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Abstract .  A common method for drawing directed graphs is, as a first 
step, to partition the vertices into a set of k levels and then, as a second 
step, to permute the vertices within the levels such that the number of 
crossings is minimized. We suggest an alternative method for the second 
step, namely, removing the minimal number of edges such that the re- 
sulting graph is k-level planar. For the final diagram the removed edges 
are reinserted into a k-level planar drawing. Hence~ instead of considering 
the k-level crossing minimization problem, we suggest solving the k-level 
planarization problem. In this paper we address the case k = 2. First, 
we give a motivation for our approach. Then, we address the problem 
of extracting a 2-level planar subgraph of maximum weight in a given 
2-level graph. This problem is NP-hard. Based on a characterization of 
2-level planar graphs, we give an integer linear programming formulation 
for the 2-level planarization problem. MoreoveL we define and investi- 
gate the polytope 2/:~S(G) associated with the set of all 2-level planar 
subgraphs of a given 2-level graph G. We will see that this polytope has 
full dimension and that the inequalities occuring in the integer linear 
description are facet-defining for 2s The inequalities in the in- 
teger linear programming formulation can be separated in polynomial 
time, hence they can be used efficiently in a cutting plane method for 
solving practical instances of the 2-level planarization problem. Further- 
more, we derive new inequalities that substantially improve the quality 
of the obtained solution. We report on first computational results. 

1 I n t r o d u c t i o n  

Directed graphs are widely used to represent structures in many fields such as 
economics, social sciences, mathematical and computer science. A good visual- 
ization of structural information allows the reader to focus on the information 
content of the diagram. 

A common method for drawing directed graphs has been introduced by 
Sugiyama et al. [STT81] and Carpano [Car80]. In the first step, the vertices 
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1. A real world graph with high crossing number [Fuk96] 

are partit ioned into a set of k levels, and in the second step, the vertices 
within each level are permuted in such a way that  the number of crossings 
is small. We suggest an alternative approach for the second step. From now on 
let us assume that  we are given a k-level hierarchy (k-level graph), i.e., a graph 
G = (V, E) = (V1, V2,..., Vk, E) with vertex sets V1, . . . ,  Vk, V = V1UV2...UVk, 

f-1 V) = 0 for i # j ,  and an edge set E connecting vertices in levels Y~ and Vj 
with i # j (1 < i, j < k). Vi is called the i-th level. A k-level hierarchy is drawn 
in such a way that  the vertices in each level Y~ are drawn on a horizontal line 
Li with y-coordinate k - i, and the edges are drawn as straight lines. In con- 
t rary to the definitions of a hierarchy in [STT81,HP96], we do not care about 
the direction of the edges, since it is irrelevant for the problem considered here. 
Essentially, a k-level hierarchy is a k-partite graph that  is drawn in a special 
way. 

Even for 2-level graphs the straightline crossing minimization problem is NP- 
hard. Exact algorithms based on branch and bound have been suggested by vari- 
ous authors (see, e.g., [VML96] and [JM96]). For k > 2, a vast amount  of heuris- 
tics has been published in the literature (see, e.g., [War77,STT81,EK86,M/ik90, 
EW94a] and [Dre94]). 

Various authors have already asked the following question: Is a hierarchical 
drawing with the minimal number of crossings always nicer than a drawing that  
has many more crossings? They ended up with the following answer: "We merely 
want to draw a reasonably clear picture which has a "relatively small" number 
of crossings" [Car80]. 

For graphs that  have a relatively small hierarchical crossing number, this 
statement goes along with our observation. But in some applications, hierarchical 
graphs arise that  have a relatively high hierarchical crossing number, such as the 
graph shown in Figure 1. For these graphs we have to find a new method that  
substantially increases the readability of these diagrams. 
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4 6 8 7 5 15 14 3 2 13 12 9 1 11 

21 23 29 28 25 26 27 20 22 17 30 

(a) 

4 6 3 7 5 8 14 2 12 15 9 13 1 11 

21 23 29 .28 26 25 27 20 22 17 30 

(b) 

Fig. 2. A graph (a) drawn using k-planarization and (b) drawn with the minimal 
number of crossings computed by the algorithm in [JM96] 

One approach may be to remove a minimal set of edges such that the remain- 
ing k-level graph can be drawn without edge crossings. In the final drawing, the 
removed edges are reinserted. Since the insertion of each edge may produce many 
crossings, the final drawing may be far from an edge-crossing minimal drawing. 

Figure 2(a) shows a drawing of a graph obtained by 2-level planarization, 
whereas Figure 2(b) shows the same graph drawn with the minimal number 
of edge crossings (using the exact algorithm given in [JM96]). Although the 
drawing in Figure 2(a) has 34 crossings, that is 41% more crossings than the 
drawing in Figure 2(b) (24 crossings), the reader will not recognize this fact. On 
the contrary, 90% of the colleagues that we have asked thought that the number 
of crossings in Figure 2(a) is less than in Figure 2(b). This encourages us to 
study the k-level planarization problem. 

