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Abst rac t .  Let G(V, E) be a graph, and let f : G ~ R 2 be a one to one 
function that produces a layout of a graph G on the plane. We consider 
the problem of assigning text labels to every edge of the graph such that 
the quality of the labeling assignment is optimal. This problem has been 
first encountered in automated cartography and has been referred to as 
the Line Feature Label Placement (LFLP) problem. Even though much 
effort has been devoted over the last 15 years in the area of automated 
drawing of maps, the Edge Label Placement (ELP) problem has received 
tittle attention. In this paper we investigate computational complexity 
issues of the ELP problem, which have been open up to the present time. 
Specifically we prove that the ELP problem is NP-Hard. 

1 Introduction 

In recent years graph drawing has received increasing attention due to the large 
number of applications, such as, entity relationship diagrams, software engi- 
neering diagrams, CASE tools, debugging tools, communication networks, and 
database design [3]. The labeling of the graphical features of a drawing in most 
of these applications is essential, since it gives important  information about the 
relations represented by the drawing. 

The problem of labeling graphs can be divided into two subproblems: 

- N L P :  (Node Label Placement) is the problem of placing text labels assigned 
to particular nodes of the graph. 

- E L P :  (Edge Label Placement) is the problem of placing text labels assigned 
to particular edges of a graph. 

Most of the research addressing the above labeling problem has been done 
on labeling features of geographical and technical maps. Christensen, Marks and 
Shieber present a comprehensive survey of algorithms for the labeling problem 
[2]. 

The NLP problem has been the subject of extensive research in recent years, 
and the complexity issues of that problem have been well documented. It has 
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been proven independently by three different groups [6, 11, 13] that the NLP 
problem is NP-Complete even in its simplest form. 

Even though much effort has been placed in solving the NLP problem, the 
ELP problem has received little attention [14, 16]. Many heuristics devised to 
solve the ELP problem [1, 4, 5, 7, 8], are based on exhaustive search algorithms 
with backtracking. These algorithms do not produce the desirable results, due 
to the tendency of those methods to get trapped in local optima. They also take 
exponential time. 

Definitely in geographical maps, the labeling of lines (ELP problem) is less 
restrictive than the labeling of points (NLP problem) due to the fact that lines 
are usually very long and thus there are many alternative positions to place la- 
bels. But the edge density of a drawing can vary, and edge labeling algorithms 
must perform well even for a high edge density drawing, since unlike in geo- 
graphical maps the size and density of the edges (lines) of a drawing can and 
usually are restrictive with respect to label positioning. This makes most of the 
algorithms in automated cartography for the ELP problem inefficient. Another 
approach is to adopt techniques used to solve the NLP problem [2] in order to 
solve the ELP problem. 

Up to the present time, the complexity of ELP is an open problem. The 
NLP and ELP problems have very similar structure. However, as we and other 
members of the community [12] observed, a direct transformation from NLP 
to ELP seems very difficult. In this paper we prove that the ELP problem is 
NP-Hard. 

2 T h e  E L P  (Edge L a b e l i n g  P l a c e m e n t )  p r o b l e m  

2.1 Label ing qual i ty  

The ELP problem is the problem of assigning text labels to any edge of a pre- 
defined layout of a graph (the equivalent problem for geographical and technical 
maps is the LFLP problem) such that the association of the labels to their 
corresponding edges is clear. 

It is very important to note that. the visual inspection of a labeling assignment 
must be sufficient to explain the semantics of any label. Let us consider a labeling 
assignment of a set of edges where each edge is a street in a city and each label 
is the name of that street. Then a visual inspection of the labeling assignment 
must unambiguously reveM the name of each street. 

There has been extensive effort especially by cartographers like Imhof [10] 
and Yoeli [15], to devise rules that measure the semantic clarity of a labeling 
assignment. Three concepts stand out, and are the basic rules that in general 
give an accurate assessment of the semantics of labels. 

Basic  rules for label ing qual i ty  [10, 15]: 

1. No overlaps of a label with other labels or other graphical features of the 
layout are allowed. 
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2. Each label can be easily identified with exactly one graphical feature of the 
layout (i.e., the assignment is unambiguous). 

