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Abs t rac t .  Most current graph layout technology does not lend itself to 
interactive applications such as animation or advanced user interfaces. 
We introduce the constrained graph layout model which is better suited 
for interactive applications. In this model, input to the layout module 
includes suggested positions for nodes and constraints over the node posi- 
tions in the graph to be laced out. We describe three implementations of 
layout modules which are based on the constrained graph layout model. 
The first two implementations are for undirected graph layout and the 
third is for tree layout. The implementations use active set techniques 
to solve the layout. Our empirical evaluation shows that they are quite 
fast and give reasonable layout. 

1 I n t r o d u c t i o n  

Most research on graph layout has concentrated on how to layout a graph in some 
fixed style in isolation from the rest of the application. However, this model of 
graph layout, while very simple, does not lend itself to interactive applications 
such as animation or advanced user interfaces. This is for two main reasons. The 
first reason is that,  in many  interactive applications, the graph is repeatedly 
modified (by either the user or the application program) and redisplayed. When 
the graph is redisplayed, the new layout should preserve the mental map of the 
user [11, 32, 28], that  is the new layout should not move an existing node unless 
the current position leads to poor layout. The second reason is that  almost 
all existing graph layout algorithms are quite restrictive in how graphs can be 
laid out since they encapsulate fixed layout aesthetics. The application program 
cannot place constraints on the layout which take into account the underlying 
semantics of the object represented by the graph. 

To overcome these problems, we introduce a general model of constrained 
graph layout which is better  suited for interactive applications involving graph 
layout, see Fig. 1. In constrained graph layout, the graph layout module takes: 
the graph, a set of constraints over the x and y positions of the nodes, and 
a partial  assignment of suggested values for the node coordinates. The graph 
layout module is responsible for finding an assignment to variables representing 
the node coordinates which is feasible, that  is satisfies the constraints, gives a 
good layout, and assigns values to the variables which are as close as possible to 
the suggested values. The constraints enable the layout module to take additional 
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semantic information about the graph into account, and the suggested values 
allow the layout module to try and preserve the current layout of the graph. 

[Constraints) ( Suggested Valu-~ 

Graph ~ (  Layout Module ~ - ~  Graph Layout ] 

Fig. 1. The Constrained Graph Layout Model 

Different graph layout modules allow different classes of constraints and may 
also embody different layout algorithms and aesthetic criteria. For different ap- 
plications one must use the appropriate graph layout module. Our major techni- 
cal contribution is the implementation and design of three different constrained 
graph layout modules. All three modules allow arbitrary linear arithmetic con- 
straints. The first two modules are for undirected connected graphs, while the 
third module is for tree layout. The first module is based on Kamada's aesthetic 
cost function [22, 23]. The second module is a modification of this cost function 
which removes the non-polynomial terms. Unfortunately, Kamada's algorithm 
for graph layout is not suitable for constrained graph layout since it cannot han- 
dle interaction between variables. Instead we use active set methods developed to 
solve constrained optimization problems with an arbitrary non-linear objective 
function. The tree-layout module relies on methods developed to solve quadratic 
programming. 

We also present an empiricM evaluation of the three modules. Our evaluation 
shows that our second layout module for undirected connected graphs is not 
significantly slower than Kamads original algorithm for unconstrained graph 
layout - -  thus there is very little performance penalty in using this more flexible 
model. Second, we show that the second module gives faster and more robust 
layout, but sometimes the layout is inferior to that given by the model based on 
Kamada's original cost aesthetic. Third, we show that the tree layout module is 
significantly faster than the other two modules. Thus, if yon are only laying out 
trees you should use this specialized module. 