Another motivation for studying k-level planarization arises from the fact 
that the k-level crossing minimization problem is a very hard problem that 
cannot be solved exactly or approximately (with some reasonable solution guar- 
antees) in practice. Our experiments in [JM96] showed that for sparse graphs, 
such as they occur in graph drawing, the heuristic methods used in practice are 
far from the optimum. We believe that the methods of polyhedral combinatorics 
that have been successfully applied for the maximum planar subgraph problem 
[JM93a,JM93b,Mut94], and for the straightline crossing minimization problem 
on two levels where one level is fixed [JM96], may be helpful for getting some bet- 
ter approximation algorithms in practice. But a lot of effort will be needed to get 
efficient algorithms that will be able to solve the k-level crossing minimization 
problem for k > 2 and I~l _> 15 (i = 1 , . . . ,  k) to provable optimality. 

The k-level planarization problem, however, may be easier to attack. We 
build our hope on the fact that there is a linear time algorithm for recognizing 
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h-level planar graphs (see [HP96] and [BN88]). Moreover, our computational 
results on 2-level graphs addressed in this paper support our conjecture. 

Besides the application in automatic graph drawing, the 2-level planarization 
problem comes up in Computational Biology. In DNA mapping, small fragments 
of DNA have to be ordered according to the given overlap data and some ad- 
ditional information. Waterman and Griggs [WG86] have suggested combining 
the information derived by a digest mapping experiment with the information 
on the overlap between the DNA fragments. If the overlap data is correct, the 
maps can be represented as a 2-level planar graph. But, in practice, the over- 
lap data may contain errors. Hence, Waterman and Griggs suggested solving 
the 2-level planarization problem (see also [VLM96]). Furthermore, the 2-level 
planarization problem arises in global routing for row-based VLSI layout (see 
[Leng0,Ul184]). 

Section 2 reports on previously known results of the 2-level planarization 
problem. One of the characterizations of 2-level planar graphs leads directly to 
an integer linear programming formulation for the 2-level planarization problem. 
In Section 3 we study the polytope associated with the set of all possible 2-level 
planar subgraphs of a given 2-level graph. From this we obtain new classes of 
inequalities that tighten the associated LP-relaxation. In order to get practical 
use out of these inequalities, we have to solve the "separation problem". This 
question will be addressed in Section 4, where we also discuss a cutting plane 
algorithm based on those results. First computational results with a cutting 
plane algorithm are presented in Section 5. In this extended abstract we omit 
the proofs for some of the theorems. 

2 Characterizing 2-Level Planar Graphs 

A 2-level graph is a graph G = (L, U, E) with vertex sets L and U, called lower 
and upper level, and an edge set E connecting a vertex in L with a vertex in 
U. There are no edges between two vertices in the same level. A 2-level planar 
graph G = (L, U, E) is a graph that can be drawn in such a way that all the 
vertices in L appear on a line (the lower line), the vertices in U appear on the 
upper line, and the edges are drawn as straight lines without crossing each other. 
The difference between a planar bipartite graph and a 2-1evel planar graph is 
obvious. For example, the graph shown in Figure 3 is a planar bipartite graph, 
but not a 2-level planar graph. 

(a) (b) 
Fig. 3. (a) A planar bipartite graph that is (b) not 2-level planar 
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V 2 V 3 

(a) (b) 

Vl V 3 V5 V 7 

V 2 V 4 V 6 V8 

(c) 
Fig.  4. (a) Double claw. (b) Caterpillar. (c) Caterpillars can be embedded on 
2-levels without any crossings. 

Given a 2-level graph G = (L, U, E) with weights we > 0 on the edges, the 
2-level planarization problem (or maximum 2-1evel planar subgraph problem) is 
to extract a 2-level planar subgraph G / = (L, U, F),  F C_ E, of maximum weight, 
i.e., the sum ~ e e F  we is maximum. 

To our knowledge, only the unweighted (we = 1 for all e E E) 2-level pla- 
narization problem has been considered in the literature so far. It was first men- 
tioned in [TKY77]. The authors introduced the problem in the context of graph 
drawing. They have given the following nice characterization of 2-level planar 
graphs based on forbidden subgraphs. The characterization was independently 
given by [EKW86]. 

We will call the graph shown in Figure 4(a) a double claw. A caterpillar is 
a connected graph G = (V, E) having edges on its backbone (vl, v2 , . . . ,  vt) and 
single edges (vi, w), w E V \ {vl, v2 , . . . ,  vl} (see Figure 4(5)). 

T h e o r e m  2.1 [TKY77,EKW86]. A 2-level graph is 2-level planar if and only if 
it contains no cycle and no double claw. 