3. There is a ranking of all potential labels for any particular edge. 

A label respects the first rule if it does not overlap any graphical feature, even 
though it is allowed to touch the edge that  it belongs to. Also, a label respects 
the second rule if it is placed very close or touches the edge that  it belongs to. 

The ranking of the potential labels for an edge typically captures the aesthetic 
preference of those labels, which is an essential criterion for the labeling quality 
of geographical and to some extend technical maps. It also allows to introduce 
problem specific constraints (i.e., the label of an edge must be closer to the source 
or destination node). The ranking of a label depends only on its position with 
respect to its associated edge and is not influenced by overlaps. We associate a 
penalty for each label according to its ranking. 

Since the layout of a graph is fixed, there are instances where even an optimal 
assignment produces labels that  do not strictly follow those rules. In that  case 
we want to have a way of evaluating how good is a given labeling assignment. 
We can do that  by assigning to each label a quantity that  evaluates the quality 
of that  label. We name this quantity COST.  COST(i ,  j) is a function that  gives 
us the penalty of assigning label j to edge i in the final labeling assignment. The 
C O S T  for each label j is a linear combination of: 

- The penalty with respect to the ranking of label j .  
- The penalty which reflects the severity of the violation of the first two basic 

rules for label j .  

Now, let rank(i, j) be the ranking of label j among all potential labels of edge 
i, where 0 < rank(i , j )  <_ C, C E IR. Then a �9 rank(i , j )  is the penalty with 
respect to the ranking of label j ,  where a is a constant. Also, let b * clarity(i, j) 
be the penalty with respect to the second basic rule, if label j is assigned to edge 
i, where b is a constant. Finally, let pen(i, j, k, l) be the penalty if label 2 j of 
edge i overlaps label l of edge k. Then: 

COST(i ,  j) = a rank(i, j) + b clarity(i, j) + 

pen(i, 5, k, l) P(k, l) 
kEE,kr jnlr 

Where: 

1, i f  label 1 is assigned to edge k 
P(k,1) = 0, otherwise 

The last condition guarantees that only labels assigned to a final labeling 
assignment affect the cost with respect to the labeling quality. 

2 We consider as potentia] labels only labels that do not overlap any other graphical 
feature, except other labels and(or) their corresponding edge. 
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2.2 Label positioning 

In order to completely describe the labeling problem we need to define how we 
construct the set of potential labels for any edge. In Fi 9. l(a) labels A, B, C, 

Fig. 1. (a) How to position labels for an edge; (b) Labeling space of an edge. 

D and E are potential labels for the edge (1,2). Labels A, B and D follow the 
first two rules. Instead, label C intersects the edge that  belongs to, which is a 
violation of the first rule. If a drawing has more than one edges, and labels like 
E floating between edges , it is difficult to have a clear understanding to which 
edge that  label belongs to. So labels iike E violate the second rule, and must be 
avoided. 

We can define the set of all potential labels for a given edge in the discrete or 
continuous labeling space. In the discrete labeling space the set of all potential 
labels is finite and each label is identified by its position on the layout, like 
the labels in Fig. l(a). In the continuous labeling space the set of all potential 
labels is infinite, and for each edge we define a region which is bounded by a 
closed line, where each potential label for that  edge must lay inside that  region. 
Candidate labels are labels that  have at least one intersection point with their 
associated edge. By imposing this restriction we avoid labels like E in Fig. l(a).  
The shaded region around the edge (1,2) in Fig. l(b) is the continuous labeling 
space for that  edge, and any label that is placed inside that  shaded region is a 
candidate label for that  edge. 

2.3 F o r m u l a t i o n  of  t h e  E L P  p r o b l e m  

The ELP problem is an optimization problem since the objective is a labeling 
assignment of minimum cost. Each label which is part of a final assignment 
carries a penalty that  the C O S T  function calculates. The objective is to find a 
set of labels, one for each edge, that  yields minimum total cost. We first consider 
the problem that  optimizes the cost of a labeling assignment. 
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T h e  O p t i m a l  E L P  P r o b l e m  : Let G(V, E) be a graph and let f : G --~ R 2 be 
a one to one function that  produces a drawing for graph G. Let Wi be the set 
of all potential labels for any edge i. 
Q u e s t i o n  : Find a labeling assignment that  minimizes the following function: 

