
Circular Layout in the Graph Layout Toolkit

U~ur Do~rusSz, Brendan Madden, Patrick Madden

Tom Sawyer So,ware, 804 Hearst Avenue, Berkeley, CA 94710
info~tomsawyer.com

http://www.tomsawyer~com

Abstract . The Graph Layout Toolkit is a family of portable, automated,
graph layout libraries designed for integration into graphical user inter-
face application programs. The Circular Library is one of the four styles
currently available with the Graph Layout Toolkit. It produces layouts
that emphasize natural group structures inherent in a graph's topology,
and is well suited for the layout of ring and star network topologies. It
clusters (groups) the nodes of a graph by group IDs, by IP addresses,
and by biconnectivity or node degree, and allows the user to specify a
range for the size of each cluster. The Library positions the nodes of a
cluster on a radiating circle, and employs heuristics to reduce the cross-
ings not only between edges incident to nodes of the same cluster but
also between edges that connect different clusters.

1 I n t r o d u c t i o n

Graph layout is the automatic positioning of the nodes and the edges of a graph
in order to produce an aesthetically pleasing drawing of the graph that is easy
to comprehend. This is very important for visualization tools in numerous ar-
eas such as project management, software development, database design, and
network management.

Many graph layout and editing systems have been developed in the past.
Please refer to [DETT95] for an overview of such systems. The Graph Layout
Toolkit [MMPH95, GLT96a, GLT96b] is a family of graph layout libraries with
ANSI C + + and C APIs that facilitate easy integration with graphical user in-
terface programs for development of graph visualization and editing tools.

Graph layout comes in different flavors, each being more suitable for a differ-
ent area. The Graph Layout Toolkit offers four different layout styles: Circular,
Hierarchical, Orthogonal, and Symmetric.

The Circular Library uses robust techniques such as clustering by bicon-
nectivity and methods for minimizing the cut when a cluster needs to split. In
addition, it can provide application oriented partitioning. It also shows good per-
formance on the important aesthetic layout criterion of low number of crossings.
In the following sections, we describe the methods used by the Circular Library.
In particular, we focus on clustering, positioning, and crossing minimization
techniques.

93

2 T h e C i r c u l a r L i b r a r y

The layout algorithm of the Circular Library is primarily designed for the layout
of ring and star network topologies. It is an advanced version of the one developed
by Kar, Madden, and Gilbert [KMG89]. It functions by partitioning the nodes
of a graph into logical groups (clusters) based on a number of flexible grouping
methods. These clusters are placed on radiating circles based on their logical
interconnection. Part of the graph of clusters is laid out on a circle. A virtual
cluster is used to manage this cluster of clusters. The remaining parts of the
cluster graph (subgraphs that form trees), on the other hand, are laid out using
the Hierarchical Library, and attach to the virtual cluster from their roots.

The clustering is either performed with a generic method, such as the bicon-
nectivity of the graph or the degrees of the nodes, or can be performed with
IP addresses, IP subnet masks or another domain specific technique. Domain
specific techniques clearly should not the primary focus for the development of
graph drawing techniques, however, it is noteworthy that domain specific clus-
tering can be easily provided in certain circumstances. The Library also supports
manually configured clustering with the help of group IDs.

The algorithm minimizes cluster to cluster crossings as well as crossings
within each cluster. In addition, it employs tree balancing routines, and has
ring and star detection and placement techniques within each cluster. Figure 1
shows two sample drawings produced by the Circular Library.

3 D e f i n i t i o n s

In this section, we give some basic definitions.
A cluster C is a group of nodes to be laid out together. The Circular Library

lays the nodes of a cluster around a circle. We refer to the radius of the circle
around which the nodes of a cluster C is positioned as the radius of C.

The cluster graph G C of a graph G is a graph in which each node is uniquely
associated with a cluster in G, and there is an edge in between two nodes of G c
representing clusters C1 and C2 of G if and only if there is at least one pair of
nodes nl E C1 and n2 C C2 that are adjacent in G.

For a given graph G = (N, E), reduction o] trees refers to the process of
recursively removing degree one nodes along with their incident edges until no
degree one node is left in the graph. All such reduced nodes form a forest. These
trees can be later inserted back into the original graph by a reverse procedure.
We call this expansion of trees.