Until recently there has been relatively little work on graph layout in the 
presence of both constraints and suggested values. The work most closely re- 
lated is that of Kamps and Klein [24]. They also look at layout in the presence 
of constraints. The class of constraints they allow, called geometric constraints, 
is less expressive than the arbitrary linear arithmetic constraints considered here. 
For example, they cannot specify that a node should be placed at the mid-point 
of two nodes. Furthermore, they do not allow suggested values for nodes. Other 
closely related work is described in Luders et al [27] who use a two-phase com- 
binatorial optimization algorithm for graph layout. They also allow constraints, 



219 

which are inequalities between node positions. Again, their constraints are not 
as expressive as those considered here. Dengler et al [9] also look at constraint- 
driven layout. Their motivation is quite different. In their approach constraints 
are generated automatically and encode good graphic design rules. They do not 
require all of the constraints to be satisfied, rather the layout algorithm just tries 
to satisfy as many of these constraints as possible. 

There is, of course, a considerable body of literature to do with constraint 
based generation of diagrams, in which layout is hardwired into the rules of gen- 
eration. See for example, Brandenburg [4], Helm and Marriott [19, 18], Weitz- 
man and Wittenburg [38] and Cruz et al [7]. There is also a considerable body 
of literature on constraint based diagram manipulation. See for instance, Gar- 
net [29], QOCA [20] and ThingLab [2]. More general related work is described 
in the surveys [12, 1]. In particular, force-directed graph drawing algorithms for 
unconstrained graph layout can be found in [8, 23, 36, 15, 34, 10, 14], and [5] 
contains an experimental comparison between [36, 14, 8, 23, 15]. Algorithms for 
incremental unconstrained graph layout are given in [25, 30], while [26] discusses 
the approach of integration of declarative and algorithmatic graph layout. 

2 C o n s t r a i n e d  G r a p h  L a y o u t  

Existing research on graph layout has tended to focus on how to layout a graph 
statically using a fixed pre-defined style. Unfortunately, this model of graph 
layout, while very simple, does not lend itself to interactive applications since 
when a graph is modified and redisplayed the new layout may not preserve 
the mental map of the user [11, 32] and the application program cannot add 
constraints on the layout which take into account the underlying semantics of 
the object represented by the graph. 

For these reasons we have introduced the constrained graph layout model 
which overcomes these problems and so is better suited for interactive appli- 
cations. In constrained graph layout, the graph layout module takes three pa- 
rameters. The model is shown in Fig. 1. The first is a graph, G = (V, E), where 
V = {1, . . . ,  n} is the set of nodes in the graph where each node is represented 
by a (unique) integer and E is a set of edges (i, J / e  E for i, j E V. The second 
parameter is a set of constraints over the x and y position of the nodes, where xi 
and y~ are variables denoting the x and y coordinate of node i in the layout. Note 
that the constraints may also refer to other variables than the node coordinates. 
The third parameter is an assignment, r of suggested values for the variables 
representing the node coordinates. For example, r is the desired value for 
the x coordinate of node i. Each assignment to a variable, v, has an associated 
weight, w(v), indicating the importance of the suggested value. The larger the 
weight, the more the value is desired. If the weight is zero, i.e. w(v) = O, then 
the suggested value is ignored. In the constrained graph layout model, the con- 
straints enable the layout module to take additional semantic information about 
the graph into account, and the suggested values allow the layout module to try 
and preserve the current layout of the graph. 
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The graph layout module is responsible for finding an assignment to variables 
representing the node coordinates which satisfies the constraints, gives a good 
layout, and assigns the values to the variables which are as close as possible 
to the suggested values. More exactly, the graph layout module embodies an 
algorithm to solve the optimization problem: 

minimize r + dist(r v) 
with respect to C(v). 

where v = (Xl, X2,... , Xn, Yl, Y2,..., Y~) and r captures the graph layout aes- 
thetic as an objective function over the nodes' x coordinates and y coordinates, 
C(v) is a set of constraints and dist, which takes into account the weight, is 
some metric over the variable values. 