I~l Iwd 
  COST(i,j)P(i,5) 
i----1 j = l  

Where: 

and 

and 

1, i f  label j is assigned to edge i 
P(i,j) = O, otherwise 

let Iwd 

E E P( i , j )= [E I 
i=1 j = l  

IWl 
E P(i'J) = 1, 1 < i <  [E I. 
j = l  

The last two conditions guarantee that  any edge will have exactly one label 
assigned to it, since P(i, j)  = 1 if and only if label j is assigned to edge i. The 
ELP problem as stated is combinatorial in nature, even though the underlying 
geometry gives meaning to the cost function, the interpretation of the cost func- 
tion can be regarded as independent from some particular geometry. In our case 
we will always interpret the cost function with respect to Euclidean geometry. 

Now we will impose some extra constraints in order to obtain a simpler ver- 
sion of the ELP problem. Here we are interested to find if there is an admissible 
labeling assignment where each label is of zero cost, with respect to the first two 
basic rules for labeling quality, rather than finding an assignment of optima] cost. 
This simplification transforms the ELP problem into a decision problem, which 
enables us to investigate the computational complexity aspects of the problem. 

First we redefine the COST function as follows: 

COST(i, j)  = I 0,1, otherwiseif rule 1 and 2 are followed 

The resulting ELP problem becomes the Admissible ELP (AELP) problem. 
Here the objective is to find a labeling assignment of zero cost with respect to 
the labeling quality. 
T h e  A d m i s s i b l e  E L P  P r o b l e m  : 
Q u e s t i o n  : Find a labeling assignment such that: 

Isl IwI 

E E COST(i, j)P(i , j)  = O, 
i=1 j = l  

subject to the same constraints as above. 
Next we further restrict the AELP problem by: 
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- requiring the labels of each edge to be of the same size. 
- restricting the size of the set of potential labels for each edge by not allowing 

potential labels of the same edge to overlap (i.e., in Fig. 1 labels B and D 
are not considered both as potential labels of edge (1,2)). 

The latter constraint guarantees that  each edge has a discrete number of po- 
tential labels. Hence, the resulting AELP problem becomes the Discrete AELP 
(DAELP) problem. 
T h e  D i s c r e t e  A E L P  ( D A E L P )  p r o b l e m  : Let G(V, E) be a graph and let: 
f : G --+ R 2 be a one to one function that produces a drawing for graph G. Let 
V~ be the set of all potential labels for any edge i. 
Q u e s t i o n :  Find a labeling assignment such that: 

Where: 

and 

and 

IEI IWd 

E E COST(i , j )P( i , j )  : 0 
/=1 j--1 

1, i f  label j is assigned to edge i 
P(i , j)  = O, otherwise 

Isl Iwd 

e(i,j)= IEI 
i=1 j = l  

IwI 

P(i, j) = 1, 1 < i < lEt. 
j = l  

In the next section we prove that the DAELP problem is NP-Complete. 

3 T h e  N P - C o m p l e t e n e s s  o f  t h e  D A E L P  p r o b l e m  

We will prove that  the DAELP problem is NP-Complete by transforming the 
3-SAT problem [9], a well known NP-Complete problem, to it. Recall that  3-SAT 
is defined as follows: 
Instance: Set X of variables, collection U of clauses over X, such that  each clause 
has exactly 3 titerals. 
Question: Is there a satisfying t ruth assignment for U? 

In order to transform 3-SAT into DAELP problem, we do the following: For 
each variable in an instance of the 3-SAT problem we transmit to any clause 
that  contains a literal of this variable the information on the status of this 
variable. This transmition takes place through the construction of a transmition 
network. The goal is to associate the satisfiability of the 3-SAT problem with 
the existence of an edge labeling assignment of zero cost for the transmition 
network. Generally speaking each variable will be linked with all clauses that  
contain its complement through a route, such that  once each variable has been 
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assigned a value, there is only one possible labeling assignment of zero cost for 
each route. By knowing how each route has been labeled we can conclude the 
satisfiability of any clause that  this route is connected by observing if there is 
enough room for that  clause to have a label of zero cost assigned to it. 

To construct the transmition network we need some basic building blocks. 
The interconnection of these blocks will produce the final transmition network. 

