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Abs t rac t .  Given a tree T on n vertices and a set P of n points in 
the plane in general position, it is known that T can be straight line 
embedded in P without crossings. Now imagine the set P is partitioned 
into two disjoint subsets R and B, and we ask for an embedding of T 
in P without crossings and with the property that all edges join a point 
in R (red) and a point in B (blue). In this case we say that T admits 
a bipartite embedding with respect to the bipartition (R, B). Examples 
show that the problem in its full generality is not solvable. In view of 
this fact we consider several embedding problems and study for which 
bipartitions they can be solved. We present several results that are valid 
for any bipartition (R, B) in general position, and some other results 
that hold for particular configurations of points. 

1 I n t r o d u c t i o n  

Given a tree T on n vertices and a set P of n points in the plane in general 
position, it is known that  T can be straight line embedded in P without crossings. 
The problem becomes more difficult if T is rooted and we want to root it at any 
particular point of P.  The problem in this form was posed by Perles and part ial ly 
solved by Pach and Torosick [6]. A complete solution was found by Ikebe et al. 
[5]. A related result by A. Tamura  and Y. Tamura  [7] is that ,  given a point 
set P = {P l , . - . ,P~}  and a sequence d = ( d l , . . . d ~ )  of positive integers with 

dl -- 2n - 2 ,  there exists an embedding of some tree in P such that  the degree 
ofpi  is equal to di. Opt imal  algorithms for solving the above problems have been 
found by Bose, McAllister and Snoeyink [2]. 

In this paper  we consider the following embedding problem. A point set P 
in the plane in general position (no three points collinear) is part i t ioned into 
two disjoint sets /~ and B (the red and the blue points), and we are asked to 
embed a tree T in P without crossings and with the additional property that  
all the edges are red/blue,  i.e. all edges connect a point in R to another point 
in B. We call such an embedding a bipartite embedding of T with respect to the 
biparti t ion (R, B). 



Any tree T is a bipartite graph and the bipartition V(T) = (V1, V2) induced in 
the vertex set is in fact unique. An obvious necessary condition for the existence 
of a bipartite embedding of T in P is that  the cardinalities of both bipartitions, 
those of T and of P, match correctly. However, simple examples show that  this is 
not always sufficient. It is then natural to relax the requirements of the problem 
and to ask: given a bipartition (R, B), is it always possible to find a bipartite 
embedding of some tree with respect to (R, B)? It is straightforward to prove that  
the answer is affirmative. Take any red point and join it to all the blue points. 
It is then clear that  the remaining red points can be connected to suitable blue 
points wihtout creating crossings. This simple solution has the shortcoming of 
producing trees with very large maximum degree. 

The approach taken in this paper is to consider several natural embedding 
problems and to investigate for which bipartitions they can be solved. The prob- 
lems we study (considering (R, B) as the input) are: 

1) find a bipartite embedding of a tree with bounded degree; 

2) find a bipartite embedding of a tree where the degrees of the vertices 
in one of the parts, say R, are prescribed in advance; 

3) find a bipartite embedding of a spanning path. 

The paper is organized as follows. In Section 2 we discuss in detail a collec- 
tion of problems about bipartite embeddings. Section 3 contains the results for 
points in general position, while in Section 4 we restrict our attention to partic- 
ular configurations of points. We conclude with a brief discussion of some open 
problems. 

2 Discussion of the problems 

In this section we fix the terminology we use in the remainder of the paper, and 
we state and discuss in detail three embedding problems. 

P denotes a set of n points in the plane in general position (no three of them 
collinear), partitioned into two subsets R = {Pt , . . .  ,P~} and B = {q l , . . . ,  qb} 
with cardinalities r = IR] and b = IBI. The bipartition is denoted (R, B). The 
set of vertices in the convex hull of P is denoted CH(P). 

Let T be a spanning tree of the complete bipartite graph I<~,b, and let 
( d l , . . . ,  dr) and (d l , . . .  , d~) be the degree sequences corresponding to the two 
parts of the bipartition. Since the number of edges in T is r + b - 1 we have that  

b 

i=1 j = l  

Given a tree T on n vertices, we say that T admits a bipartite embedding with 
respect to (R, B) if T can be straight-line embedded into P without crossings, 
i.e. edges can only intersect at the vertices, and with the additional property 
that  an edge always joins a point in R and a point in B. An obvious necessary 



condition for the existence of such an embedding is that  T is a spanning tree of 
Kr,b. In other words, if V(T) = V1 U V2 is the unique bipartition of the vertex 
set o f T ,  then we must have either Iv i I  = r ,  Iv=l = b o r  Iv l l  = b, IV=I = r .  
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Fig. 1. T does not admit a bipartite embedding with respect to (R, B). 

