
Exploiting Qualitative Knowledge to Enhance
Skill Acquisition

Cristina Baroglio
baroglio@di.unito.it

tel. +39-11-7429229 fax +39-11-751603

Dip. di Informatica, Universith degli Studi
c.so Svizzera 185, 1-10149, Torino, Italy

Abs t rac t . One of the most interesting problems faced by Artificial In-
telligence researchers is to reproduce a capability typical of living beings:
that of learning to perform motor tasks, a problem known as skill acquisi-
tion. A very difficult purpose because the overwhole behavior of an agent
is the result of quite a complex activity, involving sensory, planning and
motor processing. In this paper, I present a novel approach for acquir-
ing new skills, named Soft Teaching, that is characterized by a learning
by experience process, in which an agent exploits a symbolic, qualita-
tive description of the task to perform, that cannot, however, be used
directly for control purposes. A specific Soft Teaching technique, named
Symmetries, was implemented and tested against a continuous-domained
version of well-known pole-balancing.

K e y w o r d s : skill acquisition, knowledge-based feedback, adaptive agents.

1 Introduction
In this work we consider a framework where an artificial agent interacts with
its environment by executing actions. Our aim is to have the agent performing
a specific task by generating a proper control device. Generally speaking, the
controller can be built in many ways (from direct encoding to the use of AI
techniques); in this paper we are interested in the approaches that exploit on-
line learning methods. The reason is that using learning methods less information
is to be supplied explicitly to the agent, its lack being balanced by the capability
of acquiring it autonomously, which simplifies the controller's production.

In the literature, learning rules have already been used to acquire control
knowledge either from examples, e.g. [13], or from the agent's experience, e.g.
[14, 6]; this latter solution is known as adaption. In order to have adaption, one
must find a form of feedback, that can be "processed" by the agent's learning
rule. Typically, adaption is obtained by means of Reinforcement Learning (RL).
As the name suggests, however, the feedback returned in this case is quite poor:
in fact, it is a scalar value, corresponding to a reward when the agent satisfies the
goal condition or to a punishment when it enters a failure state. Then, in RL the
focus of attention is mostly posed on how to learn a policy given that the states
of the underlying model are known, a hypothesis that does not hold in most
real-world tasks. To overcome this limit, RL was applied to agents implemented
as neural networks, but so, convergence cannot be guaranteed anymore [12].

One feature that is often overlooked when dealing with adaption is tha t live
agents (such as us) exploit a lot of knowledge to help their learning. We do not
know how this knowledge is "encoded" in the brains but we know that we use
it to monitor our behavior, to recover from errors, to describe in words a task

50

we want to have accomplished and use such simple descriptions to guide its
execution. This is the focus of interest of this work.

2 S o f t T e a c h i n g

The Soft Teaching methodology is based on a particular use of knowledge that
can be observed in our everyday experience. Let's see it with an example. Suppos-
ing a human teacher has to explain the pole-balancing task to a human learner,
(s)he would probably say something like "Manouver the cart, moving it left or
right, so to keep the pole on it vertical". Note that this description does not
contain any suggestion of what to do, "moving it left or right" is just the list
of the possible actions that can be taken. We say that this description is non-
operational because the learner still has to find a policy that allows him/her to
achieve the goal. By using the above knowledge, however, the learner can crit-
icize his/her behavior during training. We call such a mechanism the Human-
Teacher-Human-Learner (or HTHL) interaction scheme: since the teacher cannot
transfer his/her skill to the learner, it transfers some information that (1) makes
the learner aware of what is to be achieved and (2) allows him/her to start and
bias a learning process that leads to building some new actuative knowledge.

Fig. 1. The proposed architecture.