Clusters in a cluster graph can be of two types: sub site clusters are those
that are removed as a result of the reduction of trees of the cluster graph,
whereas main site clusters are the ones that remain in the cluster graph after
the reduction of the trees. We wilt refer to each reduced tree of the cluster graph
as a sub site tree. In addition, the cluster formed from the main site clusters
and their interconnections is called the virtual cluster. Circular positioning of
the clusters in the virtual cluster forms the backbone of the drawing.

94

Fig. 1. Sample drawings produced by the Circular Library.

f) ma in site clusters

-.) sub site clusters
0 vir tual cluster

[] in-nodes

[] out-nodes

in-edges

- - �9 out-edges

. . - ..

i .:

i t

Fig. 2. A circular drawing of a graph with only a portion of the set of nodes and
edges shown as an illustration of the definitions (left), and the corresponding
cluster graph (right).

95

The nodes (edges) of a cluster are categorized into two: in and out-nodes
(edges). An in-node (edge) of a cluster C is one that is connected to (connects)
only nodes in duster C. An out-node (edge) of C, on the other hand, is one that
is connected to (incident to) at least one node in a cluster other than C.

A graph G = (N, E) is said to be biconnected if there are at least two distinct
paths between any pair of nodes u, v E N. We use n (nc) and e (ec) to denote
the number of nodes and edges in a graph (cluster), respectively.

The ports of a node help define a circular ordering for the edges that are
incident to the node. These edges, when drawn, are clipped according to their
port assignments.

4 A l g o r i t h m

An outline of the algorithm used in the Circular Library follows. The first phase
of the algorithm partitions the nodes of a graph into clusters, each of which is to
be laid out as a circle. It also gathers information to be used for the positioning
of the nodes within each cluster as well as relative positioning of the clusters
during the second and final phases of the algorithm.

Partition:
(1) cluster nodes
(2) foreach cluster C do
(3) calculate in and out-nodes and edges in C
(4) calculate radius of C
(5) end foreach
(6) repeat
(7) merge neighboring clusters that are too small
(S) unti l each cluster is larger than the minimum given
(9) repeat
(10) split clusters that are too large
(11) unti l each duster is smaller than the maximum given
(12) construct cluster graph
(13) reduce trees of cluster graph (remaining nodes represent main

site clusters and form a virtual cluster)
(14) expand trees of cluster graph (expanded nodes represent sub site

clusters)

Position (draft):
(15) foreach cluster C do
(16) reduce trees of the subgraph associated with cluster C only
(17) end foreach
(18) order, position, and swap main site clusters on the virtual cluster
(19) foreach main site cluster C do
(20) position and swap out-nodes

(21)
(22)
(23)
(24)
(25)
(26)

(27)
(2s)

96

order, position, and swap in-nodes
end foreach
foreach sub site cluster C, in a pre-order traversal order do

position and swap out-nodes
order, position, and swap in-nodes
assign ports for the inter-cluster edges in between C and its

children clusters
end foreach
position sub site clusters with a layout of sub site tree using

Hierarchical Library with port support

Position (final):
(29) fo reach cluster C do
(30) expand the reduced trees of C
(31) end fo reach
(32) foreach sub site cluster C do
(33) position in-nodes
(34) position out-nodes
(35) end foreach
(36) rotate the drawing according to the aspect ratio of the window in

which the graph is to be drawn.

In the following sections, we discuss some parts of the algorithm in more
detail that we believe deserve more attention.

4.1 C l u s t e r i n g

The Circular Library clusters the nodes of a given graph in three stages. First,
the group IDs of the nodes, if any, are used; that is, two nodes with the same
group ID are put in the same cluster. This gives the user a chance to manu-
ally group nodes. Then, the remaining unclustered nodes are clustered by IP
addresses if desired. IP addresses are a very effective way to logically group
network devices. 1 Finally, any unclustered node is clustered with biconnectivity,
the default clustering method. The user has the option of using a clustering
based on node degrees instead of biconnectivity, however. In this paper, we will
concentrate on clustering by biconnectivity.

We believe that the most natural way of capturing the structure of graphs
encountered in networking environments is to first find the biconnected com-
ponents of the graph to be laid out. By clustering only nodes that are in the
same biconnected component together, we make sure that there are at least two
distinct paths in between each node pair. In a network map, this implies that the
failure of no single device in a cluster will leave the entire network disconnected.
This will naturally reveal the weaknesses in the design of a network topology.

