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A b s t r a c t .  This demonstration shows the GOLD system, an extensible software 
architecture integrating several declarative layout strategies, including spring- 
embedders, local constraints and genetic algorithms. The underlying paradigm 
is to consider graph layout problems as geometric constraint satisfaction prob- 
lems [4]. 
In addition to satisfying global aesthetics criteria, the system allows for the inter- 
active specification of local criteria per vertex (edge). 

1 Introduction 

In general, spring embedder algorithms produce "good" drawings of undirected graphs 
according to the following global criteria 

- edge lengths should be approximately equal, 
- adjacent vertices should be closer together than non-adjacent ones, and 
- inherent symmetries should be displayed. 

In many cases, however, there exist aesthetically more pleasing drawings, which 
may rely on other aesthetic criteria unavailable to spring embedder algorithms. Often, 
such criteria can be expressed declafatively. Declarative graph drawing strategies in- 
clude simulated annealing [3], constraint-satisfaction [10], Graph Grammars [1], and 
genetic algorithms [11]. 

In [7], a proposal was made towards the integration of declarative and algorithmic 
approaches. Their goal was to combine the strengths, while overcoming their respec- 
tive difficulties. Algorithmic approaches are fast, but difficult to modify. Declarative 
approaches, on the other hand, are usually easy to adapt to changing user requirements, 
but inherently slow, as they employ general problem-solving frameworks. 

2 Genetic algorithms for Graph Drawing 

In this section, we briefly review genetic algorithms and show how to apply this paradigm 
to the field of graph drawing. 

* This research was performed while the author was working at Universitat Karlsruhe, Institut 
ftir Programmstrukturen und Datenorganisation. 
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Fig. 1. The basic steps in a genetic algorithm. 

2.1 Overview 

Genetic algorithms (GAs) [5] belong to a family of optimization techniques known as 
evolutionary algorithms (EAs) that are based on principles of natural evolution. Main- 
taining a population of potential solutions, they perform a selection operation based on 
thefitness of individuals, modified by recombination and mutation operators to respect 
genetic diversity. 

A GA can be interpreted as a modified random search. As with simulated annealing 
(SA), it is a probabilistic method to solve hard optimization problems. These algorithms 
do not guarantee the optimum value, but the error probability can be made arbitrarily 
small. 

The application of G~Vs to optimization problems requires a suitable encoding of 
candidate solutions. Traditional GA's represent possible solutions by binary bit strings 
(chromosomes), while newer work is also investigating other forms of representation as 
well. The initial population for a GA search is usually selected at random. 

The basic structure of a GA is shown in 1. A part of the population is selected 
based on the principle of survival of the fittest by an objective or fitness function. The 
population size affects both the performance and the efficiency of the GA. A large 
population discourages premature convergence to suboptimal solutions. On the other 
hand, a large population requires more evaluations per generation, resulting in slower 
convergence. Crossover rate and mutation rate also affect the convergence to suboptimal 
solutions. The generation gap controls the percentage of the population being replaced 
during each generation according to a selection strategy. 

GAs are known to be slow in practice, which is not really a surprise, since they are 
used to solve hard optimization problems. In many cases, the efficiency ofa  GA can be 
enhanced by combining it with other heuristics. For example, the initial population can 
be seeded with the results of a problem-specific heuristic. 
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2.2 Constraint satisfaction using genetic algorithms 

Despite their common problems achieving satisfactory runtime efficiency, genetic al- 
gorithms have traditionally been used for constraint solving problems in cases where 
optimal or near-optimal solutions are required. 

Genetic algorithms being used for constraint-solving problems have to deal with 
the problem of candidate solutions violating the constraints [12]. The most popular 
strategy is to generate potential solutions without considering the constraints at first. In 
a second phase, candidate solutions in violation of constraints are penalized by reducing 
their fitness. Other strategies have drawbacks exist, but have drawbacks such as being 
computationally expensive or posing problems to express the constraints. 