The first building block is the var iab le_block  shown in Fig. 2. Each variable 
and its complement will be represented by a variable_block. Let a variable_block 
represent X and X. If X = T R U E  then edge (1, 2) is assigned label head. If 
X = T R U E  then edge (1, 2) is assigned label tail. Every edge in a variable_block 

| 

head label ( ) tail label 

•::••::::::::::::::::::••••••••:••:••:••••:••••:•••••••::•••••••••:;••••:;:::•••:••:••••••••::•••::::::::::••••••• 

••i•iiiii•iiiiiiiii•ii•iiiiii•ii•i•i•••iii••••••i•i••••ii•iii•i•iiiii!i••#•i••••i•••••iiii••ii•ii•iiiiiiiii•i• 
i•i!!•!•!•!•!i!i•iii•i•iiiiiiiiiiiiiiiiiiii!i!i!i!iiiii•!i!•!iiiiiiiiiiii•iiiiiiiiiii!i!i!iiii!i!•!i!•!i!iii!iiiii 

i li ili !ii!iii i iilil 
I ilq l bel 

Fig. 2. An example of a variable_block. 

has 2 labels of potential zero cost. Because of the cyclic structure and the way 
labels overlap there can be only two solutions to the DAELP problem for any 
variable_block. One solution contains all the shaded labels and the other all the 
non-shaded labels, since any shaded label is overlapped by a non-shaded label. 
Due to space limitations, we present the following results without proofs. 

L e m m a  1. For a variable_block we have: 

1. I f  a variable has been assigned a value, then the variable_block that represents 
that variable has only one labeling assignment of zero cost. 

2. In a labeling assignment of zero cost only one of the head or tail labels is 
part of this assignment. 

Each clause will be represented by a clause_block as shown in Fig. 3. Edge 
(1, 2) has 3 potential labels (X,Y,Z) of zero cost, one for each literal in that  clause. 
If a label of zero cost is assigned to edge (1, 2) then the clause represented by 
clause_block is satisfied. 

The following building blocks will serve as channels that  transfer the truth 
assignment of the variables (variable_blocks) to the clauses (clause_blocks). 

First we introduce the pipe_block shown in Fig. 4. Each edge has only 2 
potential labels of zero cost. Also each label overlaps with exactly one other label. 
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Fig. 3. An example of a clause_block. 

hvad labvl [. 

Fig. 4. An example of a pipe_block. 

For the pipe_block we have a numbering of the edges that  reveals the following 
pattern: Except for the first and last edge in the sequence, the shaded label of 
an edge overlaps the non-shaded label of the next edge in the sequence. 

L e m m a  2. If  the head (tail) label for any pipe_block is excluded from a labeling 
assignment of zero cost, then there exists exactly one labeling assignment of zero 
cost. That assignment includes the tail(head) label of that pipe_block. 

Next we introduce the j u n c t i o n _ b l o c k ,  shown in Fig. 5(a). Notice that  if 
one tail label is excluded then the head label must be included in a labeling 
assignment of zero cost for a junction_block. However this labeling assignment 
is not unique. A junction_block has the following properties: 

L e m m a  3. For any junction_block: 

1. If  the head label is excluded then there is exactly one labeling assignment of 
zero cost, which includes all the tail labels of the block. 
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Fig. 5. (a) An example of a junction_block; 
ample of a bend_block. 

(b) An ex- 

2. If  all tail labels are excluded from a labeling asszgnment, then there is exactly 
one labeling assignment of zero cost that includes the head label of the block. 

Next we introduce the b e n d _ b l o c k ,  shown in Fig. 5(b), which behaves ex- 
actly the same way as a pipe_block does. So what holds for pipe_blocks certainly 
holds for bend_blocks also. 

The purpose of the t ransmit ion network is to connect any variable to clauses 
tha t  contain the complement of that  variable. We achieve tha t  by connecting 
the building blocks that  we have defined so far so that  they produce a bigger 
structure with one head label and more than one, if necessary, tail labels. The 
head label of this structure will overlap the label in the variable_block that  
represents tha t  variable, and any tail label of the structure will overlap a label 
in some clause_block that  corresponds to the complement of tha t  variable in 
every clause that  contains it. 

