
Upper Bounds on the Number of Hidden Nodes in
Sugiyama's Algorithm

Arne Frick**

Tom Sawyer Software, 804 Hearst Avenue, Berkeley CA 94710

Abstract. This paper analyzes the exact and asymptotic worst-case
complexity of the simplification phase of SUGIYAMA'S algorithm [12] for
drawing arbitrary directed graphs.
The complexity of this phase is determined by the number of hidden
nodes inserted. The best previously known upper bound for this number
is O(max{lV[a,]El2}). This paper establishes a relation between both
partial results and gives upper bounds for many classes of graphs. This
is achieved by constructing a worst-case example for every legal configu-
ration g = (h, n, m) of the input hierarchy for the simplification phase.
These results provide further insight into the worst-case runtime and
space complexity of SUGIYAMA'S algorithm. Possible applications include
their use as feasibility criteria, based on simply derived quantitative in-
formation on the graph.

1 I n t r o d u c t i o n

SUGIYAMA'S algorithm [12] is a well-known technique for drawing arbitrary di-
rected graphs G = (V, E) . It is being widely used in current graph-drawing sys-
tems, such as daVinci [3], dag and dot [4], GraphEd [6], the Graph Layout Toolkit
[8], Edge [9], and vcg [10]. Despite its importance and wide-spread use, little is
known about the time and space complexity of several parts of the algorithm.

This paper improves this situation by analyzing the exact and asymptotic
worst-case complexity of an important intermediate phase of SUGIYAMA'S algo-
rithm. There are several reasons to devote research into the complexity of the
algorithm itself and into this particular phase of it.

1. It is desirable in graph drawing systems to have good estimates on the ad-
ditional memory required to store information on the hidden nodes.

2. Accurate and efficiently computable a priori estimates on the number of
hidden nodes can be used as a criterion to determine the feasibility of using
the algorithm at all for a given graph.

3. The runtime complexity of the simplification phase can make the difference
between usability and uselessness of NUGIYAMA'S algorithm as a whole, as it
is an intermediate phase that modifies the original graph, thereby influencing
the complexity of the following phases.

This work was performed while the author was employed at Universith.t Karlsruhe,
Institut fiir Programmstrukturen und Datenorganisation.

** EMail: africk@tomsawyer.com

170

The remainder of this paper is organized as follows. Section 2 gives ba-
sic definitions and introduces our notation. A brief overview and discussion
of SUGIYAMA'S algorithm follows in Sect. 3. Section 4 discusses related work.
In Sect. 5, the worst-case analysis on the maximal number of hidden nodes is
given, including the main theorem. A summary and suggested directions for
further research conclude the paper.

2 F u n d a m e n t a l s

Before the problem we consider can be stated precisely and solved subsequently,
we introduce several basic definitions from graph theory and the notation used
in this paper. As an overall assumption, we do not consider graphs with multi-
edges, i.e. edges e = (u,v),e' = (u~,v ~) E E with u = u ~ and v = v ~. The
following two definitions recall standard notation from graph theory.

Def in i t ion 1. A topological ordering of a directed acyclic graph (dag) G =
(17, E) is a numbering

~ : v ~ ~(v) e]N

with ~(u) <),(v) for all e = (u, v) e E.

Def in i t ion 2. The length 5(G) of the longest path in an acyclic digraph G is
called the diameter of G.

Next, the notions of a layering and, stricter, a hierarchy, are defined.

De f in i t i on3 . An h-layering of a directed graph (digraph) G = (V,E) is a

partition V = 0i=l...hVi of the vertices of G into layers Vi, i = 1, . . . , h with

V(u,v) EE, l < i , j < n : u E V i , v E V j ~ i < j ,

where n is the height of the layering. The rank r(v) of a vertex v is defined as the
index of its layer. For each edge e = (u, v) E E, the difference s(u, v) = r(v) -r(u)
is called the span of the edge. Layerings with Ve : s(e) > 0 are called a
hierarchy. A hierarchy is called simple if Ve E E : s(u, v) = 1.

Hierarchies exist only for acyclic digraphs. By definition, any simple hierarchy
has only edges between adjacent layers, inducing a partition of the edge set E
of G:

E = OE~, E~ c_ V{ x V/+I.