Proof. A graph without any cycles is a set of trees. A tree without any double 
claws is a set of caterpillars. Caterpillars can be embedded on 2-levels without 
any crossings (see Figure 4(c)). On the other hand, a 2-level planar graph can 
contain neither a cycle nor a double claw. [] 

The following alternative characterization leading to a simple linear time 
algorithm has been given in [TKY77]. 

T h e o r e m  2.2 [TKY77]. A 2-level graph G is 2-level planar if and only if the 
graph G* that is the remainder of G after deleting all vertices of degree one, is 
acyclic and contains no vertices of degree at least three. 
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However, the 2-level planarization problem is NP-hard even for the case when 
each vertex in U has degree three and each vertex in L has degree two (by reduc- 
tion to a Hamiltonian path problem) [EW94b]. Therefore, Eades and Whitesides 
suggested a heuristic based on the search for a longest path which will be used 
as a "backbone" of the caterpillar to be constructed. 

Tomii et al. suggest an algorithm for acyclic 2-level graphs [TKY77]. The 
algorithm can be seen as an adaptive greedy algorithm. In each step, the edges 
are labelled according to some rule and the edge with the highest label will be 
removed. However, this algorithm does not lead to the optimal solution as shown 
in Figure 5. The algorithm would remove the edge (0, 14) in a first step. The 
remaining graph still contains two edge-disjoint double-claws that have to be 
destroyed by removing two more edges, whereas the optimal solution would be 
to remove the two edges (0, 11) and (1, 14). 

5 0 6 7 1 9 8 2 4 3 

18 12 14 19 16 17 10 15 11 13 

Fig. 5. An acyclic 2-level graph for which the algorithm suggested in [TKY77] 
leads to a nonoptimal solution 

It is an open problem if the 2-level planarization problem can be solved in 
polynomial time for 2-level acyclic graphs. However, for double claw free graphs, 
the 2-level planarization problem is equivalent to the maximum forest subgraph 
problem that can be solved via a simple greedy algorithm. 

3 P o l y h e d r a l  S t u d i e s  on the  2-Level  P l a n a r i z a t i o n  

P r o b l e m  

Based on the characterization of 2-level planar graphs in terms of forbidden 
subgraphs (see Theorem 2.1), it is straightforward to derive an integer linear 
programming formulation for the maximum 2-level planar subgraph problem. We 
introduce variables x~ for all edges e E E of the given 2-level graph G = (L, U, E). 
We use the following notation: Vectors ~ are column vectors, their transposed 
vectors s are row vectors. If w T = ( W l ,  w 2 , . . .  , win) and ~T = ( T 1 ,  x 2 ,  . . . ' X r n ) ,  

m 
then wT~ = ~ = 1  w~xi. We use the notation x (C)  = ~-~eec x~ for C _ E. 

For any set P C E of edges we define an incidence vector X P E R IEI with the 
i-th component @(ei) getting value 1 if ei E P, and 0 otherwise. Any vector 
~T = (x~l ' x~2,..., xelsl) ' that is the incidence vector of a 2-1eve] planar graph 
satisfies the following inequalities: 
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0 < x~ _< 1, for all e E E, (1) 
x(C) <_ ]C I - 1, for all cycles C _C E (2) 
x(T) < I T I -  1, for all double claws T C_ E (3) 
x~ integral, for all e E E (4) 

and vice versa: any vector Yff = (x~l, x~:, . . . ,  x~l~l) satisfying inequalities 
(1), (2), (3) and (4) corresponds to a 2-level planar subgraph of G. Hence, solving 
the integer linear system {max wT~ ] inequalities (1)-(4) hold for ~} will give 
us the solution of the maximum 2-level planar subgraph problem for a given 
graph G = (L, U, E) with weights we on the edges e E E. 

Since solving general integer linear programs is NP-hard, we will have to 
drop the integrality constraints (4), which gives us a relaxation of the original 
integer linear programming formulation. In polyhedral cornbinatorics, we try to 
substitute the missing integrality constraints by additional inequalities. 

We define the polytope 2s  for a given 2-level graph G = (L, U, E) as 
the convex hull over all incidence vectors of 2-level planar subgraphs of G. The 
vertices of this polytope correspond exactly to the 2-level planar subgraphs of 
G and vice versa. If we can describe the polytope 2s  as the solution set 
of linear inequalities, we can optimize any given cost function over the set of 
all 2-level planar subgraphs of G. Of course, because of the NP-hardness of the 
problem we cannot expect to find such a description, but in practice a partial 
description may also suffice. 

In an irredundant description only facet-defining inequalities are present. An 
inequality is said to be facet-defining for a polytope P if it is a face of maximal 
dimension of 7 ). An inequality cTx < Co is said to define a face of P if cTy <_ Co 
for all points y C P and if there is at least one point y' in P with cTy ' = co. 

