
Integration of Declarative Approaches
(System Demonstration)

Arne Frick I *, Can Keskin, Volker Vogelmann 2

1 Tom Sawyer Software, 804 Hearst Avenue, Berkeley CA 94710, EMail:
africk@tomsawyer.com

'~ Universitat Karlsruhe, Institut ftir Telematik, Postfach 6980, D-76128 Karlsruhe, Germany
EMail: vogelmann @teco.uni-karlsruhe.de

A b s t r a c t . This demonstration shows the GOLD system, an extensible software
architecture integrating several declarative layout strategies, including spring-
embedders, local constraints and genetic algorithms. The underlying paradigm
is to consider graph layout problems as geometric constraint satisfaction prob-
lems [4].
In addition to satisfying global aesthetics criteria, the system allows for the inter-
active specification of local criteria per vertex (edge).

1 Introduction

In general, spring embedder algorithms produce "good" drawings of undirected graphs
according to the following global criteria

- edge lengths should be approximately equal,
- adjacent vertices should be closer together than non-adjacent ones, and
- inherent symmetries should be displayed.

In many cases, however, there exist aesthetically more pleasing drawings, which
may rely on other aesthetic criteria unavailable to spring embedder algorithms. Often,
such criteria can be expressed declafatively. Declarative graph drawing strategies in-
clude simulated annealing [3], constraint-satisfaction [10], Graph Grammars [1], and
genetic algorithms [11].

In [7], a proposal was made towards the integration of declarative and algorithmic
approaches. Their goal was to combine the strengths, while overcoming their respec-
tive difficulties. Algorithmic approaches are fast, but difficult to modify. Declarative
approaches, on the other hand, are usually easy to adapt to changing user requirements,
but inherently slow, as they employ general problem-solving frameworks.

2 Genetic algorithms for Graph Drawing

In this section, we briefly review genetic algorithms and show how to apply this paradigm
to the field of graph drawing.

* This research was performed while the author was working at Universitat Karlsruhe, Institut
ftir Programmstrukturen und Datenorganisation.

185

Current Generation 1" Repeat

Fitness function

9
|

Sort solutions based on

J fitness function

Select "best" I "i
solutions to keep Crossover

Next Generation

_{ Mutation and
-t other operations

Fig. 1. The basic steps in a genetic algorithm.

2.1 Overview

Genetic algorithms (GAs) [5] belong to a family of optimization techniques known as
evolutionary algorithms (EAs) that are based on principles of natural evolution. Main-
taining a population of potential solutions, they perform a selection operation based on
thefitness of individuals, modified by recombination and mutation operators to respect
genetic diversity.

A GA can be interpreted as a modified random search. As with simulated annealing
(SA), it is a probabilistic method to solve hard optimization problems. These algorithms
do not guarantee the optimum value, but the error probability can be made arbitrarily
small.

The application of G~Vs to optimization problems requires a suitable encoding of
candidate solutions. Traditional GA's represent possible solutions by binary bit strings
(chromosomes), while newer work is also investigating other forms of representation as
well. The initial population for a GA search is usually selected at random.

The basic structure of a GA is shown in 1. A part of the population is selected
based on the principle of survival of the fittest by an objective or fitness function. The
population size affects both the performance and the efficiency of the GA. A large
population discourages premature convergence to suboptimal solutions. On the other
hand, a large population requires more evaluations per generation, resulting in slower
convergence. Crossover rate and mutation rate also affect the convergence to suboptimal
solutions. The generation gap controls the percentage of the population being replaced
during each generation according to a selection strategy.

GAs are known to be slow in practice, which is not really a surprise, since they are
used to solve hard optimization problems. In many cases, the efficiency ofa GA can be
enhanced by combining it with other heuristics. For example, the initial population can
be seeded with the results of a problem-specific heuristic.