To visualize how these connections will be made, one needs to think tha t  
for any variable we build a highway that  goes from North to South and has 
exits only towards the east side of the highway, where all the clause_blocks 
are located. We visualize the highway as a vertical line segment and the exits 
as horizontal line segments. Each variable and the connections to clauses that  
contain its complement form a set of a highway and its exits. All variable_blocks 
stand on the same horizontal line and all the clause_blocks stand on the same 
vertical line. A highway starts from the variable_block and stops at the last exit. 
Each exit leads to a literal in a clause_block. 

A highway with its exits is called a serial interconnection. Figure 6(a) illus- 
trates the structure of a serial interconnection for variable X1 that  is connected 
to variable X1 in all of the clauses that  contain X1. To build a serial intercon- 
nection one needs to: 

1. replace the part  of the highway where an exit occurs with a junction_block, 
2. replace the last exit with a bend_block, 
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3. replace the rest of the highway with an appropriate number of pipe_blocks, 
4. connect 2 consecutive blocks A1 and A2 in such a way that  the tail label of 

block A1 overlaps the head label of A2. 

By following theses rules the serial interconnection in Fig. 6@) which is built 
by using the building blocks presented so far actually represents the structure 
in Fig. 6(a). 
Note :  Every serial intereonnection has one head label and as many tail labels 
as the number of exits. 
The head label of the structure is the head label of the first (top) building block 
(Fig. 6(b)). Tail  labels are the tail labels for the last building blocks of any exit. 
The serial interconneetion block has the following properties: 

I ...... I I ] 

Fig. 6. (a) A serial interconnection. (b) Structure of a serial interconnection. 

L e m m a 4 .  For a serial interconnection: 

1. I f  the head label is excluded from a labeling assignment, then there is exactly 
one edge labeling assignment of zero cost that includes all tail labels of the 
structure. 

2. I f  all tail labels are excluded from a labeling assignment, then there is ex- 
actly one labeling assignment of zero cost that includes the head label of the 
structure. 

For each literal in an instance of a 3-SAT problem there will be a serial 
interconnection that  will represent that  literal. The transmition network will be 
the union of these serial interconnections. Figure 8 shows the structure of a 
transmition network for an instance of a 3-SAT problem of {X,  Y, Z}  variables 
and {{X,Y,Z} ,  {X, Y, Z}, {X, Y,Z))  clauses. 

The crossing of highways and exits is unavoidable. This is why we introduce 
the concept of over - passes. If a highway A is to the east of a highway B, and 
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highway A has an exit a, which is south of an exit b of highway B, then exit 
b will intersect highway A. The building blocks defined so far are sufficient to 
build the network of these roads but insufficient to built over-passes. In order to 
be able to build such networks we need to build over-passes. 

In Fig. 7 the bridge_block serves as an over-pass. The bridge_block possesses a 
very interesting property: in a labeling assignment of zero cost if we put pressure 
on the top ( that  is the head1 label is not available) then the pressure comes 
out at the bo t tom (that  is the taill label must be included in the labeling of 
the bridge_block) regardless of which is the labeling assignment of the rest of 
the bridge_block. The same property is true if the pressure comes from any 
other direction. This property is essential in the construction of the t ransmit ion 
network, because if we replace any crossing of serial interconnection blocks in 
the t ransmit ion network with a bridge_block then Lemma 4 remains true. 

I h~ad2 |#~i~iiiii~"~l O o  0 Iiii:.:~i~:. .......... ~iiiiii~l '~" 

~i~iiiiiiiiiiiii~il O. .................... 
8..... T . . . . . .  

~ i i ~ | ~  O 
O O 

Fig. 7. An example of a bridge_block. 

L e m m a 5 .  If  the headl(taill) or head2(tail2) label for any bridge_block is not 
available, then label taill(headl) or tail2(head2) is included in any labeling as- 
signment of zero cost. 

Now we introduce Algorithm 1, which given an instance of a 3-SAT problem, 
it constructs the t ransmit ion network for an instance of DAELP problem in 
polynomial  time. 
A l g o r i t h m  1 
Given an instance of the 3-SAT problem, with n variables and m clauses: 

1. For each variable we introduce a variable_block. 
2. For each clause we introduce a clause_block. 
3. For each variable_block we introduce 2 columns in the grid. 
4. For each clause_block we introduce 3 rows (one row for each literal in the 

clause) in the grid. 