Given a hierarchy ~/ of a directed acyclic graph G, a topological ordering
of G can be constructed by enumerating the vertices according to their rank r,
starting with the vertices of rank 1. By placing every vertex on a different layer,
every acyclic digraph with IVI = n admits has an n-hierarchy.

The following Lemma combines definitions 2 and 3.

171

L e m m a 4. Let 5(G) be the diameter o/ a dag G = (17, E). There is a 5(G) + 1-
hierarchy of G, but no 5(G)-hierarchy.

This observation leads to the following definition of a compact hierarchy.

Def in i t ion 5. A (f(G) + 1-hierarchy of G is called compact.

For the remainder of this paper, we shall assume that drawings of hierar-
chies are ordered horizontally, i.e. the edges run from top to bottom, i.e. the
layer belonging to rank 1 is on top of the drawing. As a direct consequence of
definition 3, we have

L e m m a 6 . Every acyclic digraph G = (V, E) admits a compact hierarchy with
configuration g(G) = (~(G) + 1, n, m).

Configurations g = (h, n, m) induced by graphs G and an associated compact
hierarchy ~ are called legal.

3 The Sugiyama algorithm

This section reviews SUGIYAMA'S algorithm and prepares the ground to state the
precise problem being solved in this paper. Fig. 1 shows a high-level description
of the algorithm. The algorithm uses the aesthetic criteria

- minimization of backward edges
- minimization of the maximal edge length
- minimization of the number of edge crossings
- approximately even layer sizes

P r o g r a m 1 The five phases of SUGIYAMA'S algorithm.

-- Input: a directed graph G = (V, E)
-- Output: mappings p, a assigning positions to each node
-- and curves to each edge
(I) cycle breaking
(2) computation of a compact hierarchy
(3) simplification of the hierarchy
(4) reduction of crossings between adjacent layers
(5) fine-tuning the vertex positions

The reason for proceeding in phases instead of optimizing for all of the crite-
ria at once can be seen as follows. It is well-known that each of these criteria is
already Alp-hard to optimize for by itself. In addition, a good solution for one of
the criteria may conflict with the one or more of the remaining criteria. There-
fore, an algorithm cannot be expected to compute the globally optimal solution

172

within a reasonable amount of time. The key idea of [12] is to split the global
optimization into phases, and to employ heuristics in each phase to optimize for
a single (or several mutually compatible) criterion. The optimization order is
carefully chosen to preserve the quality of partial solutions found in prior phases
as much as possible.

In phase (1), existing cycles in the input graph are broken by reversing the
edges leading to cycles. The problem here is to reverse the minimal possible
number of edges in order to maintain the graph structure as well as possible.

Phase (2) computes a hierarchy. Aesthetic considerations based on the cri-
teria listed above suggest that the embedding should be compact to achieve an
approximate width/height balance. Also, the total edge span S(E) = ~-~e~E s(e),
as phase (3), to be discussed next, introduces s(e) - 1 new nodes into the graph.
It is desirable for complexity and aesthetic reasons to keep this number low. We
shall only mention some of the latter here, since the former are going to be a
major concern in the remainder of this paper.

1. If edges are represented as polylines in the final drawing, then minimizing
the number of hidden nodes in general also minimizes the number of bends
in the polyline, another well-established aesthetic criterion for drawings of
graphs.

2. If, alternatively, edges are represented as splines, then the positions of the
hidden nodes can be used as interpolation points to draw the original long-
span edge.

3. As a side-effect in both cases, long edges cannot cross vertices in the drawing,
and the number of edge-crossings for long edges can Mso be reduced by phase
(4).

In [4], a technique to compute a hierarchy with minimal number of hidden
nodes is described. Their algorithm, however, has no a priori estimate on the
size of this number.

As already mentioned, phase (3) introduces new nodes. Each edge G with
span s(e) > 1 is replaced by a path of length s(e) according to Prog. 2. The
interior vertices of the path are called hidden, invisible or dummy nodes, for
obvious reasons.

Note that hierarchy simplification does not improve the layout quality, but
is an intermediate computation that adapts the output of phase (2) to the input
of phase (4), which is based on the precondition that no edges of span > 1 exist.
Consider the situation arising if the crossing-reduction phase for layers i and
i + 1 could not take into account edges passing from layer i ~ < i to layer i" > i.
Such edges might cross vertices and edges in layer i, going completely unnoticed
and dealt with by phase (4).

