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Abst rac t .  This paper describes a novel approach to surface tracking in 
volumetric image stacks. It draws on a statistical model of the uncertain- 
ties inherent in the characterisation of feature contours to compute an 
evidential field for putative inter-frame displacements. This field is com- 
puted using Gaussian density kernels which are parameterised in terms 
of the variance-covariance matrices for contour displacement. The Under- 
lying variance model accommodates the effects of raw image noise on the 
estimated surface normals. The evidential field effectively couples con- 
tour displacements to the intensity features on successive frames through 
a statistical process of contour tracking. Hard contours are extracted us- 
ing a dictionary-based relaxation process. The method is evaluated on 
both MRI data and simulated data. 

1 I n t r o d u c t i o n  

Multi-frame feature tracking is an essential ingredient in both motion analysis 
and volumetric image reconstruction. The basic task involves the robust identi- 
fication and location of feature contours that  exhibit inter-frame deformations 
caused either by object motion or by significant surface curvature. In order to be 
effective, tracking must be capable of distinguishing genuine variations in both 
the position, shape and intensity when the available image information is noisy 
or uncertain. Existing techniques described in the literature can be divided into 
those that  a t tempt  to capture contour deformation at either the global or local 
levels. Global methods [1, 8] aim to locate acceptable parametric contour de- 
formations that  satisfy constraints on consistent inter-frame movement [1] and 
closeness to the raw intensity data  [8]. However, their main limitation stems from 
the need for prior knowledge governing the topology of the target contours[l]. 
If this knowledge is not to hand, then local tracking methods offer an attract-  
ive alternative which also effectively draw on information concerning intensity 
structure [5, 7] and contour consistency [5]. However, while the global methods 
accommodate this information in a unified optimisation framework, local fea- 
ture tracking methods conventionally draw upon it sequentially in a multistage 
approach. 

The localised multistage philosophy is nicely exemplified in the volumet- 
ric imaging domain. Here MRI slice analysis is invariably approached as a three 
stage segmentation strategy [3, 11]. Intensity features are first enhanced by volu- 
metric filtering, prior to linking and surface fitting. Each of these stages requires 
an intermediate representation of the data  which effectively discards import- 
ant information. By contrast relaxation processes offer a unified framework in 
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which local information may be combined to produce a consistent description 
of underlying contour structure [5, 6]. As a concrete example, we have recently 
developed a novel relaxation framework [4] which has proved extremely robust 
when applied to 2D feature detection problems [5, 6, 7]. Much of its robustness 
stems from the use of contextual information, in particular a dictionary repres- 
entation of 2D contour structures [5, 4], in the refinement of intensity-features 
whose uncertainties are characterised by probability density functions. These 
probability densities directly model the effects of applying image operators to 
the raw image data. In consequence, their parameters may be directly estimated 
from the raw-image statistics, endowing the relaxation approach with adaptive 
capabilities [6]. 

The aim of this paper is to extend these ideas by developing a relaxation 
process for multi-frame curve tracking [11, 9]. The motivation for this study 
stems from the need to directly exploit local constraints on inter-frame contour 
deformation, avoiding the need for global surface models of predefined topology. 
In other words, since we wish to avoid the well documented difficulties associated 
with the inability of global contour models to adapt to changes of topology, we 
appeal to a local curve evolution process [1, 2, 10, 12]. To some extent our model 
is analogous with the reaction-diffusion process for curve-evolution [2, 12, 10]. 
According to this picture the dynamics of curve evolution may be classified 
according to the equations of motion in the normal-direction. Under the reaction 
limit curves evolve with uniform speed in a manner which has been likened to 
to morphological transformation under the action of a distance map [2]. In the 
diffusion case the evolution process is analogous to wavefront propagation with 
curvature dependant speed [12]. 

Motivation for our study comes from the need to exploit the rich sources of 
evidence available for controlling consistent curve evolution. Taking the track- 
ing of contours in volumetric image stacks as an example, this exists not only 
in the form of statistical information derived from the raw intensity image but 
also in terms of constraints on local curve evolution [13, 14]. In this paper we 
demonstrate how these various sources of information can be combined or fused 
together to compute a unified evidential index for consistent inter-frame con- 
tour evolution. This index is statistical in character and can be thought of as a 
probabilistic counterpart of the morphological distance map used in the reaction- 
diffusion analysis of curves [2]. Central to this fusional process is the availability 
of an evidence combining framework [5]. The approach adopted here is a novel 
relaxation process that  is tailored to multi-frame feature tracking [14] and al- 
lows constraints to be imposed on consistent contour development. As pointed 
by Zncker et. al. [15] relaxation processes may be thought of as a local form of 
snake dynamics. The aim of our work is therefore to provide a statistical process 
for local contour tracking that  can couple to image features via a distance map. 

