in 
timestep trial (0, 0, r, 0) trial (r, 0, r, 0} 
30,000 418 397 
50~000 397 606 
70,000 356 211 
90,000 380 280 

rules whose activation is high, otherwise unlearning may occur. The results re- 
ported above were obtained updating rules whose activation was higher than 
0.4 but when the threshold is decreased things change. Table 2 shows what 
happens using a threshold equal to 0.2: during the first successful trial of the 
training phase, the controller was saved at fixed time intervals obtaining a set of 
different controllers that  were, then, tested as in the previous experiments. All 
the controllers up to the 10,000th time-step show the same good performances. 
However, when training passes the 10,000th timestep, the controllers obtained 
are no more able to balance the pole for a long enough time and the average 
performance decreases a little bit as the time passes (seeTable 2). The cause is 
over-fitting: during the first successful trial, the controller specializes to return 
lower and lower forces as the oscillation diminishes forgetting what to do when 
the oscillation is greater. Note, however, that  increasing the threshold too much 
(0.6 in the experiments) prevents the controller from learning because rules are 
never updated. 

4 R e l a t e d  w o r k  

In the literature, there are few examples of teaching applied to learning skills. 
The first and most common way of teaching a task to an agent is to produce 
a learning set made of examples of good execution recorded by a skilled human 
operator. Each recorded trace is a sequence of pairs (x t, atl where x t is the 
input situation at time step t, and a t is the correspondent action applied by the 
operator. Afterwards, a learning algorithm is applied off-line to induce a skill. 
This approach is commonly followed when the agent is implemented as a neural 
network. Teaching by examples has explicitly been used in the work by Kaiser 
[9, 8], and in the Fuzzy Neural methodology [2] and has also been applied in RL 
by Lin [11]. The main difference w.r.t, the aforementioned approach, is that  here 
each sequence of pairs ends with a reinforcement value. The learner is shown 
the sequences backwards and uses a RL rule to update an approximation of the 
value function. Learning by examples shows, however, a couple of drawbacks. 
The first is that,  due to the existing learning rules (such as gradient descent), 
as long as the learner works on recorded examples only, it is very difficult for 
it to outperform its teacher. Unfortunately, there are applications, especially 
industrial tasks, in which on one hand, it is not possible to generate examples of 
optimal behavior (the human operator is not a perfect operator); on the other, 
often it is not even possible to produce enough examples. An alternative consists 
in giving hints to the learner when necessary, as done by Clouse and Utgoff [4]: in 
the work developed so far, the teacher is supposed to be a human operator who 
monitors the learning process, which, in turn, exploits RL techniques. When the 
agent is stuck in a situation it is not able to solve the teacher gives it a hint, i.e. 
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(s)he suggests what to do. The agent applies the action and learning goes on. 
However, in many tasks a human expert cannot monitor the learning process of 
the agent because a continuous stream of inputs at a very low perceptive level 
(forces, speeds, ...) is to be handled quickly. 

5 C o n c l u s i o n s  
In this paper a novel approach to skill acquisition, named Soft Teaching, is pro- 
posed; its main characteristic is that,  differently than what can be found in the 
literature, the teaching process is performed in a fully automatic way, exploiting 
some qualitative knowledge about both the goal and the domain. Such knowledge 
is non-operational, i.e. it cannot be used to directly control the agent, but can 
be used to evaluate the agent's behavior. In this sense, Soft Teaching is inspired 
by the described HTHL scheme. Among the many different architectures tha t  
can be developed within Soft Teaching, the focus is posed on Indirect Super- 
vised Learning methods, in which Soft Teaching is used jointly with a supervised 
learning rule. In particular, a specific ISL technique, named Symmetries, was 
implemented and tested against pole-balancing. Experimental comparisons show 
that  Symmetries allows to obtain very good performances reducing the number 
of trials necessary to learn a controller of one order of magnitude. 
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