Different graph layout modules support different classes of constraints. For 
example, one layout module might accept arithmetic equalities while another 
might allow linear arithmetic equality and inequality constraints. Of course there 
is a trade off between the speed of layout and the expressiveness of the allowed 
constraints. Different graph layout modules may also embody different layout 
algorithms and aesthetic criteria. For example, a layout module might be spe- 
cialized for tree layout in which the criteria is to minimize the size of the tree 
or else the module might be for general directed graph layout, in which the cri- 
teria for layout are to minimize the number of edge crossings and to represent 
isomorphic sub-graphs identically. The final way in which layout modules may 
differ, is in the choice of metric by which solutions are compared. For instance, 
the metric might be the Euclidean norm or it might be the function which gives 
0 if the values are identical and 1 otherwise. 

For different applications one must use the appropriate graph layout module. 
That is, one should choose a module which allows expressive enough constraints, 
yet is also efficient enough. In the next two sections we describe three different 
graph layout modules which we have implemented. 

3 I m p l e m e n t a t i o n  f o r  U n d i r e c t e d  G r a p h s  

In this section we detail two constrained graph layout models for general undi- 
rected connected graphs. Both models handle arbitrary arithmetic linear equality 
and inequality constraints and use the square of the Euclidean distance as the 
metric over solution values with the contribution of each variable multiplied by 
the associated weight. The basic idea is to use a spring model energy function 
as the aesthetic cost function r however the models differ in the choice of r 
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The first model, Model A, uses the aesthetic cost function suggested by Ka- 
mada [23]. This is 

~-1 ~ l k  r = ~ ~ ~j(Ip~ - p s i -  l~)  ~ (1) 
i=1 j:-i+l 

where: k~j is spring factor between node pi and node pj; and 
lit is a desirable length between node Pi and node pj. 

We can rewrite this cost function to the following: 

l n - 1  
~ = ~ ~ k~ j { (~ -~ j )~+- (y~ -y~ )~ -2 .1~ j .V / (x~  - ~ ) ~  + (y~ - y~)~} (2) 

i=1 j = i + l  

The model places a "spring" between each pair of nodes which tries to position 
the nodes so that  the distance between them is the desired length. The cost 
function is a measure of the energy in the springs. 

Our second model, Model B, is a polynomial approximation of Model A. 

~ = ~  kYj((~ - ~j)~ + (y~ - yj):  - /~j)  ~ (3) 
i=1 j = i + l  

In this model the cost function is the sum of the squared differences between the 
desired distance between nodes and the actual distance. The definitions of kij 
and lij are the same as those in (2). 

The primary disadvantage of Model B over Model A is the weaker repulsive 
force between nodes which arises from the lack of V/(Xi - x j )  ~ + (Yi - yj)2 like 
terms in the aesthetic cost function of Model B. This means that  Model B may 
sometimes produce a layout with some coincident nodes. In the case of Model A, 
however, since Ca has X/(xi - x j )  2 + (Yi - yj)2 like terms, nodes can never be 
assigned the same location since 

0x~ (x~ - ~j)~ + (y~ - YJ): = ( ~  - ~ )  

which has no definition when xi = xj and Yi = yj. In other words, r will have 
some points where its partial derivatives do not exist, and so any local minimum 
search method will never go to these points. 

On the other hand, lack of smoothness of the partial derivatives of CA means 
that  the computation of the minimum of CA may be sensitive to the initial con- 
figuration and initial feasible solution. This is because the optimization method 
may not be capable of leaping over a point where the partial derivative does not 
exist from the current feasible solution to a solution closer to the local minimum. 
Since eB has no points whose partial derivatives do not exist, we would expect 
numerical optimization techniques to be more stable when solving Model B. This 
is of particular importance in the case of constrained optimization because the 
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presence of constraints makes it more difficult to find an initial feasible solution 
which is close to the global minimum. 