The outline of this paper is as follows. Section 2 reviews our multi-frame 
relaxation process for contour tracking. Section 3 develops our surface tracking 
model and identifies its relationship with alternative models of contour evolution. 
In section 4 we evaluate the method on volumetric image data. Finally, Section 
5 provides some conclusions. 
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2 Multi-frame Relaxat ion 
Our adopted framework for surface tracking is the multi-frame relaxation tech- 
nique described in [14]. Before we proceed to detail the modelling of contour 
evolution, we describe some of the formal elements of the relaxation framework. 
We commence by specifying the form and nature of the information available to 
the tracking process from the different frames in the sequence. Suppose that the 
image entities forming the frame with index L are denoted by the set FL; this set 
indexes the pixel co-ordinates in the frame of interest. We will be interested in 
labelling the pixels in the frame F L by combining evidence in the form of within- 
frame measurements together with labelled feature contours from the previous 
frame in the sequence, i.e. FL-~. We let x L denote the measurement-vector per- 
raining to the pixel j C F L. Typically, this vector represents the output of a 
series of feature detection filters [7]. 

2.1 Bayesian Ingredients 
The basic philosophy in developing the multi-frame relaxation formula is to 
combine evidence from the 3x3 neighbourhood I L of pixel j in the light of 
constraints on consistent contour evolution. When the relaxation operations 
have converged, each pixel in the frame F L has a hard interpretation accord- 
ing to the set of available feature labels, ~. We denote this labelling by the set 
"~L ~_ {~L C ~,Vj  c FL}. This hard labelling may be utilised as an additional 
source of contextual information to track features in the subsequent frames in 
the sequence. Additional information of this sort can only effectively enhance the 
quality of interpretation provided that a suitable model of inter-frame feature 
persistence is available. It is this model requirement that places the greatest 
demands on our multi-frame relaxation method and is the main topic of this 
paper. 

The development of the multi-frame relaxation formula [14] draws on the 
above ingredients using the following non-linear probability update formula 

p ( n + l )  (0L) : L p(n)(0L)Q(n)(0L) (1) 

where P(~)(0L) is the label probability for pixel j in frame L at iteration n of the 
relaxation scheme. Evidence for the label assignment 0L is accumulated over the 
contextual neighbourhood I L in frame F L by the support function Q(~)(0L). 
The critical Bayesian ingredient of the multi-frame support function are the 
inter-frame priors P(TL[~ L-l) which represent constraints on the evolution of 
consistent contour structure. These constraints are modelled by compiling those 
contours on frame F L that are consistent with their hard labelled counterparts 
in frame F L-l ,  i.e.T L-1 in a dictionary O(TL-1). If )~/ is the label on the 
object indexed k, corresponding to the hth entry in the dictionary O(TL-1), 
then we can introduce the following shorthand notation for the dictionary items 
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Fig. 1. Contour dictionary 

A h = {s gk E I~}. In practice the dictionary is constructed so as to discourage 
contour fragmentation or radical changes in feature orientation. 

With the dictionary ingredient, the support function for multi-frame feature 
tracking is 

Q(n)(oi) - 1 I H P(~) ()~) 
AhelS(T L-l) k . - j  ( ~:,T ) 

} p(AhlT  L-l)  (2) 

This formula is initialised by setting P(~ = p(0LI_xL,TC-1). From the 
Bayesian standpoint, this means that  the initial probabilities depend both on the 
measurements pertaining to the current frame and upon hard labelled contour 
information derived from the previous frame. 

2.2 D i c t i o n a r y  M o d e l  
For the 2D feature detection application the dictionary consists of all the con- 
nected contours which can be constructed on a 3x3 neighbourhood using the 
label-set f~ = {++,$,r There are about 100 such configurations; some typ- 
ical examples are shown in Figure 1. All the consistent contours are a single 
pixel wide. The dictionary contains symbolic representations of important fea- 
ture points such as corners and T-junctions. 