The architecture presented here (Fig. 1) is based on the HTHL scheme: the
adaptive agent owns some qualitative knowledge (given in a symbolic notation)
about the task and the domain, that can be turned into a very precise evaluator.
The knowledge is supplied by a human teacher, who does not take part to the
learning process, and is non-operational. The module that handles the qualitative
knowledge is called teacher or teacher-on-line It is the "trait d'union" between
the symbolic level, to which knowledge belongs, and the analogical level of the
controller. In this framework, an adaptive agent can be trained by producing
different kinds of feedback signals and/or using different training algorithms.

Indirect Supervised Learning In particular, this work introduces a subset
of Soft Teaching methods called Indirect Supervised Learning (or simply ISL)
methods. A training technique belongs to the ISL family if (1) it exploits a su-
pervised learning rule and (2) the error is computed as a function of the difference
between the action built by the controller and an alternative action generated
by the teacher-on-line. This latter feature allows training to be performed on-
line, keeping, on one hand, the advantages related to learning by interaction (of
classical RL) and, on the other, overcoming some of the limits of the approaches

51

to teaching that are already in the literature (Section 4). Indirect Supervised
Learning is, then, a new learning paradigm in which the teacher returns sugges-
tions in addition to reinforcements. The approach is somewhat similar to the
one proposed by Clouse and Utgoff [4] (see Section 4), the difference is that in
our case the decision of when and what to suggest is taken automatically instead
than by a human teacher (that is what "indirect" stands for).

From an abstract perspective, the ISL teacher architecture is made of three
main modules: a strategy generation module, a strategy evaluation module, and
a model of the world. The main loop of the ISL algorithm is as follows:

1. given a world si tuation and current controller, build a s t ra tegy S;
2. produce a set of Mternative strategies to the one built in step 1;
3. evaluate each s t ra tegy using the model and the teaching knowledge;
4. apply the best scoring s t ra tegy SI;
5. if the effects are as those predicted by the model, update the controller exploiting the applied

s t ra tegy S t and the original s trategy S; otherwise, update the model in a supervised way;
6. if the trim is not over go to step 1.

The idea of exploiting a world model is not new in control applications (see
[10]), the real novelty stands in the way strategies are evaluated. All the strategies
taken into account in the learning process are built in one of the two following
ways. The first consists in getting a situation from the world, using the current
controller to produce a first action and, at last, entering a loop in which, first,
the next situation is predicted by the model, then, the controller is used to
generate next action according to the prediction. Strategy's length is defined
by the human teacher. The model of the world is intended to be a learning
module. So far, however, in order to study the effect of ISL in skill acquisition
avoiding any additional complication, a perfect model was used. Once a strategy
is available, it is possible to produce a set of alternatives by modifying it so to
investigate the surroundings of the search space. Of course, different methods
can be applied to this aim. In the implementation, random variants were used.

S y m m e t r i e s Symmetries is an ISL method, used to better exploit the infor-
mation contained in the best-scoring strategy. The idea is simple: in tasks like
pole-balancing the domain is naturally symmetric, i.e. in absolute values, what
the controller should do when the pole falls at its right is exactly what it should
do when it falls at its left. A human learner realizes such a structure in the
domain and exploits it. The same should happen in artificial learners.

Symmetries goes beyond the current perceptions of the agent, elaborating its
experience. Such an elaboration is to be done on-line because the only alternative
is to accumulate long traces of execution to post-process. The method developed
alternates experience to hypothetical reasoning: once S' was applied and the
controller updated, a subset of the points that are symmetric (w.r.t. 0) to the
state that caused S"s generation are built (in the experiments on pole-balancing
only z and 0 signs are changed). The strategy that the agent would apply starting
from each of them is built together with a proper symmetric version S~ of S'.
Both are evaluated by the teacher-on-line: if S~ scores better than the strategy
produced by the controller, it is used as a desired target by the update rule. The
check is necessary because the current controller is not bound to be symmetric.