5. For each literal we build a serial interconnection which is a collection of 
horizontal and vertical segments. 

6. For each literal we connect the variable_block tha t  corresponds to this literal 
with the serial interconnection for that  literal in such a way tha t  the head 
label of that  serial interconnection will overlap the label in variable_block 
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Fig. 8. A transmition network of an instance of a 3-SAT problem 

that  corresponds to that  literal, and all labels corresponding to the comple- 
ment of that  literal in any clause (clause_block) will be overlapped by some 
tail label of that serial interconnection. 

In order to build the transmition network we have to place the serial intercon- 
nection of each literal on the plane in order to be able to make the connections 
in Step 6 of Algorithm 1. 

Step 5 of Algorithm 1 marks the entries of the grid that  each serial inter- 
connection occupies. Each grid entry is part of only one serial interconnection 
except for the entries where crossings of serial interconnections occur. That  entry 
is assigned to a bridge_clause. 

Step 6 of Algorithm 1 makes the final connections which complete the trans- 
mition network. Figure 8 illustrates how these connections take place: First any 
pair (X, X) of columns in the grid is connected with the variable_block for vari- 
able X. The head label of that  variable_block (see Fig. 2) overlaps the head 
label of the serial interconneetion for X and the tail label of the variable_block 
overlaps the head label of the serial interconnection for X.  Secondly, any three 
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rows in the grid that  represent a clause are connected to a clause_block for that  
clause so each of the three labels of the clause (see Fig. 3) overlaps the tail label 
of some serial interconnection that  ends up in that  row and is associated with 
the complement of the literal that  the label in the clause_block represents. 

Due to space limitations we will not discuss here all the details that  show 
that  our transformation takes polynomial time. Briefly the most time consuming 
step of Algorithm 1 is Step 5 which can be done in O(mn~). Also, Algorithm 1 
requires space proportional to the size of the grid. Hence we have the following: 

L e m m a  6. Algorithm 1 produces a layout of a graph that describes an instance 
of 3-SAT, runs in O(mn 2) time and requires O(n) x O(m) space. 

In the following theorem we prove that  the ELP problem for a transmition 
network is equivalent to the 3-SAT problem that  this network represents. 

T h e o r e m T .  The transmition network N, constructed according to Algorithm 
I, that represents an instance S of a 3-SAT problem, has an admissible edge 
labeling assignment of zero cost if and only if S is satisfiable. 

P r o o f :  " ~ ": By the hypothesis, N has an edge labeling assignment of zero 
cost. So there is a set W of labels such that  [W[ = [E[, and each edge has exactly 
one label assigned to it that  does not overlap any other graphical feature of the 
drawing. Any edge in the variable_block has a label of zero cost assigned to it. 
By Lemma 1, either the head label or the tail label of any variable_block is part 
of the solution but not both. So for each variable represented by a variable_block 
in N we can obtain a t ruth assignment by examining how each variable_block 
is labeled. We claim that  the t ruth assignment obtained this way satisfies the 
instance of 3-SAT associated with N. 

The head or tail label of a variable_block is part of the solution. Any such 
label (which is part of the solution) overlaps the head label of some serial in- 
terconnection. By Lemma 4, that label in the variable_block puts pressure on 
that  serial interconnection, and all labels in the clause_blocks that  overlap the 
tail labels of that  serial interconnection are excluded from a labeling assignment 
of zero cost. But any serial interconnection connects a literal (the label that  
overlaps the head label of that  serial intereonnection) in a variable_block, to the 
complement of that  literal in any clause (labels in some clause_blocks that  over- 
lap some tail label of that  serial interconnection) of that  instance of the 3SAT. 
This implies that  no label of a clause_block associated with a literal which has 
false value is part of the labeling assignment. 

But by the hypothesis each edge in N has a label of zero cost assigned to it, 
which implies that  each clause_block in N has a label assigned to it. Therefore, 
for each clause in S there exists at least one literal (the label assigned to the 
clause_block of that  clause) with truth value, which implies that  S is satisfiable. 