So, our task is to find facet-defining inequalities for the polytope 2s  
for a given 2-level graph G. We will first investigate the inequalities given in the 
integer linear programming formulation. We will see that  the linear inequalities 
(1) and (3) are facet-defining, but only a part of the inequalities (2). But first 
we will determine the dimension of 2s  

Let us consider the set S of all 2-level planar subgraphs of G. The set S is a 
monotone system (also called independence system), since the empty subgraph 
is 2-level planar and any subgraph of a 2-level planar graph is also 2-level pla- 
nar. Hence, we easily get the following theorem using the theory for monotone 
systems. 

T h e o r e m  3.1 Let G = (L, U, E) be a graph on two levels. The dimension of 
2s the convex hull of incidence vectors of 2-level planar subgraphs of G, 
is IEI. The trivial inequalities xe ~ 0 and xe ~_ 1 are facet-defining for 2s 

Proof. It is a well known fact, that  for a monotone system (E, S) with ground 
set E the dimension of the associated polyhedron Ps is I EI - ( I E -  U s I) (a proof 
is contained, e.g., in [GP85]). Moreover, xe >_ 0 defines a facet of Ps iff e E U 3. 
Since every single edge is 2-level planar, we have U s = E. Hence the dimension 
of the polyhedron 2s is IEI and x~ >_ 0 is facet-defining for 2/~79S(G). 
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Let Pi be the 2-level planar graphs induced by the edge sets {e U ei} for a 
given edge e E E and ei E E \ {e} for i = 1 , . . . ,  IEI - 1. The incidence vectors of 
the graph P induced by the edge e and the graphs Pi for i = 1, 2 , . . . ,  IEI- 1 are 
linearly independent and they satisfy" x~ = 1. Hence we have shown that  xe _< 1 
is facet-defining for 2s [] 

Next we will see that  not all of the inequalities (2) are facet-defining for 
2s  

T h e o r e m  3.2 Let G = (L, U, E) be a 2-level graph. The cycle inequalities 

x ( C )  _< IV I - 1 

where C C_ E is a cycle in G are facet-defining for 2s if and only if C is 
a cycle without chords in G. 

Proof. Let C C_ E be a cycle without chord in G. We will show that  there are ]El 
incidence vectors of 2-level planar subgraphs induced by the edge set P of G that  
are linearly independent and that  satisfy xP(c)  = I C I -  1. Consider the graphs 
Pi induced by the edge sets C \ {ei} for ei E C for i = 1, 2 , . . . ,  [C I. Moreover, 
consider the graphs induced by the edge sets Hj  = P1 U f j  for fj  E E \ C, 
j = 1, 2 , . . . ,  I S ] -  ]C]. Since the cycle C is chordless, adding any edge fj  E E \ C  
to P1 still gives a 2-level planar graph, since neither a cycle nor a double claw 
destroying 2-level planarity can occur. All the I E] incidence vectors of the 2-level 
planar graphs induced by P, for i = 1, 2 , . . . ,  ICI and US for j = 1, 2 , . . . ,  IEI-ICl 
are linearly independent and they satisfy xP(c)  = ] C ] -  1. Hence the facet- 
defining property is shown. 

Suppose now, C = (Vl, v2, . . . ,  vk, vl) is a cycle with a chord d = (Vh, v~) E E 
in G for some h, 1 E {1, 2 , . . . ,  k}. We will show that  there exists a valid inequality 
x(D) < In I - 1 for 2s with the properties that  {x I x(C) = I C I -  1} C 
{x I x(D) = I D I -  1} and {x I x(C) = I C I - 1 }  # {x ] x(D) = I D ] -  I}. 
Hence x(C) <_ ICI - 1 cannot define a face of maximal dimension of 2s 
Let C1 = (Vl,V2,...,Vh, Vt, . . . ,vk,  vl) be a cycle consisting of a subset of the 
cycle C and the chord d = (Vh, vt) and C2 = C \ C1 U d the remaining part of C 
together with d. We have IV[ = IF1 [ -~ IV2 [ - -  2. Let us assume that  x E 2s  
with x(C) = ICI- 1. We have x(C) = x(C1)+x(C2) - 2Xd < ( I C l l -  1)d- (IC~l- 
1) - 2Xd = ICll + IC2l -  2 - 2x4. Since x(C) = ] C I -  1 = 1Cl1 + IC2l -  2 and 
Xd >_ O, we will have xd = 0 and x(C1) ~ - -  ICll- 1 and x(C2) = Ic21- 1. Hence 
we have found D = C1 with {x I x(C) = IcI- 1} c {x I ~(c1) = ]cll- 1} and 
obviously {x Ix(C) = ICl- 1} # {x I,(D) = ]D[- 1}. [] 

In the following we will see that  all the double claws contained in G are 
present in an irredundant description of 2s by linear inequalities. 