S t r a t e g y e v a l u a t i o n Strategies are evaluated by means of the teacher's knowl-
edge. The first step is to give it a spatial interpretation so to allow scalar evalua-
tions. A thorough description of this process can be found in [1]. Then, a single

52

action can be evaluated by mapping on this space the input situations before and
after the action was applied. Given an input x l and a predicate P with a fuzzy
semantics, we define P ' s distance from truth as follows: d i s tF romTru th (P(x l))
is 0 if P (x l) is true, the distance between x l and the t ru th set of P other-
wise. For a better understanding let's consider predicate closeToEnd, whose
semantics is as follows: closeToEnd(x) ~=* distance(x, END) < threshold.
closeToEnd(xl) returns threshold-distance(xl, END), where E N D is a given
constant. Distance from truth can be extended to conjunctions of predicates
by using a Euclidean-like distance measure, e.g., if goal = P1 ~& ... ~& pn,
distFromTruth(goal(xl)) will be }-~i=1 n distFromTruth(Pi(xl)) 2. When the
sum returns a value different than 0 (condition not satisfied) the translated sig-
mold function (1 + e x p - ~) -1 - 1 is used to map it on the range [-1 , 0]. The
negative interval accounts for the fact that the evaluations can be used directly
as negative reinforcements. Last, if the direction of movement is different than
the desired one, the evaluation is discounted.

In order to evaluate a strategy the evaluations of each single step are com-
bined by means of a discounted sum evaln = goodness(an) + 7 evaln_l where
an is the action taken at time-step n and 7 E [0, 1] is a discount factor.

T h e l e a r n e r tn the experiments, the learner was implemented as a Neural Net-
work: this choice does not restrict the set of functions that can be approximated
because it is well-known [7] that a three-layered neural network can approx-
imate any function. Different models were tried; the ones that gave the best
results belong to the Locally Receptive Fields family (or LRFNs, see [2]). They
perform a piecewise approximation, being each hidden neuron's activation region
a closed area of the input space. Then, every update has a local effect, leaving
the knowledge acquired for situations far from the current one unchanged. This
locality turned out to be very important to overcome unlearning, to find condi-
tions that allow to check if the hidden neurons number is sufficient to represent
the desired control function, and to dynamically grow the network during the
learning process (see [10, 5]). The networks were implemented by means of the
Fuzzy-Neural system already described in [2]: a same network topology allows
to implement, alternatively, Fuzzy Controllers (FCs) and Radial Basis Function
Networks (RBFNs). A network can be interpreted as a fuzzy knowledge base and
the learning process preserves the rules' structure. In all experiments the same
initial controller, made of 25 random rules, was used.

[region]
test1
goal
failure

[context i]
X
THETA

[static-condll
fluxpipe

= (T H E T A > 0);
= (i n c l i n a t i o n () = = 0);
= ((T H E T A > 0.2094384)]1 (X > = 2.4));

= any;
---- less;

= (~:ertical 0 ~ k~p -- off());

3 E x p e r i m e n t a l r e s u l t s

The method described in this paper was tested against pole-balancing [1]. The
reason is that it is one of the most classical RL testbeds; it is well understood and
allows comparisons with other techniques. Furthermore, although it is simpler
than most real-world tasks, it allows to face many of the difficulties shown by

53

continuous-domained control problems. The pole-balancing simulator is, depend-
ing on the experiment, exactly the one made freely available by Rich Sutton 1
(we will call it RS, for short) or a variant of it that can handle continuous ac-
tions. In all experiments the controller has the same four inputs (X,) (, 8, ~/: the
position of the cart, its time derivative, the inclination of the pole, and its time
derivative. The goal is to keep the pole balanced for 100,000 timesteps. For each
experiment, the generalization ability of the learned controllers was checked by
starting part of the trials in situations different than those used during train-
ing. Generalization tests are extremely interesting because interacting with the
world, the experience is limited to the portion of the input space directly faced
during the exploration. As we will see, using Simmetries it is possible to increase
the speed of learning allowing a neural approximator to learn a continuous pole-
balancing control function in half the number of training trials required by RS
to learn a policy in which only two alternative actions are allowed. The learned
controllers also show very good generalization performances. The domain knowl-
edge is reported above. It is a coding of: the goal is to keep the pole balanced; if
you bump against the ends of the track or the pole's inclination is greater than a
certain angleyou fail. It is encoded by keywords aOAL and FAILURE. The other
sections are used to give more information about the behavior desired when the
agent is in a particular context (see [1] for details). For the sake of simplicity
only the case (THETA>0) is reported (the other being symmetric).