At this point is is worth contrasting the philosophy underlying our relaxa- 
tion approach with that adopted in deformable template models[I]. Rather than 
addressing the inter-frame evolution of contours in terms of global parameter 
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deformations, we a t tempt  to identify consistent structure that  satisfies local 
constraints. The role of the conditional priors is therefore to model the develop- 
meat of acceptable persistent contour structure which meets certain inter-frame 
consistency requirements. Our modelling of these requirements is based on the 
dictionary items satisfying constraints on acceptable inter-frame variation in 
contour orientation and curvature. We therefore partit ion the dictionary items 
on frame L into sets deemed acceptable according to the consistent labellings 
obtained on frame L - 1; we denote this acceptable set by S(TL-1). In order 
to compute the inter-frame conditional priors, we apportion the available prob- 
ability mass uniformly among the dictionary items belonging to the parti t ion 
S (T  L- l )  i.e., 

1 if T L E S (T  L- l )  (3) 
p(TLITL-1) = 0 otherwise 

With the joint conditional priors to hand, the single object conditional priors 
P(O L IT L- l )  may be computed from the relative frequencies of the various object 
labels in the partit ioned dictionary. In doing this we implicitly assume that  the 
single object priors are independent of the bulk of contour information contained 
in the slice L - 1, i.e. p(oLvF L-I) = P(0L-1) .  This is a physically plausible 
assumption; it means that  a priori we have no prejudices about the location 
of feature and non-feature points, it is only when evidence is to hand that  we 
modify our expectations. 

The multi-frame relaxation formula provides a powerful framework for lea- 
ture tracking which can simultaneously accommodate inter-frame contour de- 
formations, statistical intensity variations, and, the local differential structure of 
intensity surfaces. Conventionally the tracking process is approached by either 
the construction of deformable contour models [2, 10] or via predictive statist- 
ical models such as Kalman filters [1]. In our approach the statistical origins of 
feature variability are captured at three levels. Intrinsic intensity variations are 
described by a Gaussian noise model. Contour shape evolution due to deform- 
ations and movements of the underlying surface are captured by a statistical 
model of the contour evolution process. Constraints on local contour structure 
are used to impose consistency on the detected surface traces. 

3 S t a t i s t i c a l  E v o l u t i o n  o f  C o n t o u r s  
In this paper we incorporate statistical information concerning local surface 
structure into the underlying tracking model. Ultimately, we would like to draw 
on all the information residing in the local Darboux frame [13], i.e. the sur- 
face normal together with the magnitudes and directions of principal curvature. 
However, since curvature computation is severely limited by noise, for the time 
being we will concentrate on modelling the statistical uncertainties present when 
surface normals are estimated using the set of filter responses. 

The underlying philosophy is to compute an evidential field for plausible con- 
tour displacements. The computation of this field is effected using anisotropic 
Gaussian density kernels whose parameters are the contour displacement vari- 
ances. We adopt a variance model in which accommodates the effect of raw image 
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noise on the computed surface normals. Specifically, we associate an evidential 
field with plausible contour deformations. This field is subsequently refinement 
by relaxation operations. 

3.1 Surface  N o r m a l s  
Suppose that  the volumetric intensity information at the point with co-ordinates 
x, y, z is denoted by I(x,  y, z). We are concerned with modelling the evolution 
of curves in the x-y plane as the stack is descended in the z-direction. The 
kernels for feature detection in the directions of the three co-ordinate axes are 
K~ (x, y, z), Ky(x,  y, z) and Kz (x, y, z). These three kernels are convolved with 

the raw volumetric intensity data to compute a vector of filter responses N = 
(F~ (x, y, z), Fv(x , y, z), F~ (x, y, z)) T which is used to approximate the direction 
of the surface normal. Under quite non-restrictive assumptions, it can be shown 
that  if the raw image data is subject to additive Gaussian noise of zero mean and 
variance a 2  then the noise distribution for the surface normal is a multivariate 
Gaussian of zero mean. The elements of the variance-covariance matrix EN are 
related to the autocorrelation f~ and cross correlation f~ of the filter kernels 
used to charaeterise the surface intensity features. Specifically, when the three 
kernels are rotated versions of one-another, 

,) 
EN = ~2 f~ fc 

f~ f~ 

(4) 

In our experimental evaluation of the tracking process, we will be interested in 
detecting surfaces associated with volumetric edges. Here we use both overlap- 
ping and non-overlapping derivative of Gaussian filters. Since the kernels are 
antisymmetric their cross-correlations are zero i.e. fc = 0. 

In order to realise tracking as a statistical process we will be interested in 
computing the distribution of contour movements between adjacent slices of 
the volumetric image stack. Figure 2a illustrates how we calculate the expected 
contour displacement D. Here, A T is the surface normal approximated by the filter 
responses and T is a surface tangent vector leading from the current contour 
point to the corresponding contour point on the next slice. The vector T is 
perpendicular to .h~,and is chosen such that its projection onto the x-y plane 
/) is directed along N's projection onto the x-y plane. These constraints lead to 
the following equations for calculating the inter-slice contour displacement /), 
given the filter responses Fx, Fy, Fz and the inter-slice spacing t: 

tF (x, y, z) Fz(x, y, z) (5) 
Dxtx, y,z) = Fx(x,y,z)2 + F (x,y,x)2 

tFAx, y, z)F (x, y, z) (6) 
D y ( x , y , z ) =  F~(x,y,z)2 + Fy(x ,y ,x)2 

The displacements are directed along the component of the surface normal 
in the x-y plane and are proportional to the slope of the tangent plane of the 
local intensity surface. 
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Fig. 2. a) Relationship of surface normal 2V, tangent vector T, and inter-slice contour 
displacement vector D; b) Ellipsoidal contour distribution. 