T h e o r e m  3.3 Let G = ( L, U, E) be a 2-level graph. The double claw inequalities 

x(T) _< ITI- 1 
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where T C E is a double claw in G are facet-defining for 2 s  

Proof. Let the graphs Pi be induced by the set T \ ei for i = 1 , . . . ,  6. Obviously, 
the graphs Pi are 2-level planar graphs and satisfy x(T)  = I T I -  1. Moreover, 
consider the graphs H/ = T U f j  for f j  E E \ T, j = 1 ,2 , . . . ,  IEI - IT]. If 
/-/3. contains a cycle, we can remove any edge in this cycle in order to get a 
2-level planar graph induced by H~. In all the other cases there is always an 
edge we can remove from Hj such that  the remaining induced graph H~ is a 
set of caterpillars, hence 2-level planar. Clearly, the incidence vectors of the 2- 
level planar subgraphs Pi, i = 1, 2 , . . . ,  6, and H~, j = 1, 2 , . . . ,  IEI - IT I of G 
are linearly independent and satisfy z (T)  < ITI- 1. Hence the facet-defining 
property is shown. [] 

We can tighten the LP-relaxation of (1)-(3) by introducing new inequalities 
that are valid and tight in the sense that  they are facet-defining for 2s 
First, we generalize the double-claw inequalities to k-double claw inequalities. 
Considering a double-claw as a claw having three paths of length two, a gener- 
alized k-double claw is a claw having k paths of length two (see Figure 6(a)). 

V ~ V ~ 

(a) (b) (c) 
Fig.  6. (a) Generalized k-double claw (b) Combined k-double claw (c) Node- 
splitted k-double claw 

T h e o r e m  3.4 Let G = (L, U, E) be a 2-level graph. The generalized k-double 
claw inequalities 

x(T) < k + 2 (5) 

where T C_ E is a k-double claw in G (k > 3) are facet-defining for 2s 

Proof. Obviously, the inequality is valid. We denote x(T)  < k + 2 by cTx < co. 
Let us assume that  there exists an inequality aTx < a 0 with {x I cTx = co) C_ 
{x ] aTx = ao}. We show that  a~ = Ace and a0 = Aco for ), > 0. Let r be the 
root of the k-double claw and P denote the subgraph of G = (V, E) induced by 
the edge set F := {(r,w) I w e N(r)  gl V(T)}, where N(r )  = {(r,v) [ v E V} 
is the neighbourhood of r. Adding any two edges el # e2 in T \ F to P gives a 
2-level planar subgraph pi induced by the edge set F '  = {F U el U e2) satisfying 
cTx F' = co, hence also aTx F' = ao. Since we can substitute el and ez by any 
of the edges in T \ F '  we get ae = a] for all e, f C T \ F.  Inserting the edge 
e3 = (w3, u3) E T \ F '  with w3 E N(r )  R V(T)  in P~ while removing the edge 
e~ = (r, w3) gives ae3 = a~ and finally a~ = af for all e, f E T. 
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For any edge e E E \ T we can find a 2-level planar subgraph induced by the 
edge set F with e E F satisfying cF~ T = co. [] 

We can prove that  the combined k-double claws give rise to a class of facet- 
defining inequalities for our polytope (proof omitted). A combined k-double claw 
consists of two k-double claws (having kl, and ks paths of length two respec- 
tively) that  share a single edge which has an endnode of degree one (see Fig- 
ure 6(b)). 

T h e o r e m  3.5 The combined k-double claw inequalities 

x(T) _<< kl -~- k2 -4- 3 (6) 

where T C_ E induces a combined k-double claw G with parameters kl > 3 and 
k2 >_ 3 are facet-defining for 2s 

The node-splitting operation at vertex v in a graph G substitutes the sub- 
graph induced by the edge set {(v, w) I w E N(v)} by a new subgraph induced 
by {(v',w') lw'  E W'}U{(v" ,w")  I w" E W"}U{(v ' ,v")} ,  where N(v) is the 
set of adjacent vertices of v in G, W', W" C_ N(v) with W' t3 W" = N(v) and 
W t VI W ~ = ~. The vertices v' and v ~ are the duplicates of v. The resulting graph 
when splitting the root node of a k-double claw is called node-split k-double claw 
with parameters k~ and k2 (see Figure 6(e)). The inequalities derived for those 
graphs contain a coefficient of two. 

T h e o r e m  3.6 Let G = (L, U, E) be a 2-level graph. The node-split k-double claw 
inequalities 

x (T)  -~- 2X(v,,v,, ) __~ k 1 -[- k S --~ 4 (7) 

where T C_ E induces a node-split k-double claw G ~ in G with parameters kl >_ 3 
and k2 >_ 3 are facet-defining for 2s Moreover, they are facet-defining 
for 2s  I) for kl >_ 2 and k2 >_ 2. 