Consequently, the crossing-reduction phase takes the hidden nodes into ac-
count, and its runtime complexiW depends on tV~Jt instead of IV1. An upper
bound for the runtime complexity of phase (4) is shown as follows. Every known
algorithm for the reduction of the number of edge crossings requires the compu-
tation of the number of crossings. As the reduction phase only considers adjacent

173

P r o g r a m 2 An algorithm to simplify a hierarchy.

VI':=VI; EII:=EI;
foral l e = (u,v) �9 G" = (V", E") do

i f s (e) > 1 then
E" := E" \ {~};
do:=u;
for i := 1 to s(e) do

V" :=V" U c&;
r(di):=r(u) + i;
E":=E" U {(di-l,d~)};

od;
E":=E" U {d~(~),v)};

fi;
od;

layers, it suffices to have an upper bound for an arbitrary layer i. Let Vi and V~+I
be the sets of vertices of the original graph on layers i and i + l, respectively.
Both layers are connected by a subset Ei ___ E of edges in the original graph. If
IVil = IVi+l I = O(1), the number of crossings of edges of the original graph must
also be constant, which can obviously be computed in constant time.

Consider now the case that phase (3) introduces a total of O(IVI 2) hidden
nodes, which is quite possible, as we shall see below (cf. Sect. 4). Assume that
O(IVI) of these new nodes are placed on layers i and i + 1 in the above scenario,
respectively. Using the sweep-line algorithm described in [ll], the number of
crossings of a bipartite graph with IVll and IV21 can be computed in time O(IV1 I+
IV21 + IEI + c), where c is the number of actual crossings. In the scenario we have
developed above, this may result in quadratic runtime complexity, depending on
the number of crossings in the augmented graph, thereby providing evidence of
the significant impact that the number of hidden nodes introduced in phase (3)
may have on the runtime complexity of phase (4).

Phase (5) involves fine-tuning the computed vertex positions and is of no
further interest here.

4 R e l a t e d W o r k

A literature survey mainly based on a current version of [1] revealed very few
results on upper bounds on the number of hidden nodes. The authors of [2] state
that the number of vertices may grow quadratically. This number turns out to be
too optimistic, as a consideration of configuration g = (n, n, n (n - 1)/2) shows.
This configuration uniquely describes the complete directed graph of size n, that
has a path of length n -] [5]. There exists a legal hierarchy for g with as many
as ~(IvI 3) hidden nodes, which can be shown by a simple counting argument.
Another estimate, given in [7], is based on the configuration (h, 2h - 1, 2h - 2).

174

She derives an upper bound of O(]E[2). In summary, the prior state of the art,
as known to the author, can be summarized as follows.

L e m m a 7. The number of hidden nodes in an h-hierarchy of a graph G = (V, E)
is at most O(max(]Vl 3, IE[2)).

Note that Lemma 7 does not relate the bounds between n and m, as it only
describes the one-dimensional boundary of d, depending on either n or m.

5 Analysis of the simplification phase

In this section, we analyze the worst-case runtime and space complexity of sim-
plifying an arbitrary h-hierarchy G I = (V, El), E ~ C_ E of a directed acyclic
graph G = (V, E). This problem is equivalent to maximizing the edge span sum
over all hierarchies of G and may serve as a lower bound for the worst-case
complexity for the simplification phase, since simplification requires at least the
replacement of all long-span edges by hidden nodes. The analysis depends on
the fact that the input hierarchy G t is compact, which is guaranteed in this case
by phase 2 of Prog. 1.

Program 2 showed an algorithm for simplifying an arbitrary hierarchy that
replaces every edge e = (u, v) of span s(e) > 1 by a path consisting of hidden
nodes on layers)~ e (r(u) + 1 , . . . , r (v) - 1}, respectively. The algorithm is
asymptotically optimal, if the number of set insertion and deletion operations is
used as a complexity measure, since every algorithm that effectively performs a
simplification of a given hierarchy must perform at least as many set operations
as Prog. 2. The remainder of this section analyzes the number of hidden nodes
introduced by Prog. 2. We consider the number of hidden nodes of a hierarchy
as a function d of their configuration C = (h, n, m).