The other main advantage of Model B over Model A is that we would ex- 
pect to be able to compute a minimum of r faster than we can compute 
a minimum of CA. This is because one of the main time costs in comput- 
ing a minimum in almost any numerical method is the need to calculate par- 
tial derivatives and computing partial derivatives of CA will take longer be- 
cause of the ~/(xi - xj)2 + (yi - yj)~ terms. In particular, for popular optimiza- 
tion techniques such as gradient descent method and conjugate gradient descent 
method [13], the increment in line search can be determined symbolically if the 
aesthetic cost function has polynomial form while only numeric methods can be 
used if the aesthetic cost function includes X / ~ -  xJ) 2 + (Y~ - yj)2 terms. 

The most important question is how we can efficiently solve the resulting 
optimization problems when using Model A or Model B for constrained graph 
layout. In both cases we must solve a constrained optimization problem of the 
following form: 

minimize r 

subject to C (4) 

where: v = ( x l , x 2 , . . . , x n ,  Y l ,y2 , . . . ,Yn);  
C is a set of linear equality and inequality constraints, and 
r is CA(V) + ~ , e v  w(v)" (r -- v) 2 in the case of ModelA, and 
r is tB(V) + ~ e v w ( v ) '  (r -- v) 2 in the case of ModeIB. 

Kamada [22] gives a simple and efficient algorithm to minimize CA in the 
case that there are no constraints. Kamada claims that the 2n-dimensional 
Newton-l~aphson method cannot be directly applied because E1  ata _ 0, and 

8 x l  - -  

~1 ~ 0, which means the 2n partial derivatives are not independent of one 
Oyi 

another. Instead his algorithm repeatedly recomputes the position of each node, 
one at a time, by solving two linear equations, involving calculation of derivatives 
only for that one node, to obtain x- and y-increments of the node to be moved 
while the other nodes are temporarily frozen. The algorithm terminates when a 
local minimum is reached. Unfortunately, it seems impossible to use Kamada's 
algorithm to solve problems of the form of (4) because the constraints introduce 
interaction between variables. This means it is not possible to recompute the 
position of a node independently from the current position of the other nodes. 
Therefore we need some other method for solving optimization problems of the 
form of Equation (4). 

Our implementation for Model A and Model B is instead based on the Ac- 
tive Set Method [13]. This is an iterative technique developed by the operations 
research community to solve constrained optimization problems with inequal- 
ity constraints. It is reasonably robust and quite fast. The key idea behind the 
algorithm is to solve a sequence of constrained optimization problems O1, ..., 
Oh, which only have equality constraints. This set of equality constraints, ,4, is 
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(a) Compute li3,kij for 1 _< i # j < n; 
(b) Compute initial feasible solution @1) and active set A := A(vO)); 

r = 6*(v(~)); 
(c) Compute d by solving (5); 

i f ( d  >_ s) goto (e); 
(d) Let iX (k) solve rain AI k), for all ai E A and ci is an inequality constraint; 

i f  (iX(k) > 0) 
terminate with v (k) as the solution; 

else{ 
remove aq from ~4; 
goto (c); } 

bi--v(k)'ai' for a, in ~ and d �9 ai < 0 (e) Compute ~----(k) := min d.~, 
Choose o< as an increment along the line search direction d; 
i f  ( ~ k )  exist) 

h := min(a  ---(k), a); 
else 

h := a; 
(f) v (k+a) := v (k) + h �9 d; 

whi le  (6*(v (k+~)) _> r { 
REDUCTION(h);  

v ( k + l ) = v  ( k ) + h . d ; }  
(g) i f ( h = N )  { 

let p be a constraint index which holds N in (e); 
add ap to A;} 

(h) r = r 
k = k + l ;  
go to  (c); 

Fig.  2. Constrained Graph Layout Algorithm 

called the active set. It  consists of the original equal i ty constraints  plus those 
inequal i ty  constra ints  which are required to be equalities. The  other  inequalit ies 
are ignored. 