Proof. Let e0 = (v', v") and T = T1UT2U{eo}, where T1 and T2 are the edge sets 
inducing the two components of T \ {e0}. We first show validity. Let us assume 
that  there exists a 2-level planar subgraph P induced by the edge set F violating 
the inequality (7). We know that  T1 Cl F and T2 Cl F cannot contain more than 
kl + 1 and ks + 2 edges. If eo ~ F, the inequality cannot be violated by P. But 
if eo E F, either T1 contains at most kl edges, T2 contains at most k2 edges, or 
T1 and T2 contain at most kl + 1 and ks -4- 1 edges in order to ensure 2-level 
planarity of P.  Hence, inequality (7) cannot be violated with P and validity is 
S~tOWN. 

Now let us assume that  there is an inequality aTx < ao with {x ] cTx = co} C_ 
{x I aTx = a0}, where cTx < co denotes inequality(7).  Let P be the 2-level 
planar subgraph induced by k l+2  edges in T1 (edge set/71) and k2+2 edges in T2 
(edge set F2) not containing e0. If ki > 3, then any edge in Fi can be substituted 
by an edge ei E T~. \ Fi maintaining the 2-level planarity. Hence in this case we 
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have shown that  a~ = a] for all e, f E T/. When inserting the edge e0 to P, we 
can remove two edges from F1 such that  the resulting graph Pt is still 2-level 
planar satisfying inequality (7) with equality. Hence, we have that  a,  o = 2a, for 
some e E F. In the case that  kl, k2 > 3, we have shown that  inequality (7) is 
facet-defining for 2s Otherwise, let us assume that  k2 = 2. Since the 
degree of vertex v' in P '  is exactly one (note that  (v', v") E P') ,  any edge in 
F2 = T2 can be substituted by an edge (v r w) E T1 without destroying 2-level 
planarity. Hence, a, = a(v,,~) for all e E T2 and (v ~, w) E T1. If kl = 2, we apply 
the procedure symmetrically to T1. Otherwise, we already know that  a(v,,~) = af 
for all f E T1, (v', w) E T1. Hence, we have shown that  a, 1 = a,~ for all el E T1, 
e2 E T2 and aeo = 2a~ for all e E T1 U T2 if kl, k2 > 2. Hence, inequality (7) is 
facet-defining for 2f, P S(  Gt). 

It remains to show that  ae = 0 for all edges e E E \ E t if G r = (V ~, E ~) with 
E ~ ___ E and V / C_ V. Since zero-lifting is possible for double claw inequalities, 
we can restrict our attention to edges e = (v,w) with v E G1 and w E G2, 
where G1 and G2 denote the graphs induced by the edge sets T1 and T2. If the 
graph P U {e} is not 2-level planar, we can substitute an edge el E F1 by an 
edge e~ E T1 \ F1, and an edge e2 E F2 by an edge e~ E T2 \ F2 such that  

t ! the resulting graph P '  = P U {el, e 2, e} \ {el, e2} is 2-level planar. We have 
0 = a T x  P'  -- a T x  P ~-- ae  for all e E E \, E ~ and the theorem is proven. [] 

Complete bipartite subgraphs of a 2-level graph G lead to the so-called crown 
inequalities. The proof of the following theorem is omitted here. 

T h e o r e m  3.7 Let G = (L, U, E) be a 2-1evel graph containing a complete bipar- 
tite subgraph G ~ = (L ~, U f, E~), E ~ C E. The crown inequalities 

x(E') < IL:] + IU'I- 1 (8) 

with IL'I > 2 and IU'I > 3 are facet-defining for 2s  

In the case that  the given 2-level graph contains no double claw, the 2-level 
planarization problem is equivalent to the maximum forest problem. It is well 
known that  this problem can be solved in polynomial time by a simple greedy 
algorithm. Moreover, the structure of the associated weighted forest polytope 
has been well studied (see, e.g., [gdm70]). The inequalities of the weighted forest 
polytope are still valid for our polytope 2s even if the graph G contains 
double claws. And, as we will see in our computational experiments, they are 
quite useful in practice. 

T h e o r e m  3.8 Let G = ( L, U, E) be a 2-1evel graph. The forest inequalities 

x (F)  <_ V(F)  - 1 (9) 

where F C_ E and V ( F )  is the number of vertices contained in the snbgraph 
induced by F are valid for 2 s  
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In the next section we show how the theoretical results obtained in this 
section can be used in an algorithm for solving practical instances of the 2-level 
planarization problem. 

4 Separation Problems and a Cutting Plane Algorithm 

We suggest a branch and cut algorithm for solving practical instances of the 
maximum 2-level planar subgraph problem. We will explain the reasons why we 
are confident that  branch and cut algorithms will be able to find the optimum 
solution for moderately sized problem instances in reasonable computation time. 

First, 2-level planar subgraphs of any given graph G = (V, E) contain only 
a linear number of edges, namely, at most IV I - 1 edges. In this case, one can 
use sparse graph techniques, like the ones described in [JRT95] for the Traveling 
Salesman Problem. 