The number he of hidden nodes generated by Prog. 2 for edge e in a compact
hierarchy of graph G depends only on e. This allows us to consider all edges
independently, which allows for a greedy incremental strategy to construct worst-
case graphs for a given legal configuration C = (h, n, m), which in turn helps to
prove our main result:

T h e o r e m 8. An h-hierarchy of an acyclic digraph G = (V, E) with n = IVI, m =
]E I and diameter h - 1 can have at most

k-1

d(h ,n ,m) <_ E (n - h +i) . (h - i - 1) +
i=1

min n - h + k , m - E (n - h + j) . (h - k - l)
j = l

hidden nodes, where h <_ n , m >_ n - 1 and

k = min { h - 2, [v/(n - h) 2 + n + 2 r ~ - 3h + 9/~i - n + h + 1/2J }.

(1)

(2)

175

The proof is based on an arbitrary, but fixed choice of h and requires several
further observations. In order to span an h-hierarchy, h vertices are required,
which are connected by h - 1 edges. These form the so-called h - s p i n e (cf. Fig. 1)
of the hierarchy.

(D

@

d5

@
@
@

Fig. 1. The h-spine. Fig. 2. Adding a vertex at level I.

The spine can extended into a worst-case graph by successively adding the
remaining vertices and edges, making locally optimal choices. This approach is
valid by the above independence observation. An additional vertex v in layer
l, 1 _~ l < h can be connected with the 1 - 1 spine vertices of lower rank, and
with the h - l spine vertices with higher rank (cf. Fig. 2). In total, vertex v can
be connected to other vertices by at most (h - l) + (l - 1) = h - 1 edges. The
total edge span is maximized by successively adding edges from v to the farthest
remaining spine vertex, until no edges remain.

For symmetry reasons, we can safely assume that

l - 1 <_ h - t r 1 < [h / 2 J .

Using this assumption, the first h - 2 (/ - 1) - 1 = h - 21 + 1 edges connect
to the vertices on levels i for i = h , h - 1,h - 2 , . . . ,h - 21 + 1. The remaining
2l - 2 edges pair-wise have the same span i for i = 1, 2, . . . , l - 1.

176

L a m i n a 9.
on level 1 to an h-spine is minimal]or

h + l
l = L---ff--J �9

Proo]. For h _< Lh/2J,

The total edge span St~j induced by connecting an additional vertex

S h , l ~-

h I - 1

Z(i-l)+2 i
i---- 21 4-=1

h-- l l--1

=Ei+2Ei
i=l i = 1

h--1 l - - I

=E +Ei
i = 1 i = 1

(h - l) (h - l + 1)

2

(l - 1)I

2
= (h 2 - 21+ 2l 2 + h - 20/2�9

which is a quadratic function in l that has a integer minimum at [h/2j. By
symmetry, the same is true for h ~ [h/2J.

Therefore, the maximum value is assumed at l = 1 and l = h. Together with
the independence observation, which proves

C o r o l l a r y 10. For arbitrary graphs G and h-hierarchies with n > h, the number
of hidden nodes introduced is maximized iff all n - h non-spine nodes v are
assigned rank r(v) = 1 or r(v) = h�9

From now on, we are only concerned with hierarchies of the type characterized
in Corollary 10 (see also Fig. 3). We shall map non-spine vertices to the top layer
and say that such hierarchies have the right type. The behavior of d depending
on m = 1El is analyzed next�9 Note that h - 1 edges are already par t of the spine,
and that edges connecting spine nodes have to be considered appropriately�9

L a m i n a 11. Legal configurations induce hierarchies o] the right type with

n - h + 1 edges with span h - 2
n - h + 2 edges with span h - 3

�9 (3)

n - h + (k - 1) edges with span h - k

min{n - h + k, m - ~ _ - ~ (n - h + j)} edges with span h - (k + 1),

where k is implicitly defined by the inequality

k - 1 k

E (n - h + i) < m - h + 1 < E (n - h + i) .
i = 1 i ~ 1

177

Q @ | @...Q

~

It

o
o

Plg. 3. Added remaining n - h vertices in
layer 1.

. /

o

Fig . 4. Added edges with span h - 2.

' ? . �9

Fig. 5. Added edges wi th span h - 3.