" r ": Let us assume that  instance S of the 3-SAT problem is satisfiable. First 
we construct the transmition network N according to Algorithm 1. Since S is 
satisfiable, there is a t ruth assignment for every variable. By Lemma 1, each 
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variable_block has exactly one labeling assignment of zero cost that  reflects the 
truth assignment of S. The labeling assignment of the variable_blocks puts pres- 
sure (by overlapping their head labels) to those serial interconnections in N that  
their tail labels overlap the labels in any clause_block that correspond to literals 
of false value. By Lemma 4 this forces these serial interconnections to include 
all their tail labels to preserve a labeling assignment of zero cost. Consecutively, 
each label in a clause_block of N that  corresponds to literals of false value is 
excluded from a labeling assignment of zero cost. 

Since S is satisfiable, for each clause_block in N there is at least one label 
(corresponding to a literal which has true value) that  is not overlapped by some 
tail label of the above serial interconnections. 

Next, we assign all labels (that correspond to ]iterals of true value in any 
clause) to their corresponding clause_blocks. This assignment puts pressure to 
all tail labels of any serial interconnection that  its head label intersects a la- 
bel in a variable_block corresponding to false value. But such labels in the 
variable_blocks, by Lemma 1, can't be part of a labeling assignment of zero 
cost. Tha t  ensures that  those serial interconnections have a labeling assignment 
of zero cost. Finally, we remove from each clause_block all but one labels assigned 
to it. 

Now each variable_block, each clause_block, and each serial interconnection 
has a labeling assignment of zero cost, which implies that  the transmition net- 
work has a labeling assignment of zero cost since any edge in the transmition 
network belongs to a variable_block , a clause_block , or a serial interconnection. 
[] 

T h e o r e m S .  The DAELP problem is NP-Complete 

P r o o f :  Since our transformation takes polynomial time, by Theorem 7 the 
DAELP problem is NP-Hard. Now it remains to show that  the DAELP problem 
is in NP. One needs to guess a labeling assignment for each edge and check if it 
is of zero cost. The checking obviously can be accomplished in polynomial time 
since for each label we need to check against all the graphical features of the 
drawing which are of polynomial size. [] 

T h e o r e m  9. The AELP problem is NP-hard. 

S k e t c h  o f  t h e  p roof :  To prove the NP-Hardness of the Admissible ELP prob- 
lem we follow the same steps as in the proof of the NP-Hardness of DAELP 
problem. We must make sure however, that  all the properties of the building 
blocks are preserved. This can be accomplished by adding to the structure of 
the building blocks nodes of degree zero when edges have more than one labels 
on each side, as shown in Fig.(9). Also we need to adjust the length of each edge 
that has only one label at each side to be approximately equal to the height or 
width of the label size, as shown in Fig.(lO). By applying these two rules we 
restrict the labeling space essentially down to the discrete labeling space. 

As it can be observed from Figures 9 and 10, each edge can have an infinite 
number of potential labels of zero cost for the AELP problem. Also, regardless of 



255 

ot 
O ................................. O ................. ,,:,**: O 

Fig. 9. An edge with more than one labels on each side. 
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Fig. 10. Edges with one label on each side. 

which label we choose for each of these edges, the behavior of these labels with 
respect to overlapping with other labels is exactly the same as if we had chosen 
labels that follow the rules of the DAELP problem. Hence, it is clear that the 
properties that hold for any building block for the DAELP problem, also hold 
for the AELP problem. [] 

Finally, we have the following: 

T h e o r e m  10. The Optimal ELP problem is NP-hard. 

4 Extensions and conclusions 

We have proven that a restricted version of the ELP problem, namely the AELP 
problem for discrete labeling space, is NP-Complete. This result implies that 
efficient heuristics to solve the ELP problem are needed. Even though the ELP 
xnd NLP problems are similar, which suggests that some ideas that work on 
NLP may work on ELP, the challenge remains to design algorithms that will 
take advantage of the characteristics that are specific to the ELP problem. 

The research on the problem of labeling graphical features has been exclu- 
sively directed towards predefined drawings. Which is appropriate when the la- 
beling of geographical and technical maps is the objective. But for the graph 
drawing community, and for anybody that draws graphs to visualize informa- 
tion, the labeling problem can be seen from a different perspective, since the 
underline geometry of any graph layout can be changed. This presents a possi- 
ble dual approach. First devise graph layout techniques that reserve space for 
labels, and secondly devise local improvement techniques that free-up space for 
labels in the existing layout. 
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