According to results of GrStsehel, Lovdsz, Schrijver [GLS81], Karp and Pa- 
padimitriou [KP80], and Padberg and Rao [PR81], we can optimize a linear 
objective function over a polytope in polynomial time if and only if we can solve 
the separation problem in polynomial time, i.e., given a vector 5: E Q[EI, decide 
whether ~ E P,  and, if ~ ~ 7), find a vector d E QIEI and a scalar do E Q such 
that  the inequality dT~ _< do is valid with respect to 7 ) and dT~ > do. 

We will see that  we can solve the separation problem restricted to the class 
of inequalities (2) in polynomial time. 

T h e o r e m  4.1 For the cycle inequalities (2) the separation problem can be solved 
in polynomial time by computing at most IEI shortest path problems. 

Proof. Given a point ~ E QIEI, we are searching for a cycle C C E with ~(C) > 
[ C [ -  1. Let us write the inequality in a different way: ]C] - ~(C) < 1 which 
corresponds to ~-~'~eec(1 - xe) < 1. For any fixed eo E E we solve a shortest 
path problem on the graph given by G - {Co} with edge costs ze = 1 - xe for 
e E E \ {e0}. Let W be the weight of the shortest path. We then only have to 
test if W + z~ o is less than one. In this case we have found a cycle C leading to 
a violated inequality 2(C) > ICI - 1 of ~. If for no e0 E E a violated inequality 
has been found, we have a proof that  all the inequalities of type (2) are satisfied 
at 2. Hence we have solved the separation problem for (2) in polynomial time. 

The separation problem can also be solved for the double claw inequalities 
(3) and their generalization to k-double claw inequalities for fixed k. 

T h e o r e m  4.2 The separation problem for the double claw inequalities and the 
generalized k-double claw inequalities can be solved in polynomial time for fixed 
k by computing a series of maximum bipartite matching problems on subgraphs 
of G. 
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Proof. Obviously, all k-double claws for fixed k can simply be enumerated in 
polynomial time. Faster is the following algorithm that  is described for the gen- 
eralized k-double claw inequalities when k is fixed. Given a point ~ E QIEL we are 
searching for a k-double claw T ___ E with ~(T) > k+2 .  For any vertex r and any 

k 
set of k adjacent vertices Wl, w2, . . . ,  wk E N(r) let W := ~ i=1  x(~,~d" We com- 
pute a maximum bipartite matching M between the vertex sets {wl, w2, . . . ,  wk } 
and {N(Wl) UN(w2)"" "UN(wk)} \ It ,  Wl, w2, �9 �9 Wk}. If W'}- EeEM Xe < k + 2, 
then no k-double claw inequality rooted at r with neighbours Wl, w2, �9 �9 wk is 
violated. Otherwise, M together with {(r, w~) I i = 1, 2 , . . . ,  k} induces a set T 
for which the inequality x(T) _< k + 2 is violated (T may be only a part of a 
k-double claw in case that  M contains less than k edges). [] 

Padberg and Wolsey have already shown that  the separation problem for the 
inequalities occuring in the weighted forest polytope can be solved in polynomial 
time [PW83]. 

T h e o r e m  4.3 [PW83]. The separation problem of the forest inequalities (9) can 
be solved by computing a minimum cut in a capacitated network G* constructed 
from G = (V, E). G* contains 2(IV I + 1El) ares and IVl + 2 vertices. 

We implemented a cutting plane method using the separation routines men- 
tioned above. In a cutting plane algorithm we start with the linear system 
{ maxwT~ I xe _> 0, x~ < 1 for all e E E}. Let x* denote the optimal solu- 
tion of the LP-system. We solve the separation problem for inequalities (2), (3) 
(5) and (9) using Theorems 4.1-4.3. We add all the found inequalities to our 
system and optimize again. The algorithm stops if no violated inequalities of 
the above mentioned types are found. If x* is integer, we know that  x* is the 
incidence vector of a 2-level planar graph. In this case we have found the optimal 
solution of the 2-level planarization problem. Otherwise, x* gives us an upper 
bound to the value of a maximum 2-level planar subgraph of the given instance 
G. 

In addition, we try to find good solutions to the problem. After each opti- 
mization process, we may get new solutions x* to the problem, most of which 
are fractional. Fractional solutions x* may give us a hint about good solutions 
to the problem. We try to use this information in our heuristics that  we apply 
in each iteration. 