2.3 Graph Drawing with genetic algorithms 

This section shows how to use genetic algorithms to solve graph drawing problems. 
Usually, the formulation of a graph drawing problem as a GA involves the solution of a 
numeric optimization problem. 

Previous research in this area includes [6, 8, 9] and [11]. In [6], a parallel GA for 
network-diagram layout is presented, in which perceptual organization is preferred over 
aesthetic layout. For a directed graph with 12 nodes, it took about 2 minutes to create a 
2-D layout on 4096-processor machine. In [9] a GA is used for interactive two dimen- 
sional directed graph layout. The user can modify constraints like "two specified nodes 
have the same z-coordinate". Although the parameters (i.e. crossover rate, and muta- 
tion rate) were published, no data on the computational complexity of their approach 
is available. In view of the remarks make above regarding the tendency of GA's to be 
computationally slow, it is probably safe to assume that the runtime complexity does 
not stand out in particular. 

To apply the GA paradigm to graph drawing, a set of candidate graphs is main- 
tained as the population. Global aesthetics and local criteria are expressed as geometric 
constraints. In order to apply the penalty method these constraints become part of the 
illness function (also called "energy constraints" in [14]). Each candidate graph is then 
evaluated and assigned a fitness value. The problem of minimizing the fitness function 
is equivalent to finding a solution for the constraint set. 

The use of constraints provides a mechanism for quantifying the quality of a given 
layout, thus allowing objective comparison of Lhe quality of two layouts. 

3 T h e  GOLD Architecture 

The aim of GOLD is to combine the high speed of the spring-embedder paradigm with 
the ability of other declarative approaches to consider arbitrary geometric constraints in 
addition to the few global criteria employed by spring-embedders. To this end, we have 
developed a flexible, modular architecture comprised of three components (cf. Fig. 2): 

- A graphical  user interface (GUI) module provides for control mechanisms to steer 
the layout process, as well as a mechanism to visually specify local constraints on 
the graph. 
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Fig. 2. The GOLD architecture. 

- Several layout generator (LG) modules. Each LG module realizes a graph drawing 
strategy. In principle, arbitrary strategies conforming to a common protocol could 
be plugged in here. According to our goal stated above, we have implemented a 
random layout module to get uniform input graph layouts, a GEM-3D spring em- 
bedder module according to [2], and a genetic algorithm module. For the purpose 
of research an incremental constraint solver is also integrated, which solves local 
constraints with heuristic techniques. 

- A graph visualization (GV) module is based on GeomView [13], an interactive 3- 
D geometry viewer with the usual rotation, translation and zoom mechanisms for 
interactive exploration. 

The system creates 3-D drawings. All modules are realized as separate processes 
and are exchangeable. The key features of GOLD are 

- extensibility. Layout strategies and viewer modules can be added or exchanged 
easily. 

- the ability to specify constraints textually and visually. Vertices, edges and groups 
of these can be selected and assigned constraints. 

- an extensible set of predefined local constraints. 
- perspective 3-D views with real-time interactive graph exploration, e.g. navigation, 

zoom, camera flights. 

In the GOLD system, global aesthetic constraints such as the desired inter-node dis- 
tance and edge length are pre-defined. In addition, an extensible set of local constraints 
includes the following: 

- Edges should enclose a specified angle. 
- Nodes should lie in a plane. 
- Nodes should lie on a line. 
- Desired edge length for a particular edge. 

- Equal length of a set of edges. 
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is provided. There also exist user controls for quality, speed, and constraint priority (i.e. 
aesthetic tradeoffs). 

4 Applications 

Layout creation in GOLD is usually performed in two distinct phases. In the first phase, 
only global constraints are active. Second, both global and local constraints are active. 
Then, local constraints are considered to have a higher priority than global constraints, 
as they are specified by the user, and we would like to take these constraints as a strong 
hint as to what the user would like to see. 