This condition is not always sufficient, as the example in Figure 1 shows. 
Because of this fact we adopt the following point of view. The bipartition (/g, B) 
is given as input, and the problem is to find a bipartite embedding of some tree 
with respect to (R, B) satisfying a given condition. We introduce three conditions 
that  give rise to the three problems discussed below. 

Bounded degree embeddings. Let T be a spanning tree of Kr,b, and let d l , . . . ,  dr 
and d~, . . . ,  d~ be the degree sequences of the vertices of the two parts. The 
equation ~ di = r + b - 1 implies that  T has a vertex whose degree is at least 
1 + [(b - 1)/r] (this is the red mean degree). Our first problem asks for the 
existence of a bipartite embedding attaining a bound of this order of magnitude 
(we show later that  the exact bound cannot always be achieved). 

Problem 1. Given a bipartition (R, B) with r < b, find a bipartite embedding of 
a tree with respect to (R, B) having maximum degree A = O(b/r). 

Fixed degree embeddings. Let d = ( d l , . . . ,  dr) and d'  = ( d l , . . .  , d~) be se- 
quences of positive integers satisfying ~ d~ = ~ d~. = r + b - 1. It is easy to see 
that  Kr, b admits a spanning tree whose degree sequences are equal to d and d', 
respectively. However, given (R, B) it is not always possible to find a bipartite 
embedding realizing both degree sequences (take d = (2, 2, 2) and d' = (3, 1, 1, 1) 
in the example of Figure 1). Our second problem asks for a bipartite embedding 
in which the degree of every vertex in /~ is fixed in advance. 

Problem2. Given a bipartition (R, B), /~ = {Pl , . . .  ,Pr}, and a sequence of pos- 
itive integers (dl, . . . ,  dr) with ~ di = r + b - 1, find a bipartite embedding of a 
tree with respect to (R, B) such that  the degree of Pi is di. 

Embedding a spanning path. If we take A = 2 in Problem I then we are asking 
for a bipartite embedding of a spanning path. An obvious necessary condition 



is ]r - b] <_ 1. The example in Figure 2 shows that  it is not sufficient. To see 
why note that  the first edge of the path has to be an edge of the convex hull. 
The fact that  the eardinalities of consecutive red and blue chains differ always 
in more than two units, prevents the path from spanning all the vertices. Our 
last problem asks for sufficient conditions that  guarantee the existence of such a 
path. 
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Fig. 2. The bipartite path cannot be completed to a spanning path. 

Problem 3. Characterize those bipartitions (R, B) with Ir - b I _< 1 admitting a 
bipartite embedding of a spanning path. 

We find a complete solution to Problem 2, and prove several results concern- 
ing Problems 1 and 3. These are presented in the next two sections. 

3 Points in general position 

In this section we present two results that  hold for any bipartition in general 
position. The first one provides an answer to Problem 1 and the second one 
solves completely Problem 2. 

T h e o r e m 4 .  Given a bipartition (R, B) in the plane with r < b, one can find 
a bipartite embedding of a tree with respect to (R, B) such t-hat the maximum 
degree a is O(b/r + log r). 

Proof, We use the ham-sandwich theorem [3], that  asserts that  the sets R and 
B can be simultaneously bisected by a straight line. Assume for simplicity that  
r = 2 k and that  b = ar = ~2 k. Applying repeatedly the ham-sandwich theorem 
we arrive, after k steps, to a partition of the plane into convex polygonal regions, 
each one of them containing exactly one red point and a blue points. Join every 
red point to the corresponding c~ blue points to obtain a collection of r disjoint 
copies of a bipartite embedding of a star Kl,r.  



Next we merge these r partial trees into a single tree, in the opposite order as 
they have been produced, preserving the bipartite character of the embedding. 
To do that  we need the following lemma, whose easy proof is omitted. 

Lemma. Given two disjoint bipartite embeddings 7"1 and T2 separated by a 
straight line, one can acid an additional edge between T1 and 7"2, resulting in a 
global bipartite embedding of a tree. 

We have to perform k merging steps, every time reducing by half the number 
of trees. It is clear that  at every step the maximum degree increases at most by 
one. Since initially A = c~, at the end A < c~ + k = b/r § log 2 r. The cases where 
r is not a power of two or b/r is not an integer are treated similarly. 