186

2.2 Constraint satisfaction using genetic algorithms

Despite their common problems achieving satisfactory runtime efficiency, genetic al-
gorithms have traditionally been used for constraint solving problems in cases where
optimal or near-optimal solutions are required.

Genetic algorithms being used for constraint-solving problems have to deal with
the problem of candidate solutions violating the constraints [12]. The most popular
strategy is to generate potential solutions without considering the constraints at first. In
a second phase, candidate solutions in violation of constraints are penalized by reducing
their fitness. Other strategies have drawbacks exist, but have drawbacks such as being
computationally expensive or posing problems to express the constraints.

2.3 Graph Drawing with genetic algorithms

This section shows how to use genetic algorithms to solve graph drawing problems.
Usually, the formulation of a graph drawing problem as a GA involves the solution of a
numeric optimization problem.

Previous research in this area includes [6, 8, 9] and [11]. In [6], a parallel GA for
network-diagram layout is presented, in which perceptual organization is preferred over
aesthetic layout. For a directed graph with 12 nodes, it took about 2 minutes to create a
2-D layout on 4096-processor machine. In [9] a GA is used for interactive two dimen-
sional directed graph layout. The user can modify constraints like "two specified nodes
have the same z-coordinate". Although the parameters (i.e. crossover rate, and muta-
tion rate) were published, no data on the computational complexity of their approach
is available. In view of the remarks make above regarding the tendency of GA's to be
computationally slow, it is probably safe to assume that the runtime complexity does
not stand out in particular.

To apply the GA paradigm to graph drawing, a set of candidate graphs is main-
tained as the population. Global aesthetics and local criteria are expressed as geometric
constraints. In order to apply the penalty method these constraints become part of the
illness function (also called "energy constraints" in [14]). Each candidate graph is then
evaluated and assigned a fitness value. The problem of minimizing the fitness function
is equivalent to finding a solution for the constraint set.

The use of constraints provides a mechanism for quantifying the quality of a given
layout, thus allowing objective comparison of Lhe quality of two layouts.

3 T h e GOLD Architecture

The aim of GOLD is to combine the high speed of the spring-embedder paradigm with
the ability of other declarative approaches to consider arbitrary geometric constraints in
addition to the few global criteria employed by spring-embedders. To this end, we have
developed a flexible, modular architecture comprised of three components (cf. Fig. 2):

- A graphical user interface (GUI) module provides for control mechanisms to steer
the layout process, as well as a mechanism to visually specify local constraints on
the graph.

GUI

Graphical User Interface

187

/
Layout Generator ~ i Graph Viewer

Fig. 2. The GOLD architecture.

- Several layout generator (LG) modules. Each LG module realizes a graph drawing
strategy. In principle, arbitrary strategies conforming to a common protocol could
be plugged in here. According to our goal stated above, we have implemented a
random layout module to get uniform input graph layouts, a GEM-3D spring em-
bedder module according to [2], and a genetic algorithm module. For the purpose
of research an incremental constraint solver is also integrated, which solves local
constraints with heuristic techniques.

- A graph visualization (GV) module is based on GeomView [13], an interactive 3-
D geometry viewer with the usual rotation, translation and zoom mechanisms for
interactive exploration.

The system creates 3-D drawings. All modules are realized as separate processes
and are exchangeable. The key features of GOLD are

- extensibility. Layout strategies and viewer modules can be added or exchanged
easily.

- the ability to specify constraints textually and visually. Vertices, edges and groups
of these can be selected and assigned constraints.

- an extensible set of predefined local constraints.
- perspective 3-D views with real-time interactive graph exploration, e.g. navigation,

zoom, camera flights.

In the GOLD system, global aesthetic constraints such as the desired inter-node dis-
tance and edge length are pre-defined. In addition, an extensible set of local constraints
includes the following:

- Edges should enclose a specified angle.
- Nodes should lie in a plane.
- Nodes should lie on a line.
- Desired edge length for a particular edge.