Essentially, each op t imiza t ion  p rob lem Oi is solved using a gradient descent 
method which i tera t ively  computes  a solution which is feasible wi th  respect  to 
the equal i ty  constraints  in Oi and which is in a search direction d reducing 
the  object ive function.  However, it m a y  be t ha t  the new solution while feasible 
wi th  respect  to the  active set of Oi, holds v �9 a = b for an inequal i ty  constra int  
v �9 a > b of  the original p rob lem which is not in the active set. In this case the 
corresponding equal i ty  v �9 a = b is added to the active set, giving rise to a new 
op t imiza t ion  p rob lem Oi. Cons t ra in ts  m a y  also be taken out  of the active set, 
when a be t te r  search direction can be found "away" f rom the constraint  in the 
direction sat isfying the original inequality. 

The  precise a lgor i thm is given in Fig. 2. Assume tha t  C = {cl, c 2 , . . . ,  c,~) 
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and that  a = ( a l , a 2 , . . . , a , ~ )  and b = (b l ,b2 , . . . ,bm)  where a~ and bi are 
coefficient column vector and right-hand side constant of ci. At each step ,4 
= {ai : ci is active} is a column vector set representing the active set. 

The algorithm in Fig. 2 proceeds as follows. In step(b), an initial feasible 
solution is found, and the initial active set A is set to A(vO)),  which is the 
set of a~ such that vO) -a~ = b~ holds. Step(c) to step(h) are then performed 
iteratively. In each iteration v(k) is a feasible point and step(c) at tempts to solve 
the optimization problem 

m i n i m i z e  r (k) + d) 

subject  to d .  ai = 0, ai E .4. (5) 

The solution to this problem is the search direction d. If d is small enough, 
that  means v (k) is an acceptable solution, and the Lagrange multipliers ,k (k) of 
the problem are examined to determine if a local minimum has been reached) 

Denote ~a)  = min,~l ~) for all al ff~4 and ci is an inequality constraint. The 

algorithm terminates with v(k) as the solution if ~ )  is non-negative because if 
all hi are non-negative there exist no better solution near v(~), then v (~) is a 
local minimum. Otherwise Cq should be removed from the active set, i.e. remove 
aq from A, then go to step(c). If d in step(c) is not small enough, step(e) and 
step(f) are used to work out a new feasible solution v (k+l) = v (k) + h �9 d. In 
step(e), to make sure that  h will keep v (~+1) feasible for (4), h is chosen to be the 
minimum of a and ~ if ~ can be fbund. Otherwise h is set to (~ if ~ does not exist. 
The wh i l e  loop in step(f) is designed to guarantee that  r +1)) < r 
This is how the new feasible solution is produced. If ~ has finally been chosen as 
an increment h in step(e) and step (f), then the c~ that  holds ~ is added to the 
active set, and before starting a new iteration from step(c), step(h) recomputes 
r (~+1)) and k. For further details about the active set method, please see [13]. 

After variable elimination, (5) can be reduced to an unconstrained optimiza- 
tion problem, and then any appropriate unconstrained optimization technique 
can be applied in step(c) to solve it. We first use gradient descent method and 
then the conjugate gradient descent method, which is more efficient when a point 
is close to a minimum. 

The most important  consideration when using the active set method is how 
to compute the initial feasible solution in step(b) of Fig. 2. If the initial solution 
is close to the global optimum, then convergence of the active set algorithm will 
be fast. Conversely, if the initial solution is too far from the global minimum, 
convergence may be slow, and the algorithm may return a local minimum rather 
than the global minimum. 

1 Essentially, the minimum of a function f ( x l ,  x2 . . . .  ~ xn) subject to equality con- 
straints 

ed(z l , x2 , . . . ,  x~) = 0 for j = 1,2 . . . . .  s, 
is to be found among the turning points of the Lagrangian form 

r  = f(x)  + E~=~ ~J" eJ(x) 
where/~ = ()u . . . .  , ~ )  are known as Lagrange multipliers [3]. 
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Kamada's  algorithm for unconstrained minimization of CA also requires a 
good initial solution. In this case, however, because there are no constraints 
any assignment to the variables is feasible and so it is easier to find a good 
"guess" for the initial solution. If there are n nodes, Kamada's  algorithm uses 
the assignment, Oinit, which assigns values to the nodes x and y coordinates so 
that  the nodes are placed on the vertices of the regular n-polygon circumscribed 
by the largest circle which can fit in the display rectangle [23J. 