1 IP is the most widely used network protocol today; support for it was specifically
requested by several of our customers.

97

In addition, such clustering will be reasonably "stable" over modifications
to the topology of the network. For instance, the overal clustering of the graph
will not change over operations such as addition of a link in between two nodes
that belong to the same biconnected component cluster, or deletion of a link
within a cluster that remains biconnected after the deletion. Similarly, in many
cases the addition or deletion of a node or edge does not change the block tree
of biconnected graphs, or causes only a minor change to the block tree, which
helps with drawing stability.

Furthermore, the Circular Library allows users to control the sizes of clusters
via several tailoring options. The user can specify the minimum and the maxi-
mum mlmber of nodes that each cluster may have. This is especially useful when
the underlying graph has large biconnected components.

The Library merges clusters that are too small (i.e., smaller than the mini-
mum chosen by the user) with neighboring clusters. The merging continues until
the minimum size requirement is met by all clusters.

Then, a heuristic algorithm derived from Kernighan-Lin's algorithm [KLT0]
is employed in order to split the clusters that are larger than the maximum
specified. This algorithm minimizes the cut (number of inter-cluster connections)
created by the split operation. Similarly, this process is repeated until all the
dusters are within the specified range. 2

4.2 Posit ioning and Crossing Minimization

In this section, we discuss the ideas for positioning clusters along with the nodes
within each cluster. In addition, the methods applied to minimize the crossings
inside each cluster and the crossings in between clusters are explained.

"Ordering", "positioning", and "swapping" (for crossing minimization) are
the main operations used throughout the entire layout algorithm of the Circular
Library. The in-nodes of a cluster are ordered such that we have a good initial
positioning around the cluster's circle for crossing minimization. This is signif-
icant because the minimization algorithm works locally and settles for a local

minimum. The ordering is determined based on a method that tries to find a
depth-first search tree with a maximal depth. The ordering of the out-nodes of
the same cluster is also taken into account to reduce the number of crossings for
the edges in between in and out-nodes.

Once we have an ordering for the in-nodes, we position them around a circle

spread out according to a spacing option set by the user. After that, we minimize
the crossings inside a cluster by repeatedly swapping adjacent pairs of nodes as
long as the swap results in a lower number of crossings. This process is repeated
until there is a pass with no swaps. The number of crossings is calculated only
for the in-edges of the two in-nodes considered. The out-nodes in a cluster are
positioned and swapped similarly.

2 Notice however that the algorithm might not always yield clusters within the desired
range due to the fact that a cluster may not split if it would result in clusters that
are smaller than desired.

98

After the clustering phase is finished, the second phase of the algorithm
first reduces trees in each cluster independently. The benefit of this is two-fold.
First, it speeds up the draft positioning phase since operations in this phase are
performed on subgraphs with reduced trees. Secondly, it ensures that each tree
is treated as a single entity and its expansion does not introduce any crossings.

Then, the algorithm orders, positions, and swaps the main site clusters
around a main circle (backbone). For this, we use the concept of a virtual cluster
whose nodes and edges correspond to the main site clusters, and the intercon-
nections among the main site clusters, respectively. After this the number of
crossings of the interconnections among the main site clusters will be minimal.

After that, the Library applies the same operations to each main site cluster
followed by the application of these operations to the sub site clusters in a pre-
order traversal of the sub sites in the corresponding sub site tree.

The ordering of the in-nodes of each cluster help reduce the number of cross-
ings. This is due to the fact that the longer the depth-first search tree used for
ordering in-nodes of a cluster, the better chances are for a lower number of edge
crossings within the cluster initially. Furthermore this depth-first search traver-
sal yields deterministic ring drawing when a cluster is comprised of a chain of
degree two nodes. In most cases, this will result in a better minima for the final
number of crossings than a random initial positioning.

In addition, the order in which each sub site cluster is processed is crucial
to the overall success of crossing reduction because the crossing minimization
in a particular cluster assumes the stability of the positions of the nodes in
its parent clusters. Another important factor in crossing reduction is the usage
of ports during the layout of the cluster graph with the Hierarchical Library.
In the Hierarchical Library, each node can have ports at the bottom and top
(or left and right depending on the orientation of the drawing) of the rectangle
representing the drawing of the node. Port support is used to reflect the order
in which in-nodes connect to children clusters.