E x p e r i m e n t s in the RL f ramework . Different experiments were carried on
using a traditional reinforcement function. They were done for comparison pur-
poses. First of all, RS was tried. The reinforcement function used by this system
returns -1 in case of failure and 0 otherwise. The state space is divided in 162
boxes; for each input situation the box containing it is selected and an action
is produced according to this selection (see [3]). In RS all the experiments start
from situation (0, 0, 0, 0) and training stops after 100 trials if the goal is not
reached. RS learned to balance the pole in a number of trails n E [58, 79].

Then, I checked if two classical reinforcement functions (one returning -1 for
failures and 0 otherwise and the other returning -1 for failure, 1 for success and
0 otherwise) could guide a LRFN in learning to balance a pole without using any
particular RL technique, i.e. simply using it instead of a teacher. The task is
much more difficult than before because a continuous function is to be acquired.
In both cases the LRFN shows no learning performance.

Last and due to the fact that in most of the experimens below the initial
situation is different than (0, 0, 0, 0), RS was started in situations respectively
equal to (0, 0, r, 0) and (r, 0, r, 0), where r stands for a random value. Strangely
enough, in case (0, 0, r, 0) the agent is not able to keep the pole balanced for
more than the initial timestep. In the other case, instead, learning takes place
but it takes over 100 trials two attempts out of three. At the third attempt it
learns in 72 trials.

E x p e r i m e n t s in the ISL f ramework . Due to strategy random generation,
typical of the ISL framework, each experiment was repeated up to 5 times. In
all experiments the same ~eaching knowledge and the same initial LRFN were
used. However, depending on the antecedent composition rule chosen, the net
could be either a FC or a RBFN. A few words are, now, to be spent about the

1 ftp.gte.com.

54

distribution of the initial situations faced during training and test. Depending on
how close a situation is to satisfying the failure condition, we can characterize
initial situations by their degree of difficulty. Random generation affects only
two input variables: x, the cart's position and ~, the pole's inclination. Since
value is always very close to 0, the difficulty mostly depends on x. Then, for a
better evaluation of the results we must take into account the distribution of the
initial situations produced w.r.t, this feature.

Table 1. Symmetries off. The columns report: the parameter values (strategy length
and 7); the (avg.) first successful trial; the (avg.) successful test trials starting in
(0, 0, r, 0}; the (avg.) successful test trials starting in (r, 0, r, 0}.

configuration first success {0, 0, r, o} - (r, 0, r, 0}
1 step
7-- 0.9 392 0 out of 10 0 out of 10
5 steps
[7 -- 0.9 114 4.33 out of 10 0.33 out of 10
i10 steps
rT=o
7 = 0 . 1
7 = 0 . 4
7 = 0 . 5
7 = 0 . 9

308
311
348
398
304

4.5 out of 10
0.25 out of 10

0 out of 10
8.75 out of 10
7.66 out of 10

1 out of 10
0 out of 10

0.66 out of 10
2.5 out of 10
2 out of 10

To this aim, the domain [-2.4, 2.4] was split in three ranges: peril = [-2.4, -2.0]U
[2.0, 2.4] semiperil = [-2 .0 , -1 .6] t2 [1.6, 2.0], and safe = [-1.6, 1.6], ordered
from the closest to the farthest from failure. The distribution is as follows:
73% of initial situations belong to safe, 16% belong to semiperil, and the last
11% to peril. Since a situation belonging to peril can be non-recoverable (pole
falling towards the end of the track), in the worst case (all peril situations non-
recoverable) the maximum performance expected is 89%; more frequently, when
half of the peril situations cannot be recovered a maximum 94.5% performance
can be obtained. However, when the starting situation is of the same type as
during training ((0, 0, r, 0}), a 100% performance is expected.