Unfortunately, in our case we cannot directly use Oi~it as the initial solution 
as it may not be feasible. Also, we would like to use the suggested values for 
variables wherever possible. This suggests that  we use as the initial solution the 
assignment, r defined by 

Clair(V) = { ~b(v) if w(v) 7s O, 
Oi~it(v) otherwise 

where r is the suggested value for the node placements. However, we cannot use 
~)inlt aS  the initial solution because it may not be feasible. Instead we compute 
the closest solution to r which satisfies the constraints. In other words, our 
initial solution, r  is the solution to the following constrained optimization 
problem: 

minimize E ( v  ~ r 2 
v E v  

subject to C. (6) 
Problem (6) is an example of a Quadratic Programming problem. Such prob- 

lems are well-behaved since they are convex, so that the local minimum is the 
global minimum. There are many fast algorithms for solving quadratic program- 
ming problems. For example, interior point methods with guaranteed polyno- 
mial worst-case behavior could be used. We chose to use a specialized active set 
method which has been found to be fast in practice [17]. A good initial feasi- 
ble solution is vital to a nice, fast graph layout and we have found the above 
approach to be both efficient and satisfactory. 

4 I m p l e m e n t a t i o n  f o r  T r e e s  

Trees are a special type of graph which are widely used in many different appli- 
cation areas. There are a variety of drawing conventions [31] for trees and many 
different layout algorithms and approaches have been investigated. See for exam- 
ple, [37, 39, 33, 21, 16]. In particular, [22] gives a variant of the spring model to 
layout trees nicely. Unfortunately, all of these algorithms and approaches are for 
unconstrained tree layout. In this section we detail a constrained graph layou~ 
module for trees. Our model handles arbitrary arithmetic linear equality and in- 
equality constraints and uses the square of the Euclidean distance as the metric 
over solution values. 

Our model is based on viewing unconstrained tree layout as a quadratic opti- 
mization problem. Different aesthetic criteria give rise to different optimization 
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problems. As an example of how to capture one particular aesthetic criteria 
for tree layout as an optimization problem, consider the layout of a downward 
rooted tree. The following constraints, C t ~ ,  lay out the tree T ---< V,E >, 
where V = {1, 2 , . . . ,  n} is the set of nodes, in an aesthetically pleasing way - 
By convention, vl is the root of the tree: 

- for all xl, xj, i f j  is the right neighbor ofi ,  add xj - x i  _> g~ into Ctr~ ,  where 
g~ is some pre-defined minimal horizontal gap between nodes; 

- for any non-leaf node i, if l is i's left-most son and r is i's right-most son, 
add xi = (xr + ~ ) / 2  into Ct~e; 

All vertices' y-coordinates Yi are placed along horizontal lines according to their 
level. Let parent(v) be the parent of node v. We use the objective function 

92 Ct~er = ~ j=2(x j  - xsa~t(y)) 2 to capture the desire to minimize tree width, 
which is often one of the most important aesthetic criteria in tree-drawing. Thus, 
we can layout a downward rooted tree by finding the solution to Ctr~  which 
minimizes C t ~ .  

Our constrained tree layout module extends this idea. It is based on the 
following model, Model C, which captures the aesthetic layout of trees as a 
quadratic programming problem. The model is parametric in the choice of Ct,.r 
and r which are the constraints and objective function which capture the 
desired aesthetic criteria for a particular type of unconstrained tree layout. The 
model solves the following optimization problem: 

' V E U)v ' - -  . inimi e ) + (r v) 
v E v  

subjec~ to C U C ~  (7) 

where: v = (Xl ,X~, . . . ,x~ ,y l ,y2~. . . ,y~) ;  
C is the input set of linear equality and inequality constraints. 