- Equal length of a set of edges.

188

is provided. There also exist user controls for quality, speed, and constraint priority (i.e.
aesthetic tradeoffs).

4 Applications

Layout creation in GOLD is usually performed in two distinct phases. In the first phase,
only global constraints are active. Second, both global and local constraints are active.
Then, local constraints are considered to have a higher priority than global constraints,
as they are specified by the user, and we would like to take these constraints as a strong
hint as to what the user would like to see.

This two-phase approach allows factoring out the first phase and use a fast spring-
embedder algorithm. Compared to the use of genetic algorithms or spring-embedders
by themselves, the integration of both combines their respective strengths, i.e. it leads
to better results than spring embedders, while being faster than traditional genetic algo-
rithms. Fig. 3 demonstrates this using two examples. For example, Fig. 3a shows a 3-D
drawing of a wheel, which a user would like to see as a planar drawing. Using only a
3-D spring embedder, it is virtually impossible to achieve a plane drawing. Adding a
few simple constraints, however, achieves the desired result.

The remainder of this section describes two experiments to measure the speedup
and quality improvement achieved by the integrated strategy and the spring-embedder
approach, respectively.

The first experiment measures the convergence speed and quality are measured for
the graphs in Fig. 3. Each graph was drawn using two different initial seedings for
the GA. The result for the Wheel is shown in Fig. 4. The figure indicates a signifi-
cant speedup and quality improvement for an initial seeding based on the output of the
GEM-3D spring embedder algorithm, compared to a random initial seeding. The cor-
responding figure for the Chair graph, which cannot be shown here for lack of space,
displays the same behavior.

In the second experiment, the quality of four different graph layouts was measured
both visually and by their respective fitness values. The constraints used in these ex-
amples were as follows. The Chair example (see Fig. 5) was solvedby constraining its
legs to have equal distance, and the nodes of its back to fall within the same plane. The
Tree (see Fig. 7) was solved by defining a preferred direction for edges. The House
(see Fig. 6) was solved by a set of constraints on angles, plane and lines. The hardest
graph was the Wheel (see Fig. 8). To make it look like a planar wheel in 3-D, con-
straints were defined that restrict its spokes and the outer edges to have equal lengths,
respectively.

The performance results are given in Table 1, which displays the input parameters
and the resulting fitness, the latter being defined as the logarithm of the sum of all
penalty terms, i.e. lower fitness values indicate better results. The data suggest that the
Wheel is the hardest problem in this experiment: Although it took much longer, its
fitness is worse than the other's.

189

Gem Constraints

Constraints

Fig. 3. Two results of the integrated GA approach with a spring-embedder used to seed the GA.
The quality improvemem is clear.

5 Summary

The use of spring-embedder algorithms allows to quickly generate initial drawings.
Measurements indicate large speedups for the integrated approach, as compared to
randomly-seeded genetic algorithms. Also, we have found evidence of quality improve-
ments of an integrated approach vs. an approach that was based on combining spring-
embedders with local constraint propagation techniques. For example, the 61-vertex
Wheel in Fig. 8 was no problem at all for the integrated approach, while 13-vertex
Wheel was found to be a hard instance of the combination of spring-embedders with
local constraints. Overall, the GOLD architecture has proved to be a valuable tool to
explore the effects of combining several layout strategies.

6 Acknowledgements

We would like to thank Frank Schwellinger for his initial implementation of our genetic
algorithm in his M.Sc. thesis.

190

Fi tness

34

32

30

28

26

24

22

20

18

16
0

In i t ia l seeding of the G A

I - I I I I I

" x , , , . r a n d o m o :

I ~ I I I I

10000 20000 30000 40000 50000 60000 70000
Ind iv idua l s

Fig. 4. Speedup and performance improvement displayed by a spring-embedder seeded GA, ver-
sus one seeded randomly. The measurement was performed on a 61-vertex Wheel.