In the next section it will be shown that  the optimal bound O(b/r) can be 
achieved for several particular configurations. 

T h e o r e m 5 .  Given a bipartition (t:t, B) in the plane, with/~ = { p l , . . .  ,p r )  and 
a sequence (d l , . . . ,  dr) of positive integers with ~ d i  = r + b -  1, there ezists a 
bipartite embedding of a tree with respect to (_R, 13) such that the degree of p~ is 
equal to di. 

Proof. The proof is by induction on r + b. Assume without loss of generality that  
dl = maxdi ,  and let 1 be an oriented line through Pl not containing any other 
point from R or B. Let H + and H -  be the right and left open halfspaces in 
which the line l divides the plane. Let r + = I/~N H+I and b + = I/3 A H+I, and 
let also r -  = IR fq H - I  and b- = IB N H -  I. Finally, define two functions (that 
depend on l) f +  and f -  as follows 

f + =  E d i - r  + - b + ;  
p,EH+ 

f - =  E d l - r - - b - ,  
p,EH- 

and observe that  f+  + f -  = - d  1. 

We claim that  there exists some position of 1 in which - d l  < f+  < O. To 
prove the claim assume that  initially f+  _> 0 and consider the changes in f+  as 
1 turns around Pl. 

If a red point p~ enters H +, then f+  increases by di - 1; 
If a red point Pi exits H +, then f +  decreases by di - 1; 
If a b luepoint  enters H +, then f +  decreases by 1; 
If a blue point exits H +, then f+  increases by 1. 

In any case the change in absolute value is at most dl - 1 < dl - 1. Since after a 
turn of 180 degrees the values o f f  + and f -  are interchanged, and f+  = - d l - f - ,  
it follows that  f+  < - d l .  All this implies that for some intermediate value we 



have - d l  < f+  < 0. If we assume instead that  initially f+  _< - d l  we proceed in 
the same way, and the claim is proved. 

Now by induction we can find a bipartite embedding of a tree with respect 
to the bipartition ((R A H +) U {Pl}, B N H +) in which pl has degree - f +  and 
pi has degree di for p~ E R N H + . Similarly we get a tree on H -  in which Pl has 
degree - f - ,  and the union of the two trees does the job. 

4 Points in restricted positions 

We have already mentioned that  a bipartition does not always admit a spanning 
path, and that  Theorem 4 does not give the best possible bound for the maxi- 
mum degree. It is then natural to restrict the geometry of the problem in order 
to obtain positive results. We consider three such restrictions, or particular po- 
sitions, that  arise naturally. Firstly, when R and B are separated by a straight 
line. Secondly, when R U B is a set in convex position. And finally when the 
vertices of R define a convex polygon containing all the vertices in B. 

4.1 L i n e a r l y  s e p a r a b l e  p a r t i t i o n s  

We say that  a bipartition (R, B) is linearly separable if there exists a straight line 
separating R and B. Equivalently, if the convex hulls of R and B are disjoint. 

T h e o r e m 6 .  Every linearly separable bipartition P = R U B with Ir - b I <_ 1 
admits a bipartite embedding of a spanning path. 

Pro@ Assume without loss of generality t h a t / ~  and B are separated by a hor- 
izontal line, and let Pl E R and ql E B be such that  Plql is the left red/blue 
edge of the convex hull of P.  We say that  plql is the left bridge of P.  The initial 
point of the spanning path will be pl if b = r - 1, ql if b = r + 1, and either pl 
or ql ifb = r. Assume we start at Pl and set C = {pl} (C is an ordered list that  
corresponds to the spanning path as it is constructed). At every step compute 
the left bridge pq of P \ C ,  and add p to C if the last point in C is in B, or add 
q if the last point in C is in R. In this way we get a bipartite embedding of a 
path that  has no crossings because C is disjoint from the convex hull of P \ C 
and hence from all edges added to it during the algorithm. 

The technique in the above proof can also be used to prove the following 
result. 

T h e o r e m  7. Every linearly separable bipartition P = R U B with r < b admits 
a bipartite embedding of a tree T with A (T )  < 1 + [(b - 1) / r ] .  

Pro@ Let d = 1 + [(b - 1) / r ] .  The idea is to find a bipartite embedding of a 
tree with respect to (R, B) in which the degrees in R are equal to d or to cl - 1 
and, at the same time, be able to bound the degrees in B. 