5 C o m p u t a t i o n a l  R e s u l t s  

For our experiments we used the cutting plane algorithm described above. The 
algorithm stops if either the optimal solution is found or no violated cycle, double 
claw, generalized double claw or forest inequality can be detected. In any case, 
the algorithm gives a 2-level planar subgraph together with the solution value 
of the last linear program that  is an upper bound of the optimal solution. 
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Table  1. C o m p u t a t i o n a l  Resu l t s  for g r aphs  on 20 ver t ices  pe r  level  

]]Vii IEI Gar  T i m e  Cycles  2Claw kClaw Forest Gar I  T i m e I  CyclesI  2ClawI  

20 20 0.00 0.01 0.18 0.64 0.00 0.00 0.00 0.01 0.18 0.64 
20 25 0.04 0.02 0.71 2.24 0.15 0.00 0.22 0.02 0.71 2.23 
20 30 0.35 0.08 1.88 7.52 1.25 0.03 0.84 0.07 1.88 7.52 
20 35 0.74 0.28 4.42 18.90 6.15 0.15 2.66 0.20 4.45 18.84 
20 40 1.85 0.93 7.92 39.09 21.44 1.02 5.65 0.46 8.00 37.99 
20 45 2.69 2.36 11.81 74.82 51.49 3.42 9.81 1.07 12.34 75.31 
20 50 2.53 7.35 13.89 93.12 183.98 5.86 10.29 1.58 14.67 94.56 
20 55 2.24 11.07 14.89 104.31 245.29 7.10 7.14 1.87 15.83 104.69 
20 60 1.22 16.65 16.80 102.68 296.39 7.51 5.69 2.04 17.78 101.29 
20 65 0.65 16.69 66.92 66.92 242.31 2.77 2.99 2.10 18.68 89.17 
20 70 0.22 12.80 16.62 68.85 178.70 1.46 1.50 1.46 18.53 57.68 
20 75 0.00 0.84 17.38 31.23 1.61 0.00 1.83 2.02 19.61 71.45 
20 80 0.00 0.83 14.92 33.77 1.35 0.90 0.59 1.10 17.68 33.74 
20 85 0.00 0.77 16.15 28.15 2.82 1.43 0.31 0.92 15.19 25.03 
20 90 0.00 0.68 13.61 22.54 0.46 0.00 0.28 0.80 13.86 19.79 
20 95 0.00 0.37 14.38 7.77 0.00 0.00 0.13 0.52 13.81 10.18 
20 100 0.00 0.32 13.92 4.77 0.00 0.00 0.05 0.42 12.00 5.81 

Table 1 shows computational results for 100 instances of 2-level graphs with 
20 vertices at each level with increasing density. The columns show the number 
of vertices per level, the number of edges, and the average quality of the solution 
value, i.e., if Sol denotes the number of edges remaining in a found 2-level planar 
subgraph and UpBound denotes the value determined by the linear programming 

relaxation, then the solution guarantee Gar is (UpB~176  UpBound / • 100%. Column 

4 shows the t ime on a SUN Ultra 1/170 in seconds. Columns 5 to 8 show the 
average number of found violated cycle, double claw, generalized k-double claw 
and forest inequalities. 

The results are surprisingly good. On the average, the solution we found is 
very close (below 3% on average) to the optimal one. If we do not search for 
violated generalized k-double claw and forest inequalities we get a solution that  
is worse (up to 11% on average). On some single instances, the obtained solution 
guarantee was around 20%. Columns 9 to 12 show the average values in this 
case. Hence, it is really worth studying the associated polytope, i.e., searching 
for additional inequalities. 

Table  2. C o m p u t a t i o n a l  Resu l t s  for sparse  g r aphs  

IV/[ IE] Ga r  T i m e  Cycles  2Claw kClaw Forest  Gar I  T i m e I  CyclesI  2ClawI 
20 40 1.94 0.80 7.85 38.68 18.71 0.54 5.31 0.45 7.88 38.06 
30 60 2.47 2.48 11.53 76.36 40.36 0.85 6.86 1.22 11.56 75.25 
4O 80 3.10 6.49 16.66 128.19 71.22 0.51 8.16 3.67 16.69 127.47 
S0 100 3.47 11.86 19.63 166.67 114.58 0.52 8.53 5.83 19.68 164.71 
60 120 3.83 18.56 24.40 220.36 143.11 0.51 9.18 9.20 24.45 218.48 
70 140 4.19 36.60 29.49 273.65 171.79 0.88 9.60 19.55 29.48 270.68 
80 1 6 0  4.14 48.53 33.18 ]316 09 200.27 1.07 9.51 25.27 33.16 313.16 
90 180 4.36 61 .25  37.69 365 .75  236.88 0.63 9.99 33.14 37.72 363.14 

100 200 4.33 75.99 42.83 408 .88  246.42 1.00 9.71 41.02 42.85 405.66 

Furthermore, we ran 100 instances on a series of sparse graphs. The results 
are promising also for these cases (see Table 2). Our solution is at most 5% away 
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from the optimal solution. This confirms our conjecture that  when combining 
our cutting plane algorithm with a branch and bound algorithm ("branch and 
cut"), we may be able to solve practical instances (of moderate size) to optimality 
within short computation time. 

Consider the graph shown in Figure 2. Our cutting plane algorithm solved the 
2-level planarization problem for the given instance provably optimal within 0.05 
seconds. During the run 5 violated cycle constraints were found, 10 double claw 
inequalities, 1 generalized k-double claw inequalities and no forest inequality. 
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