Parameter

Population Size
Mutation Rate
Crossover Rate
Generation Gap
Selection Strategy
Fitness
'fime[sl

Chair

15 20 50
0.0 0.001 0.001
0.5 0.0 0.6
1.0 1.0 1.0

P P P
10.822 10.637 10.588

1 2 5

House

20 50
0.001 0.001

0.5 0.0
1.0 1.0

P P
17.477 17.437

1 3

Tree

20 20
0.002 0.001

0.5 0.6
1.0 1.0

E P
14.606 15.563

Wheel

5 5
0.002 0.001

0.7 0.6
1.0 1.0

P P
23.285 23.356

58 55

Table 1. Performance of the integrated layout method based on genetic algorithms on the example
graphs.

References

1. F. J. Brandenburg. Designing graph drawings by layout graph grammars. In Roberto Tamas-
sia and Ioannis Tollis, editors, Proceedings of Graph Drawing'94, volume 894 of Lec-
ture Notes in Computer Science, pages 416--427. DIMACS Workshop on Graph Drawing,
Springer Verlag, 1995.

2. I. Brug and A. Frick. Fast interactive 3-D graph visualization. In Franz Brandenburg, editor,
Proceedings of Graph Drawing'95, volume 1027 of Lecture Notes in Computer Science,
pages 99-110. Springer Verlag, 1996.

191

/

/

, d " :

Fig. 5. Chair Fig. 6. House

o . / Z \ , \ \ ~

[\"~

/ ' / / "

Y

Fig. 7. Tree Fig. 8. Wheel

3. I. E Cruz and J. E Twarog. 3-D graph drawing with simulated annealing. In E J. Bran-
denburg, editor, Graph Drawing, volume 1027 of Lecture Notes in Computer Science, pages
162-165. Springer-Verlag, 1995.

4. E. Dengler, M. Friedell, and J. Marks. Constraint-driven diagram layout. In Proceedings of
the 1993 IEEE Workshop on Visual Languages, pages 330-335, 1993.

5. J. Holland. Adaptation in Natural and Artificial Systems. University of Michigan Press,
1975.

6. C. Kosak, J. Marks, and S. Shieber. Aparallel genetic algorithm for network-diagram layout.
In Proc. 4th Int. Conf. on Genetic Algorithms (ICGA91), 1991.

192

7. T. Lin and E Eades. Integration of declarative and algorithmic approaches for layout cre-
ation. In R. Tamassia and I. G. Tollis, editors, Graph Drawing, volume 894 of Lecture Notes
in Computer Science, pages 376-387. DIMACS, Springer-Verlag, October 1994. ISBN 3-
540-58950-3.

8. E. MgMnen and M. Sieranta. Genetic algorithms for drawing bipartite graphs. Technical
report, Department of Computer Science, University of Tampere, 1994.

9. T. Masui. Graphic object layout with interactive genetic algorithms. In Proceedings of the
1992 IEEE Workshop on Visual Languages, pages 74-87, Seattle, Washington, 1992.

10. S. Matsuoka, S. Takahashi, T. Kamada, and A. Yonezawa. A general framework for bidirec-
tional translation between abstract and pictorial data. TOIS, 10(4):408-437, 1992.

11. Z. Michalewicz. Genetic algorithms + data structures = evolution programs. Springer-
Verlag, 1992.

12. Z. Michalewicz and C. Janikow. Handling constraints in genetic algorithms. In R. Belew
and L. Booker, editors, Genetic Algorithms, pages 151-157, 1991.

13. Phillips, Levy, and Munzner. Geomview: An interactive geometry viewer. Notices of the
American Mathematical Society, 40, 1993.

14. A. Witkin, K. Fleischer, and A. Bart. Energy constraints on parameterized models. In Mau-
reen C. Stone, editor, Computer Graphics (SIGGRAPH '87 Proceedings), volume 21, pages
225-232, July 1987.