First we can suppose that  d > 2, that  is b - 1 > r. Otherwise, since we 
are assuming b ~ r, Theorem 6 implies the existence of a bipartite embedding 
with A = 2 and the theorem holds. Now find a sequence ( d [ , . . . ,  dr) of positive 
integers such that  ~ d i  = r § b - 1 and di = d or di = d -  1. We could use 
Theorem 5 in order to find a bipartite embedding realizing this degree sequence, 
but then we would not be able to control the degrees in B. 

Instead we proceed as follows. Find a point Pl in R such that  there is a line 
separating pl and dl points q l , . - . ,  qdl in B from the remaining points, where 
the qj are sorted in polar order with respecto to pl .  This is always possible 
taking left bridges as in the proof of the previous theorem. Join pl to ql, �9 �9 qd~, 
remove all these points except qdl from the bipartition and find a new point P2 
in R that  can be separated together with to d2 points in B. If we repeat this 
process, at the end we get a single point p~ in R and dr points in B (see Figure 3 
for an illustration). The fact that dl > 1 for every i, implies that  the degrees of 
the points in B are equal to one or two. 

3 

2 

Fig.  3. Realizing the degree sequence (3, 3, 2, 2). 

4.2 S e t s  in  c o n v e x  p o s i t i o n  

We say that  a set of points is in convex position if it is the vertex set of a convex 
polygon. We have already seen an example of a bipartition in convex position 
with Ir - b I ~ 1 which does not admit a spanning path, and the example can be 
generalized to any number of points (larger than 15). On the positive side we 
prove that  Problem i can be solved in this case. If RUB is in convex position and 
r -- b, Problem 3 was solved by Akiyama and Urrutia [1]. They gave an algorithm 
that  determines if R U B  admits a spanning path in O(n 2) t ime finding such path 
if it exists. 



T h e o r e m  8. Let R U B be a set in convex position with r ~ b. Then the bipar- 
tition (R, B) admits a bipartite embedding of a tree T with A(T)  ~ [b/r] + 2. 

Proof. Assume for simplicity that  r = 2 k and that  b = ~2 k. Using ham-sandwich 
cuts as in the proof of Theorem 4 we can obtain r disjoint red/blue copies of a 
star KI,~. The key point in this case is that  we can control the degrees in the 
merging step. 

Set initially T equal to any of the r stars. For every edge e of the convex hull 
of T that  is not an edge of the convex hull of R U B, consider the trees T1, �9  Tj 
that  are visible from e and lie on the halfspace determined by e not containing 
T, ordered clockwise (this makes sense because the set is in convex position). 

Next select one of the vertices of e and construct a biparti te polygonal chain 
connecting T and the trees T1 , . . . ,  Tj (see Figure 4). Because the set is in con- 
vex position, we can construct this chain in such a way tha t  the degree of any 
vertex increases by at most  2. Set T equal to the tree obtained with the above 
costruction and iterate the process until T is a spanning tree. 

Fig .  4. Proof  of Theorem 4.3. 

To see tha t  the condition on the degree is satisfied, observe tha t  the new 
edges of C H ( T )  that  are not in C H ( R U  B) are determined by two vertices tha t  
belong to one of the trees T1, �9 �9 Tj. Since only one vertex of each tree is used 
when constructing the polygonal chain, we can guarantee tha t  we always have 
a free vertex to iterate the process. Therefore, points in R have degree at most  
c~ + 2 = b/r  + 2, and points in B have degree at most  3. 

4 .3  B i p a r t i t i o n s  in  w h i c h  R = C,H(R t2 B) 

The situation can be described in this way: the points of R are the vertices of 
a convex polygon containing the points of B. We need the following result by 

G a r d a  and Tejel [4]. 



L e m m a 9 .  Let P be a set of points in general position, and assume that C H ( P )  = 
{p l , . . .  ,Pk} and that there are n interior points. Let n = nl + . . .  + nk~ where 
the ni are positive integers. Then the convex hull of P can be partitioned into 
k convex polygons Q I , . . . ,  Qk such that Qi contains ni points and pipi+l is an 
edge of Q~. 

Pro@ (Sketch of the proof by Garefa and Tejel) The proof is by induction on 
k. If k = 3, by continuity arguments and due to the generic position of points, it 
is easy to prove that  it exists a point q ~ P inside the triangle PlP2P3 such that  
triangles PlP2q, P~Paq and PaPlq contains nl ,  n2, n3 points respectively. 