Our basic aim in this paper is to compute an evidential field for contour 
displacements by drawing on a set of probability densities that characterise the 
various pieces of information derived from the image stack. For representational 
convenience we therefore amalgamate the vector of filter responses with the 
vector of contour displacements /~L = (D~(x, y, z), Dv(x ,y  , Z)) T t o  compute a 

combined feature-vector x L = (N,/~L)T for the pixel indexed j. With these in- 
gredients we can compute the conditional density function for pixels belonging 
to the background class r which do not constitute consistent contours result- 
ing from meaningful intensity surfaces. This is effectively the noise-density for 
structureless image regions and is given by 

1 1  [ ~ ] 
P(X-L'TL-110L : r = (27r)~ ~ e x p  - J ~ T ~ N I N  ('7) 

The conditional density function for structured image regions is more elusive. 
In the next section we will describe an ansatz for computing this density for 
contours which evolve as the image stack is descended. As a prerequisite we 
require a covariance matrix to represent the underlying uncertainties in contour 
displacement. 

3.2 Contour  Di sp lacement  Uncerta int ies  
We are interested in providing the resulting field of inter-frame contour dis- 
placements with a probabilistic description. For this reason, we must direct our 
attention to understanding how the statistical uncertainties in the components 
of surface normals propagate through into the computation of contour displace- 
ment. The propagation of errors is controlled by the Jaeobian of the transforma- 
tion between normal-components and contour displacements given in equations 
(2) and (3), i.e.. 

2 2  ) 
l 2F GF  F= (F~ - F~ ) (8) 

J - ( F }  + F~)  2 \ -F=(F ;  + F~) ~ 2 z 2 -Fy(F~ + F~) 

With the Jacobian to hand, the transformed variance-covariance matrix for the 
contour displacements is equal to ED ---- JTENJ .  After matrix manipulation and 
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algebra the contour displacement covariance matrix is equal to 

2 2  ) 

The above covariance matrix captures statistical uncertainties in the displace- 
ment field due to the effects of raw image noise on the computation of the tangent 
slope. 

3.3 Contour Mixture Density 
Key to meeting our objective of tracking evolving contours is a means generating 
an evidential field from the hard labelled contours in preceding frames of the 
volumetric image stack. This softening process effectively disperses the detected 
contour points about the computed direction of the surface normal. Our basic 
assumption in formulating the softening process is that the labelled feature pixels 
in the preceding frame of a sequence represent mutually exclusive seeds from 
which putative feature points on the current frame may have developed. We may 
therefore compute the conditional measurement density for the tentative feature 
point at the pixel indexed j in frame F L by summing over the contributing 
densities from the hard-labelled feature points in frame F L-1. The resulting 
mixture density is given by 

= = = = ( l o )  p( j,T Ioj -- p(x2,o  
kcFL-~ 

where ~ represents a combined horizontal and vertical feature label. The above 
expression for the conditional density effectively blurs the hard-labelled contours 
from frame F L-i to produce an evidential field for potential contours in frame 
F L. The hard label information is represented by p(c~)(0L = c) which indicates 
whether or not the pixel k is assigned to the feature class in frame L - I. Eviden- 
tial information is represented by the individual densities p(x L, 0 L-I = ~I0 L = ~) 

for the features contained within frame F L to have originated from contours in 
frame F L-I . It is these densities that form the critical and novel ingredient of our 
contour tracking method. They model the evolution of tentative feature points 
on the frame F L from the labelled feature points on the frame F L-I. Their role 
is to capture the spatial variations in contour position on different frames. In so 
doing, they account for inter-frame deformation of 2D contours originating from 

the surface geometry of 3D structures. 
We would like to utilise the computed uncertainties in the displacement com- 

ponents to construct probability density functions to model the contour evolu- 
tion process. Since we have little information concerning the prior distribution 
of surface structure to hand, the construction of accurate distributions is not 
feasible. For convenience, we therefore associate Gaussian densities with the dis- 
tribution of contour displacements. If ~L is a vector of x-y co-ordinates for the 

pixel indexed j in frame L, i.e. ~L = (Xj, yj)T, then the required density must 
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effectively compare the putative contour displacement ~'L k = ~jL _ q~-I  with the 

predicted displacement /~L i.e. 