178

Proof. In hierarchies of the right type, there are n - h + 1 vert ices in layer 1 t ha t
can be connected to the ver tex in layer h by edges of span h - 2 (cf. Fig. 4). For
span h - 3, in addi t ion to the n - h + 1 vert ices in layer 1 t h a t can be connected
to the single ver tex in layer h - 1, there is ano ther edge f rom 2 to h (cf. Fig. 5).
This procedure is i t e ra ted th rough the layers of the spine until there are no more
edges. In step j , we can connect the n - h + 1 vert ices in layer 1 with ve r t ex
h - j + 1, thus creat ing an edge with span h - (j + 1), Fur thermore , there exist
exact ly j - 1 possibili t ies to place edges of span h - (j + 1) on the spine, tota l l ing
the c la imed number .

The final index k can be de te rmined exactly, depending only on the (legal)
configurat ion C = (h, n, m) . Let a := n - h, b := m - h + 1. Then

k - 1 k ~-~{=1 (n - h + i) <_ m - h + 1 < ~ i = 1 (n - h + i)
k-1

r (k - 1) a + k (k - 1)/2 < b < ka + k(k + 1)/2
2 a (k - 1) + k ~ - k < 2b < 2ka + k 2 + k

** k 2 + 2 k (a - 1 / 2) - 2a < 2b < k 2 + 2k(a+ 1/2)
k 2 + 2 k (a - 1 / 2) - 2a_< 2 b + (a - 1/2) 2 < k 2 + 2k(a + 1/2)

+ (a - 1/2) 2 + (a - 1/2) 2
r (k + (a - 1/2)) 2 _< 2(b + a) + (a - 1/2) 2 < k 2 + 2k(a + 1 / 2) +

a 2 - a + 1 / 4 + 2a
= (k + (a + 1/2)) 2

k + a - 1 / 2 _ < V / 2 (a + b) + (a - 1 / 2 7 < k + (a + l / 2)

k <_ Vr2(a + b) + (a - 1 /2) 2 < k + 1
- a + 1/2

As k is an index and therefore by definition an integer, we get for m > n:

k = L j 2 (a + b) + (a - 1/2) - + 1/2J (4)

= L1/2v/n(n - h) 2 + Zin - 12h + 9 + 8 m - n + h + 1/2].

T h e o r e m 8 is now a corollary of L e m m a 11 and Equa t ion 5. For a given con-
f igurat ion C -- (h,n, m), T h e o r e m 8 allows the exact compu ta t i on of k and d. As
an applicat ion, the a sympto t i c uppe r bounds cited in Sect. 4 are derived exactly.

For C = (t, 2t - 1 ,2t - 2), the subs t i tu t ion m = 2t - 2 resul ts in

d(t, 2t - 1, 2t - 2) = d((m + 2)/2 , ra + 1, m)

a = m / 2

b = m / 2

k : Lx /2 (m/2 + m12) + (m12 : 1/2) 3 - m/2 + 1/2j

= [1 / 2 (~ / m 2 + 7m + 1 - m + 1)]

Upper and lower bound es t imates for k are given by

179

k < k l / 2 (v / m -~ + Sm + 16 - ra + 1)J

= L a / 2 j = 1

k > L 1 / 2 (v / r n 2 + 6 m + 9 - m + 1)J

= L2/2J = 1

In this case, k = 1 for all t, resulting in

d((ra + 2) /2 ,m + 1,m) = min{m/2 ,m+ 1 - (rn + 2)/2 + 1}. ((m + 2) / 2 - 2)

= min{rn/2, rn/2 + 1}. (rn/2 - 1)

= m / 2 (r n / 2 - 1) = m 2 / 4 - . ~ 1 2 .