Simmetries was applied both to RBFNs and to FCs. In both cases, the num-
ber of trials required dropped considerably w.r.t, training without Symmetries
but RBFNs showed a stabler performance, i.e. the speed of learning of the same
initial controller in different trials all configured in the same way did not vary too
much. This is why most of the experiments were done on RBFNs. Their learning
behavior was incredibly good. First of all, the speed of learning was always much
higher than without Symmetries dropping from about 300 trials (see Table 1) to
a value in between the 20th and the 40th trial~ Note that these speeds are even
higher than those of RS (and let's recall that RS's learning problem is easier
and that the number of rules it uses is 162 vs. the 25 rules used here). The
second nice feature of the learning process was that in the case in question the
pole's oscillation was always reduced very quickly to an almost unperceivable
movement. During tests, the controllers did from 9 to 10 successful trials out of
10 in (0, 0, r, 0) and (in the average) 6 trials out of 10 in (r, O, r, 0}, for an overall
96% of success in (0, 0, r, 0} and 60% otherwise.

However, using RBFNs one must pay attention to limit the update to the

55

Table 2. Test performances of the set of controllers saved every 20,000 timesteps.

cntr. saved at avg. perf. in avg. perf. in
timestep trial (0, 0, r, 0) trial (r, 0, r, 0}
30,000 418 397
50~000 397 606
70,000 356 211
90,000 380 280

rules whose activation is high, otherwise unlearning may occur. The results re-
ported above were obtained updating rules whose activation was higher than
0.4 but when the threshold is decreased things change. Table 2 shows what
happens using a threshold equal to 0.2: during the first successful trial of the
training phase, the controller was saved at fixed time intervals obtaining a set of
different controllers that were, then, tested as in the previous experiments. All
the controllers up to the 10,000th time-step show the same good performances.
However, when training passes the 10,000th timestep, the controllers obtained
are no more able to balance the pole for a long enough time and the average
performance decreases a little bit as the time passes (seeTable 2). The cause is
over-fitting: during the first successful trial, the controller specializes to return
lower and lower forces as the oscillation diminishes forgetting what to do when
the oscillation is greater. Note, however, that increasing the threshold too much
(0.6 in the experiments) prevents the controller from learning because rules are
never updated.

4 R e l a t e d w o r k

In the literature, there are few examples of teaching applied to learning skills.
The first and most common way of teaching a task to an agent is to produce
a learning set made of examples of good execution recorded by a skilled human
operator. Each recorded trace is a sequence of pairs (x t, atl where x t is the
input situation at time step t, and a t is the correspondent action applied by the
operator. Afterwards, a learning algorithm is applied off-line to induce a skill.
This approach is commonly followed when the agent is implemented as a neural
network. Teaching by examples has explicitly been used in the work by Kaiser
[9, 8], and in the Fuzzy Neural methodology [2] and has also been applied in RL
by Lin [11]. The main difference w.r.t, the aforementioned approach, is that here
each sequence of pairs ends with a reinforcement value. The learner is shown
the sequences backwards and uses a RL rule to update an approximation of the
value function. Learning by examples shows, however, a couple of drawbacks.
The first is that, due to the existing learning rules (such as gradient descent),
as long as the learner works on recorded examples only, it is very difficult for
it to outperform its teacher. Unfortunately, there are applications, especially
industrial tasks, in which on one hand, it is not possible to generate examples of
optimal behavior (the human operator is not a perfect operator); on the other,
often it is not even possible to produce enough examples. An alternative consists
in giving hints to the learner when necessary, as done by Clouse and Utgoff [4]: in
the work developed so far, the teacher is supposed to be a human operator who
monitors the learning process, which, in turn, exploits RL techniques. When the
agent is stuck in a situation it is not able to solve the teacher gives it a hint, i.e.