As this is a quadratic programming problem there exist many robust and fast 
techniques for finding the minimum. We use a variant of the active set method. 

5 E m p r i c a l  E v a l u a t i o n  

In this section we detail our empirical evaluation of the three different con- 
strained graph layout, modules we have described in the last two sections. The 
constrained tree layout module, Model C, uses the aesthetic criteria given in 
the example for downward rooted trees. For each model we evaluate both the 
speed, in seconds, of the layout and the quality of the layout. All programs are 
implemented in BorIand C++ and run on a DECpc LPx + ~66d2. 

Our first experiment was to compare the quality of layout and speed of 
layout of Model A, Model B and Kamada's  original algorithm for unconstrained 
undirected graph layout. Each of the three methods was tried on five sample 
graphs, of which two, Graph 1 and Graph 2, are Fig. 5.9(b) and Fig. 5.11(c) 
in [22] respectively; one, Graph 3, is taken from [10]; Graph 4, is given by us; 
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and the last one is K10. Table 1 shows the time for each method to layout 
the graph. The layouts using Model B of Graph 2 and Graph 4 are shown in 
Fig. 3 and Fig. 4, respectively. The results show that Model B is significantly 
faster than Model A and that Model B is not significantly slower than Kamada's 
original algorithm. This demonstrates that the overhead of a general purpose 
constraint solving algorithm is not unreasonable even for unconstrained graph 
layout. The quality of layout produced by Model B is satisfactory, and is generally 
similar to that produced by Kamada's algorithm (and hence Model A). The only 
important difference is for Graph 2. The layout using Model B is shown in Fig. 3 
and should be compared with the layout given by Kamada's algorithm (shown in 
[22]). Kamada's algorithm gives a layout with an edge crossing. This is avoided 
by Model B but the layout is still not very good because node 1 is too close 
to node 2 and node 3 due to the weaker repulsive force, while other nodes are 
uniformly positioned. 

Fig. 3. Graph 2,unconstrained 

4 
Fig. 4. Graph 4,unconstrained 

[I graph [Kamada's]Mod,Z A]Model B[no. of nodes[[ 
Graph 1 0.17 2.08 0.39 10 
Graph 2 2.75 33.12 4.89 20 
Graph 3 0.77 17.03 1.48 16 
Graph z[ 0.55 1.59 0.93 11 
Graph 5 0.23 4.33 0.16 10 

Table 1. Unconstrained Graph Layout 
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Our second experiment is to compare Model A and Model B for constrained 
graph layout. In this experiment we have added several constraints to the ex- 
ample graphs from the first experiment. The constraints require some nodes to 
be aligned, or to be higher than some other nodes. Table 2 shows the time in 
seconds for each method to layout the constrained graph. Again, Model B is sig- 
nificantly faster than Model A. The constrained layouts produced by Model B are 
aesthetically pleasing. As examples of the quality, two of the layed out graphs 
are shown in Fig. 5 and Fig. 6. Graph 4 has been given constraints requiring that 
node 4, node 8 and node 9 align vertically, node 4 is lower than node 3, node 5 
and node 9, and node 9 is lower than nodes 10 and 11. Note that the layout time 
for Graph 5 by Model B in Table 2 and in Table 1 is quite small. This is because 
for K10, the initial feasible solution obtained by solving (6) is very close to a 
minimum. This indicates the importance of an good initial configuration, and 
Model B will be even faster than Model A if it is given a better initial feasible 
solution. 

Our third experiments was to evaluate the constrained tree layout module. 
We took five sample trees: Tree 1 is Fig.2 of [33], Tree 2 and Tree 3 are Fig.10 
and Fig.2 of [35] respectively, Tree 4 is Fig.18 of [21] and Tree 5 is a four-level 
complete binary tree. We lay them out with Model C and also with Model A and 
Model B, all constrained under C t ~ .  Table 3 shows the time taken to layout 
the tree with each method. In addition, the constrained column in Table 3 gives 
the time taken to layout each tree, by Model C, with constraints which make one 
of the subtrees of the root an upward rooted tree and node gap narrower. Pig. 7 
and Fig. 8 are the layout of Tree 1, drawn by Model B and Model Crespectively. 
Our results demonstrate that Model C performs better layout because of width- 
minimization, and is also significantly faster than the more general Model B. 