The complete directed graph with n vertices must have the globally maximal
number d for fixed]V[= n, since every other graph with IV I = n is a subgraph
of the complete graph. In [5] it is shown that every complete directed graph of
size IV I = n has a path of length h - 1. Therefore, the worst-case configuration
g = (n, n, n(n - 1)/2). We know that

k = L 1 / 2 v ' T n (n - 1) - 8 n + 9 + 1/2J

= kl /2v/4n 2 - 12n + 9 + 1/2J

= Lv% ~ - an + 9/4 + 1/2J

= [(n - 3/2) + 1/2J

= n - 1

This implies that

d (n , n , , , (n - 1) / 2) =

n--1

E i . (n - i - 1)

n--2

= E i . (n - i - 1)
i=1

n- -2 n- -2

= (n - 1) E i - E i 2
i=-1 i=1

= (n - 1)2 (n - 2)/2 + (n - 2) (n - 1) (2 n - 3)/6

(3n 3 - 12n 2 + 1 5 n - 6) - (2n 3 - n 2 + 1 3 n - 6)

6
1 a 1 2 1

= g n - ~ n + 5 n

180

Due to the complexity of the equations for the behavior of the functions d and
k, it is not possible in general to describe them in a closed form. Instead, table 1
summarizes the asymptot ic behavior of k and d for configurations C = (h, n, m).
The table should be read as follows: cl, c2 > 0, and the choice of cl and c2 must
ensure that h < n and m <_ n(n - 1)/2. The case h = cln, m = c2n gives trivial
results and is omit ted from the table. Instead, we shall consider this practically
important case separately and in more detail. The values were computed using
the Computer Algebra system MAPLE [14]. We used the following bounds for k
and d to work the estimates:

k _ 1 /2v/4(n ' - h)2 '+ 4n - 12h + 9 + 8m - n + h + 1/2 =:]%igh (5)

k >_ 1/2~/4(n - h) 2 + 4n - 12h + 9 + 8m - n + h - 1/2 =: klow (6)

khi~h

d< E (n - h + i) (h - i - 1) =: dhigh (7)
i=1

k~.ow - 1

d>_ E (n - h + i) (h - i - 1) + l = : d l o w (8)
i = 1

The special case h = n (not contained in Table 1) results in an upper bound
that is limited by

= n m + o(nm)
49 13 13 1 53

d (n , - < - _ + - + - - 8 +9

= n m + o(nm)

The coefficient 1 of the leading te rm nm is sharp for m = o(n2). The max-
imal error of this estimate can be obtained by computing the maximum of the
difference between upper and lower bounds

d h i g h -- d low -:- 5 n + nx/Sm 8n + 9 - .15 _ 2x/8m - 8n + 9 - 4m.

This difference is a function tha t grows quadratically in n, which can be seen
from the partial derivative (cf. Fig. 6) of

0(dhigh -- dlow)/Cgm =- 0 l=~ m ---- 1/8n 2 + 1/4n.

181

f(n) lim~-~ffk(h, rt, m) ' / f (n)

Cl C2 1

cl c2v~ 1
c~ c2 log re 1
ca c.2re/ log re 1
c: c 2 n I

C] C2re 2 "/~

c : v ' ~ c2v r~

c: V~ c2 log n
cl v/-n c2n/ log n
gl V ~ C2n

Cl V ~ c 2 n v / ' ~

]el V ~ C2n 2

cl log n c2 log n '
'ca logn c 2 n / l o g n
!cl log n c2n
cl]og n c2n 2
Ci n~ log n c,2n/ log n
!c~ n~ log n c2n
c~n/ log n c2n 'z

1
1
1
1
C2

2v"~-~2 + 1 - 1

1 1

iI I
1 c2

+ 1
1

[1 1

1 c2
'n ~ 1 + 1 - -

Cl n C2 n v / ~

Cl n c2 re2

nlogn 1/4
n logn 1/4
n 2V~'~2 + 1 - 1
!v'~ c2111 - c'21
I,~ 42~2+~+4-2c,

+cl - I

g(n) l i m , ~ c c d (h , n , m) / g (r e)

n [1 - c , , c , - 2]

n [1 - - c l , c i - - 2]

n [1 - - c l , c l - 2]

n [1 - - c l , c : - - 2]

n (+2cl + 2clc2 - 4 - 5c2 - c~)/2
.~ (3c~ + , - (2~., + , ? (2) /3
n 3/2 (0, c~]
n 3/2 (0, cl]
n ~12 (0, cl]
n 2 [c~c2 - c ~ , c l c 2 +c,]
n 2 c i c2 - c'~

.~ (3c2 + 1 - (2~2 + ,1)3") /3
n log n (0, cl]
n l o g n (0,cl]
n l o g n [clc~ - 1,cac2 + 1]
,~3 ,(3~,~ + 1 - (2c2 + 1) 3 / ') / 3
n ~ 1/24
n 3 1/24

~3 (3c., + 1 - (2~2 + 1) 3/2)/a
n ~/2 c 2 / l l - c ~ r

n 3 (3 c ~ + 1 - c~ - 3cl

- (0 -c~)2 + ~cv]

T a b l e 1. Asympto t i c behavior of k(h , n, m) and d(h, n, m) .