56

(s)he suggests what to do. The agent applies the action and learning goes on.
However, in many tasks a human expert cannot monitor the learning process of
the agent because a continuous stream of inputs at a very low perceptive level
(forces, speeds, ...) is to be handled quickly.

5 C o n c l u s i o n s
In this paper a novel approach to skill acquisition, named Soft Teaching, is pro-
posed; its main characteristic is that, differently than what can be found in the
literature, the teaching process is performed in a fully automatic way, exploiting
some qualitative knowledge about both the goal and the domain. Such knowledge
is non-operational, i.e. it cannot be used to directly control the agent, but can
be used to evaluate the agent's behavior. In this sense, Soft Teaching is inspired
by the described HTHL scheme. Among the many different architectures tha t
can be developed within Soft Teaching, the focus is posed on Indirect Super-
vised Learning methods, in which Soft Teaching is used jointly with a supervised
learning rule. In particular, a specific ISL technique, named Symmetries, was
implemented and tested against pole-balancing. Experimental comparisons show
that Symmetries allows to obtain very good performances reducing the number
of trials necessary to learn a controller of one order of magnitude.

R e f e r e n c e s
1. C. Baroglio. Teaching by shaping. In the ICML Workshop on learning by induction

vs. learning by demonstration, Tahoe City, CA, USA, 1995.
2. C. Baroglio, A. Giordana, M. Kaiser., M. Nuttin, and R. Piola. Learning con-

trollers for industrial robots. Machine Learning, Spec. Iss. on Learning Robots,
(23), 1996.

3. A.G. Barto, R.S. Sutton, and C.W. Anderson. Neuronlike adaptive elements that
can solve difficult learning prolems. IEEE Trans. or* SMC, SMC-13:834-836, 1986.

4. J.A. Clouse and P.E. Utgoff. A teaching method for reinforcement learning. In
Proc. of the Machine Learning Conference MLC-92, pages 92-101, 1992.

5. B. Fritzke. Growing Cell Structures - a self-organized network for unsupervised
and supervised learning. Neural Networks, 7(9), 1994.

6. V. Gullapalli. A stochastic reinforcement learning algorithm for learning real val-
ued functions. Neural Networks, 3:671-692, 1990.

7. K. Hornik, M. Stinchcombe, and H. White. Multilayer feed-forward networks are
universal approximators. Neural Networks, 2:359-366, 1989.

8. M. Kaiser and 3. Kreuziger. Integration of symbolic and connectionist processing
to ease robot programming and control. In ECAI'94 Workshop on Combining
Symbolic and Connectionist Processing, pages 20 - 29, 1994.

9. M. Kaiser and F. Wallner. Using machine learning for enhancing mobile robots'
skills. In IRTICS-93, 1993.

10. P. Katenkamp. Constructing controllers from examples. Master Thesis, Univ. of
Karlsnflae, Germany~ 1995.

11. L.J. Lin. Self-improving reactive agents based on reinforcement leanfing, p larming
and teaching. Machine Learning, 8:293-321, 1992.

12. M.A.F. McDonald. Approximate discounted dynamic programming is unreliable.
Technical Report 94/6, Dept. of Comp. Sci., Univ. of Western Australia, Oct. 1994.

13. L.X. Wang mid J.M. Mendel. Generating fuzzy rules by learning from examples.
IEEE Trans. on SMC, SMC-22(6):1414-1427, November 1992.

14. C.J.C.H. Watkins and P. Dayan. Technical note: Q-learning. Machine Learning,
8:279-292, May 1992.