The final phase of the algorithm positions the clusters according to the coordi-
nates calculated with a hierarchical layout of the cluster graph after the reduced
trees are expanded back into each cluster in a way that does not introduce any
crossings.

4.3 Time Complexity

Lines (1)-(8), (12)-(14), (15)-(17), (29)-(31), and (36) of the algorithm take lin-
ear time in the number of edges of the graph to execute. A variant of the KL
algorithm in lines (9)-(11) is of O(nc .lognc) for each cluster C. The major oper-
ations in lines (18)-(27) and lines (32)-(35) are "order", "position", and "swap".
These operations take O(ec), O(nc), and O(n~) time for each cluster C, re-
spectively. The hierarchical layout algorithm used in line (28) is loosely based
on [STT81] and the time it takes to execute is normally negligible since it lays
out sub site trees of relatively small sizes. Overall, the layout algorithm of the
Circular Library is of O(n 2 + e) in the worst case. However, the algorithm per-
forms much better on average since most these operations are applied to parts

99

of the graph in a divide-and-conquer fashion. Please refer to Figure 3 for some
statistical results on the performance of the Library's layout algorithm.

90

80

70

60

50

40

30

20

10

0
0 100 200

I I I
~00 400 500 600

graph size (number of nodes or edges)

Fig. 3. The performance of the layout algorithm of the Circular Library on
randomly created graphs. The tests were run on a Sun Sparc 5 workstation.

5 C o n c l u s i o n

In this paper, we described some of the interesting algorithms employed by
the Circular Library of the Graph Layout Toolkit, a family of portable graph
layout libraries designed for integration into graphical user interface application
programs.

The Library duster by biconnectivity by default. After that we apply a
variant of Kernighan-Lin's heuristic algorithm for clustering the nodes of a
graph which further splits biconnected component clusters if necessary. It applies
heuristic algorithms to minimize the crossings inside each cluster as well as the
crossings between edges connecting two clusters.

The algorithms employed by the Circular Library take O(n 2 + e) time to
execute in the worst case. The average time complexity of the Library's layout
algorithm, however, is much lower according to the statistical data gathered on
random graphs.

One possible modification for our layout algorithm that we are currently
looking into is support for multiple backbones and/or layout of the cluster graph
with a spring embedder based algorithm. Both approaches seem to demand much

100

more complicated crossing minimization techniques. Proper handling of cross-
ings among inter-cluster edges may yield better drawings of cluster graphs.

Acknowledgements : The authors wish to thank Dr. Ioannis Tollis for his
helpful suggestions, Therese Biedl for providing us with the software for bicon-
nectivity, and Dr. Michael Doorley for revising an earlier version of this paper.

References

[DETT95]

[GLT96a]

[GLT96bl

[KMG89]

[KL70]

[KL70]

[MMPH95]

[STT81]

Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Algorithms for draw-
ing graphs: An annotated bibliography. In Computational Geometry: The-
ory and Applications, 4, (1994), 235-282.
Tom Sawyer Software: Graph Layout Toolkit User's Guide, Berkeley, CA,
(1992 - 1996).
Tom Sawyer Software: Graph Layout Toolkit Reference Manual, Berkeley,
CA, (1992 - 1996).
Kar, G., Madden, B.P., Gilbert, R.S.: Heuristic Layout Algorithms for Net-
work Management Presentation Services. IEEE Network November (1988)
29-36.
To]lis, I.G., Xia, C.: Drawing Telecommunications Networks. Proc. Graph
Drawing '94, Lecture Notes in Computer Science 894, Springer Verlag,
(1994), 206-217.
Kernighan, B.W., Lin, S.: An E~ficient Heuristic for Partitioning Graphs.
Bell Systems Technical Journal, 49, (1970), 291-307.
Madden, B., Madden, P., Powers, S., Himsolt, M.: Portable Graph Layout
and Editing. Proc. Graph Drawing '95, Lecture Notes in Computer Science
1027, Springer Verlag, (1995), 385-395.
Sugiyama, K., Tagawa, S., Toda, M.: Methods/or visual understanding o/
hierarchical systems. IEEE Transactions on Systems, Man and Cybernetics,
11, (1981) 109-125.

