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Abstract. We present a new, easy to understand algorithm and programming en-
vironment allowing for the interactive or automatic clustering of graphs according
to several heuristics.

Our approach is based on graph structure only and can be implemented to run
efficiently with a personal computer. It is capable of efficiently clustering graphs
with > 3000 vertices. We shall demonstrate the interactive user environment
for automatic clustering. As an application, we consider the clustering of large
WWW connectivity graphs.

1 Introduction

Clustering is the process of grouping information to achieve a more recognizable pre-
sentation of source data. The computation of a clustering generally requires a metric on
the data to determine the closeness of data points. The clustering of graphs can be based
on either graph structure, or on some semantic properties of the application domain. In
this paper, we do not make any assumptions about the “meaning” of vertices and edges,
but focus solely on the structure. In this context, the only available metric is the graph-
theoretic distance of vertices, which is defined as the length of the shortest path joining
them, if one exists. If a drawing of a graph is known, the Euclidean distance between
the vertex positions can be used instead of their graph-theoretic distance.

1.1 Criteria for a good Clustering

Given these assumptions, what are criteria for good clustering? We argue that the im-
portance of a cluster vertex, i.e. a vertex in the resulting clustering that represents a
group of vertices in the original graph, should be a function of its weight, i.e. the num-
ber of vertices and edges represented by it. The cluster weights should come close to a
user-defined value to achieve a clustering of desired granularity.
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Also, the cluster sizes should be approximately equal. In other terms, the standard de-~
viation of cluster sizes should be minimal.

@)

Connectivity within a cluster (intra-connectivity) should generally be stronger than
the connectivity between clusters (inter-connectivity). Therefore, the total number of
inter-cluster edges should be minimized:

EH = ||{e € Eleis inter-cluster edge} || (3)

Realizing that these criteria may conflict each other, a global optimization strategy
should be used, combining these criteria by assigning weights to each of them. This
results in a global energy function

E=wGA+wyo +ws EH )

that is supposed to represent the overall quality of a clustering.

2 Related work

The problem of clustering graphs is closely related to that of partitioning graphs, for
which there is a variety of literature [2]. Little appears to be known about the problem
of how to efficiently cluster large graphs in an interactive environment, although the
problem is closely related to the task-scheduling problem for parallel processors. The
requirement there is to have partitions of approximately equal size and sparse intercon-
nectivity, which is similar to our notion of a well-clustered graph.

The well-known Basic-ISODATA algorithm for arbitrary clustering problems in Eu-
clidean spaces is quite fast in practice, but it requires a priori knowledge of the number
of clusters to partition into. Other general strategies for cluster analysis in Euclidean
spaces are discussed in [1].

The idea of visualizing WWW graphs seems to have appeared first in {6]. However,
this approach is based on semantic information.

3 Cluster Drawings

In order to reveal information about the graph using clusterings, we need to find ways to
communicate the clustering. An intuitive technique is to visualize these clusters using
graph drawing techniques.

In addition to the well-known global aesthetics criteria employed by spring-embedder
algorithms, drawings of clusterings should display vertex and edge weights, and hide
intra-cluster edges.
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4 Idea

4.1 Basics

Our approach for clustering large graphs is based on the successive identification of
structural elements (patterns) in the graph. About the simplest pattern occurring in a
graph are leaves, i.e.nodes with in-degree 1 and out-degree . Other suitable patterns
include paths (nodes with in-degree=out-degree=1), triangles and similar simple struc-
tures.

The existence of such groups of vertices indicates a close relationship between their
constituent nodes and should therefore be clustered. It is important that patterns can be
identified efficiently.

A clustering step consists of clustering of all vertices satisfying one or more pat-
terns. This process can be iterated under the user’s control to yield a hierarchical clus-
tering of desired weight and density.

This approach is similar to a stepwise parsing of the graph according to a graph
grammar [3, 7], where patterns are non-terminals and vertices are terminals.

4.2 Data Structures

Although the basic idea is straightforward, it remains a challenge to implement effi-
ciently. A data structure suited for the hierarchical clustering of graphs should support
the following basic operations efficiently: Insertion and deletion of nodes and edges as
well as recursive clustering and unclustering nodes.

The need for efficient data structures is motivated by the following scenario. Assume
first that a dense graph has to be grouped into two clusters. After forming the first
cluster, all edges from a node outside the cluster that are connected to two or more nodes
within the cluster need to be drawn as a single new, heavier edge. After the clustering
step is completed, there will be only a single, very heavy edge connecting both clusters.
In this situation, unclustering the first group has to reveal all edges to vertices in the
second cluster, and this should be efficient.

Our implementation of a suitable data structure is based on an object-oriented de-
sign that defines ClusterVertex as a subtype of Vertex and therefore allows for the
polymorphic use of ClusterVertex, wherever the abstract data type Graph requires a
Vertex. Similarly, ClusterEdge is a subtype of ClusterEdge. The type ClusterEdge
is based on two ClusterVertex stacks. Whenever a vertex v is inserted into a cluster c,
c is pushed upon the corresponding edge stacks of all incident edges, thus providing a
fast and information-preserving method for retrieval of cluster information.

5 Result characteristics

Our pattern-based approach does not create a predefined number of clusters. Instead,
the process is under the user’s control, who chooses graph patierns from an extensible
set of standard patterns such as leaves, paths, triangles etc.

By iteratively reapplying this pattern-based compression, the resulting graphs may
contain original nodes as well as small and large clusters. The number of resulting nodes
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depends heavily on the input graph. We have found that in general, the final node count
represents a compression by a factor of 20-80 for WWW-Graphs (see Sect. 6).

One possible technique to visualize clusterings is to apply a spring-embedder al-
gorithm [4]. This is actvally a quite natural way of drawing clusterings, as one of the
main aesthetics criteria employed by spring-embedder algorithms is that vertices con-
nected by an edge should be close together. This paradigm coincides with our criteria
for good clusterings, that would require the nodes within a cluster to be drawn close
together, while clusters themselves should be separated in a drawing. The drawings re-
sulting from applying spring-embedder a algorithm generally reveal a lot of the original
graph’s structure (cf. Fig. 3).

Conversely, spring-embedder algorithms may be helpful to compute clusterings in
the first place, too. As spring-embedder drawings tend to have related nodes close to
each other, geometric proximity and statistical techniques [5] may be applied to com-
pute clusterings from spring-embedder drawings as well.

6 An Application: WWW graphs

As an application domain in which very large real-life graphs occur naturally, we have
chosen to consider WWW graphs, whose vertices are defined by the URL’s of WWW
documents, and whose edges are defined by the hyper-links between them. A so-called
web robot was used to automatically extract graphs of this nature, starting from a single
URL.

One particular graph gathered this way has about 3000 nodes and 3500 edges. Fig. 1
shows this graph in its raw, unclustered state. This example can be clustered well, re-
vealing interesting structural properties (cf. Fig. 2), with little interaction in under two
minutes of runtime on a regular IBM-compatible personal computer (based on Intel’s
Pentium P60 processor). The final result is shown in Fig. 3.
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Fig. 1. Original, unclustered graph. No structure is recognizable at all.

Fig. 2. The process of clustering may reveal rich internal structure.
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Fig. 3. Final clustering.