Fig. 5. Graph 3,constrained Fig. 6. Graph 4,constrained 

Finally, we take Graph 4 as an example to illustrate how suggested values 
work. As explained above, Fig. 4 is the layout of Graph 4 using Model B without 
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graph Model A Model B no. of constraints 

Graph 1 5.78 1.42 4 
Graph 2 38.61 14.56 9 
Graph 3 18.51 2.86 7 
Graph 4 9.67 4.61 7 
Graph 5 5.93 0.94 2 

Tab le  2. Constrained Graph Layout 

Fig.  7. Tree 1, Model B with Ctr** Fig.  8. Tree 1, Model C with C~r162 

[[graph [Model A[Model BIModel Cl~onstrai~edl~erti~esl] 

Tree 1 64.60 37.35 3.4J 3.62 31 
Tree 2 4.50 2.91 0.82 1.05 16 
Tree 3 5.22 1.65 0.55 0.82 13 
Tree ~ 4.23 1.37 0.55 0.71 10 
Tree 5 1.59 1.53 0.61 0.82 15 

Tab le  3. Tree Layout 

Fig.  9. phase 1 Fig.  10. phase 2 Fig.  11. phase 3 
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any constraints and with no suggested values. Now consider a sample interaction 
in which the suggested values are the old position coordinates. A user draws a 
graph and gets the unconstrained layout shown in Fig. 9. The user then edits 
the graph by adding three nodes and four arcs to a graph as displayed in Fig. 10. 
The user then thinks that  this is close to the layout that  he feels like and lays it 
out with the suggested values above mentioned. The layout obtained is shown in 
Fig. 11. Note that if no suggested values were given here, the layout would have 
been the same as that  of Fig. 4. 

6 Conclusion 

We have introduced a generic model - constrained graph layout - for interactive 
graph layout and described three implementations of the model, two for undi- 
rected graph layout and one for tree layout. The key feature of our new model 
is that  it Mlows the user to constrain the position of nodes in the graph and 
to provide suggested values for the node locations. Empirical evaluation of the 
implementations shows that  the greater flexibility of our model does not come 
at a high computational cost. In particular our second implementation, Model 
B, provides good layout of undirected graphs in the context of arbitrary linear 
constraints at a reasonable cost, while Model C, provides quick and reasonable 
layout of trees in the context of arbitrary linear constraints. 

In practice, Model A and Model B can be integrated into a two-phase pro- 
cedure to obtain the benefits of both models. The idea is, in phase one, to use 
Model B to quickly obtain a certain local minimum, then see whether node co- 
incidence occurs or not, if not, layout terminates; otherwise, phase two starts, 
that  is: shift nodes that  are coincident slightly along differen~ directions to make 
every node in a different point, then call Model A to finalize the layout. Phase 
two would not take too long because some local minimum should be closer, and 
the layout that  phase two produces will have no node coincidence. 

The main motivation for our work is from work in advanced visual interfaces. 
First, constrained graph layout can be used in animation in which the new 
diagram is defined in terms of objects and constraints in the old diagram, and in 
which remaining objects in the diagram should not be moved unless necessary. 
The second use is for user interfaces for pen-based computing. One important  
approach in such user interfaces is to parse the pen-drawn diagram to infer 
constraints between the components [6]. Constrained graph layout can be used to 
re-layout or "pretty print" the recognized diagram while preserving its semantics. 
Constrained graph layout also has numerous other applications in user interfaces 
- basically whenever the diagram has more semantic structure than a simple 
graph, then the constrained graph layout model is appropriate. 
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