The induction step begin by considering an arbitrary diagonal, for example 
plpj ,  1 < j < k. Without  loss of generality one can asume that  the polygon 
P l , . .  �9 ,Pj contains nl + .. �9 + nj-1 or more points. In this polygon we can ap- 
ply the induction hypothesis. Let Pl, q l , . . . ,  qi,Pj the polygon obtained in the 
previous decomposition corresponding to the edge plpj .  If this polygon con- 
tains nj or more points, connecting pj+l with a point q~ in the polygonal chain 
Pl, ql, �9 �9 qi, Pj the polygon splits into two parts satisfying the induction hypoth- 
esis. In other case it is the polygon Pl, P j+ I , - . .  ,Pk which verify such condition. 

Using the above lemma it is not difficult to prove the following results. 

T h e o r e m  10. Let (R, B) be a bipartition in which Ft = C H ( R U B )  and with r < 
b. Then it admits a bipartite embedding of a tree T with A(T) _< 1 + [ ( b -  1)/r].  

Proof. If b = r a  + 1 we can use lemma 4.5 to decompose the convex hull of R 
into r convex polygons Q 1 , . . . ,  Qr such that  Qj , j ~ 1, contains a points of B 
, Q1 contains c~ + 1 points and plpi+l is an edge of Qi. 

Let sj E Qj N B such that  dis t (s j ,p j )  = min{dist(s,  pj) : s E Qj N B}.  
We join every red point pj to the corresponding a blue points in Qj-1 except 
sl. Next we merge these r partial trees, by connecting sj to pj.  In this way we 
obtain a tree T with A(T)  = 1 + o~. 

If b-_Alr is not an integer then we obtain a tree with A(T)  _< 1 + [k~A]. 

T h e o r e m 1 1 .  Let ( R , B )  be a bipartition with R =  C H ( R U  B) and I r -b[  < 1. 
Then it admits a bipartite embedding of a spanning path. 

Proof. If r = b, in the partit ion of the lemma 4.5 every Qj contains only one 
blue point. Hence it is easy to obtain a bipartite embedding of a spanning path. 
If Ir - b I = 1 we proceed in a similar way. 

5 C o n c l u d i n g  r e m a r k s  

In this paper we have introduced the problem of finding bipartite embeddings 
of trees in the plane and have obtained a number of results. Some of our results 
are valid for any set of points in general position, and some of them only apply 
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to particular configurations of points. There are several interesting questions left 
open. One is whether one can always achieve the optimal bound in Problem 1, 
that  is, whether any bipartition (/~, B) with r < b admits a bipartite embedding 
of a tree with degree bounded by O(b/r). Finally, we remark that  most of our 
proofs are constructive and actually provide algorithms for solving the various 
problems. A direct analysis of the proofs shows, for example, that  the construc- 
tion in Theorem3.2 can be done in O(n 2 log n) time, where n = r + b, and those 
in Theorems 4.1 and 4.2 can be done in time O(nlog2n). We leave as an open 
question to find optimal algorithms for these constructions. 

Acknowledgements 

Thanks are due to Sue Withesides, Jorge Urrutia and to the referees for their 
suggestions which contributed to the final version. 

References 

1. J. Akiyama and J. Urrutia, Simple Alternating Path Problems, Discrete Mathe- 
matics 84 (1990), pp. 101-103. 

2. P. Bose, M. McAllister and J. Snoeyink, Optimal Algorithms to Embed Trees in 
the Plane, in Proc. Graph Drawing 95, Springer Verlag LNCS Vol. 1027, pp.64-75. 

3. H. Edelsbrunner, Algorithms in Combinatorial Geometry, Springer Verlag (Berlin, 
1987). 

4. A. Garcfa and J. Tejel, Dividiendo una nube de puntos en regiones convexas, Actas 
VI Encuentros de Geometr/a ComputacionM, pp. 169-174~ 1995. 

5. Y. Ikebe, M. Perles, A. Tamura and S. Toktmaga, The Rooted Tree Embedding 
Problem into Points in the Plane, Discrete and ComputationM Geometry 11 (1994), 
pp. 51-63. 

6. J. Pach and J. TSrScsik, Layout of Rooted trees, in Planar Graphs (W.T. Trotter, 
ed.), DIMACS Series, Vol. 9, Amer. Math. Soc., pp. 131-I37. 

7. A. Tamura and Y. Tamura, Degree Constrained Tree Embedding Into Points in 
the Plane, Information Proc. Letters 44 (1992), pp. 211-214. 