Fig . 6. Growth of the difference dh " d z depending on n, m.

t82

6 Conc lus ion

We have presented a detailed analysis of the simplification phase of SUGIYAMA'8
algorithm [12]. Previous work has been mainly concerned with gross estimates.

The complexity of the simplification phase may influence the runtime behav-
ior of subsequent phases dramatically. Consequently, possible applications of our
results include improved time estimates on the space and time complexity of the
simplification phase and, even more importantly, the crossing-reduction phase
of SUGIYAMA'S algorithm.

Future work should focus on studying which parameter combinations actually
arise in practice. Combinatorial results on the expected diameter of a directed
graph may lead to estimates on the expected behavior of d, which should be
complemented by experimental results.

We would like to conclude with an interesting open problem: Give a precise
characterization of the parameter domain for legal configurations. It is easy to see
that a configuration C = (h, n, m) can exist only for 1 < h < n and h - 1 < m, but
the contrary is not true due to limitations imposed by the hierarchy condition.
For example, there can be no legal (h, h + 1, h(h + 1)/2) configuration, because
that would require a hierarchy with a layer containing two vertices. The fact
that there are h + 1 vertices and h(h + 1)/2 edges identifies the graph uniquely
as the complete digraph with h + 1 vertices. The contradiction follows from the
fact that there cannot be an edge between the vertices sharing the same layer.

References

1. G. di Battista, P. Eades, R. Tamassia, and I. G. Tollis. Algorithms for drawing
graphs: an annotated bibliography. Report, June 1993.

2. P. Eades and K. Sugiyama. How to draw a directed graph. Journal of Information
Processing, 14(4):424-437, 1990.

3. M. Fr5hlich and M. Werner. Demonstration of the interactive graph-visualization
system davinci. In Tamassia and Tollis [13].

4. E. R. Gansner, E. Koutsofios, S. C. North, and K.-P. Vo. A technique for draw-
ing directed graphs. IEEE Transactions on Software Engineering~ 19(3):214-230~
March 1993.

5. F. Harary. Graph Theory. Series in Mathematics. Addison Wesley Publishing
Company, 1969.

6. M. Himsolt. Graphed: A graphical platform for the implementation of graph algo-
rithms. In Ta~nassia and Tollis [13].

7. I. Lemke. Entwicklung und implementierung eines visualisierungswerkzeuges ffir
anwendungen im Ubersetzerbau. Diplomarbeit, Universit~t des Saarlandes, FB 14
Informatik~ 1994.

8. B. Madden, P. Madden, S. Powers, and M. Himsolt. Portable graph layout and
editing (system demonstration). In Franz Brandenburg, editor, Proceedings of
Graph Drawing '95, volume 1027 of Lecture Notes in Computer Science, pages 385-
395. Springer Verlag, 1996.

9. F. Newbery-Paulisch and W. F. Tichy. Edge: An extendible graph editor. Software
- P r a c t i c and Experience, 20(S1):S1/63-S1/88, June 1990.

183

10. G. Sander. Graph layout through the VCG tool. In Tamassia and Tollis [13], pages
194-205.

11. G. Sander. Visualisierungstechniken fuer den Compilerbau. PhD thesis, Univ. des
Saarlandes, FB 14 Informatik, Saarbrficken, 1996.

12. K. Sugiyama, S. Tagawa, and M. Toda. Methods for visual understanding of hier-
archical system structures. IEEE Transactions on Systems, Man and Cybernetics,
SMC-11(2):109-125, February 1981.

13. R. Tamassia and I. Tollis, editors. Proceedings of Graph Drawing'94, volume 894
of Lecture Notes in Computer Science. DIMACS Workshop on Graph Drawing,
Springer Verlag~ 1995.

14. Waterloo Maple Software. Maple V Release 3, 1994.