This two-phase approach allows factoring out the first phase and use a fast spring- 
embedder algorithm. Compared to the use of genetic algorithms or spring-embedders 
by themselves, the integration of both combines their respective strengths, i.e. it leads 
to better results than spring embedders, while being faster than traditional genetic algo- 
rithms. Fig. 3 demonstrates this using two examples. For example, Fig. 3a shows a 3-D 
drawing of a wheel, which a user would like to see as a planar drawing. Using only a 
3-D spring embedder, it is virtually impossible to achieve a plane drawing. Adding a 
few simple constraints, however, achieves the desired result. 

The remainder of this section describes two experiments to measure the speedup 
and quality improvement achieved by the integrated strategy and the spring-embedder 
approach, respectively. 

The first experiment measures the convergence speed and quality are measured for 
the graphs in Fig. 3. Each graph was drawn using two different initial seedings for 
the GA. The result for the Wheel is shown in Fig. 4. The figure indicates a signifi- 
cant speedup and quality improvement for an initial seeding based on the output of the 
GEM-3D spring embedder algorithm, compared to a random initial seeding. The cor- 
responding figure for the Chair graph, which cannot be shown here for lack of space, 
displays the same behavior. 

In the second experiment, the quality of four different graph layouts was measured 
both visually and by their respective fitness values. The constraints used in these ex- 
amples were as follows. The Chair example (see Fig. 5) was solvedby constraining its 
legs to have equal distance, and the nodes of its back to fall within the same plane. The 
Tree (see Fig. 7) was solved by defining a preferred direction for edges. The House 
(see Fig. 6) was solved by a set of constraints on angles, plane and lines. The hardest 
graph was the Wheel (see Fig. 8). To make it look like a planar wheel in 3-D, con- 
straints were defined that restrict its spokes and the outer edges to have equal lengths, 
respectively. 

The performance results are given in Table 1, which displays the input parameters 
and the resulting fitness, the latter being defined as the logarithm of the sum of all 
penalty terms, i.e. lower fitness values indicate better results. The data suggest that the 
Wheel is the hardest problem in this experiment: Although it took much longer, its 
fitness is worse than the other's. 
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Fig. 3. Two results of the integrated GA approach with a spring-embedder used to seed the GA. 
The quality improvemem is clear. 

5 Summary 

The use of spring-embedder algorithms allows to quickly generate initial drawings. 
Measurements indicate large speedups for the integrated approach, as compared to 
randomly-seeded genetic algorithms. Also, we have found evidence of quality improve- 
ments of an integrated approach vs. an approach that was based on combining spring- 
embedders with local constraint propagation techniques. For example, the 61-vertex 
Wheel in Fig. 8 was no problem at all for the integrated approach, while 13-vertex 
Wheel was found to be a hard instance of the combination of spring-embedders with 
local constraints. Overall, the GOLD architecture has proved to be a valuable tool to 
explore the effects of combining several layout strategies. 
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Fig. 4. Speedup and performance improvement displayed by a spring-embedder seeded GA, ver- 
sus one seeded randomly. The measurement was performed on a 61-vertex Wheel. 

Parameter 

Population Size 
Mutation Rate 
Crossover Rate 
Generation Gap 
Selection Strategy 
Fitness 
'fime[sl 

Chair 

15 20 50 
0.0 0.001 0.001 
0.5 0.0 0.6 
1.0 1.0 1.0 

P P P 
10.822 10.637 10.588 

1 2 5 

House 

20 50 
0.001 0.001 

0.5 0.0 
1.0 1.0 

P P 
17.477 17.437 

1 3 

Tree 

20 20 
0.002 0.001 

0.5 0.6 
1.0 1.0 

E P 
14.606 15.563 

Wheel 

5 5 
0.002 0.001 

0.7 0.6 
1.0 1.0 

P P 
23.285 23.356 

58 55 

Table 1. Performance of the integrated layout method based on genetic algorithms on the example 
graphs. 
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