~ e x p  -- ( (~k- -~ , j ]  =D (Sj,k - /~L)  (11) k-j ,  k 27r 

In this way the detected contour points in frame L - 1 are distributed in an 
ellipsoidal fashion in frame L. This ellipsoid is centred according to the predicted 
displacement and aligned along the projected normal direction in the x-y plane 
as illustrated in Figure 2b. The net effect of this statistical tracking process is to 
generate a probabilistic counterpart  of the weighted distance-map. The density 
appearing in equation (7) may be converted into an a pos ter ior i  probability by 
a simple application of the Bayes formula 

(12) 
p(x L, T L-1[O # = e)P(O L = e) + p(_x L, TL-1IO L : r  L = r 

The resulting probability distribution effectively provides a unified way of coup- 
ling feature characteristics derived from the filtering of frame L with the displace- 
ment field derived from hard-labeled contours on frame L - 1; it can be regarded 
as a providing a combined index for contour evolution between successive frames. 
Hard labelled contours may be identified by applying the apparatus of Bayes de- 
cision theory to the probabilities defined in equation (9). In our experimental 
studies we will draw on the multi-fi'ame relaxation scheme described in [14]. 

4 E x p e r i m e n t s  

We have evaluated our tracking method on both MRI data  and synthetically 
generated volumetric images. The synthetic data  has been created with a view 
to assessing the capabilities of our method in the tracking of contours associ- 
ated with highly inclined and curved surfaces. It also serves to illustrate the 
advantages to be gained from statistical model of local surface structure over 
our earlier and more naive tracking process [14] which draws only on the prox- 
imity of adjacent contours. Firstly, Figure 3a shows a sequence of MRI scans 
of a brain tumor, sampled vertically from a volumetric image stack. Figure 3b 
shows the initial evidential field computed by statistical surface tracking, i.e. 
the value of p(0)(0L = E), prior to the application relaxation operations. The 
sequence of images in Figure 3c shows the result of applying the relaxation oper- 
ator to the computed initial probabilities. It is interesting to note that  the initial 
probabilities are well localised; the statistical surface tracking process is well col- 
limated and does not, for instance, disperse or scatter the available evidence in 
an incoherent way. The hard labelled contours maintain good contact with the 
underlying edge features and curvature details . 

To re-enforce some of these points, Figure 4a shows a series of images from a 
synthetic volume containing two quarter-segments of a sphere. The raw sequence 
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Fig. 3. Top (a) MRI sequence; Middle (b) Statistical contour field; Bottom (c) Labelled 
contours. 

contains additive Gaussian noise such that  the signai-to-noise ratio for the genu- 
ine edge features is 5:3. The initial evidential fields are shown in Figure 4b while 
the hard labelled contours resulting from multi-frame relaxation are shown in 
Figure 4c. Note that  3D filtering operations have the effect of blurring the fea- 
tures into the sixth frame. For comparison, the result obtained with our earlier 
proximal contour tracking method [14] is shown in Figure 4d. The statistical 
surface tracking method again performs well. It is interesting to note that  it still 
tracks effectively over the most inclined portion of the sphere close to the pole. 
Here the radial velocity of the contours is 4 pixels per frame. By contrast, the 
proximal method loses contact at a much lower latitude when the radial contour 
velocity exceeds 2 pixels per frame. Moreover, the proximal method has a tend- 
ency to pursue features into the void beyond the physical extent of the sphere. 
The statistical surface tracking method cleanly disengages once the minimum 
depth on the sphere is reached. 

In order to explore the capacity of our method to accommodate changes in 
contour topology, we have generated a synthetic volumetric image in which two 
cylinders merge to form a single cylinder. Viewed at the slice level the sequence 
represents one of two topological events depending on the tracking direction. In 
one direction two closed contour merge together to form a single closed contour. 
In the opposite direction, a single closed contour breaks into two fragments. 
Figure 5a shows the fragmentation event, with the segmented result below. 

5 C o n c l u s i o n s  

We have described a novel approach to surface tracking in volumetric image 
stacks. The method uses a statistical model of the uncertainties inherent in the 
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Fig. 4. Top (a) Sequence of synthetic images; Second row (b) Statistical contour field; 
Third row (c) Labelled contours; Bottom row (d) Labelled contours with proximal 
contour tracking. 

Fig. 5. Top (a) Synthetic sequence; Bottom (b) Labelled contours. 

characterisation of intensity surfaces to compute an evidential field for inter- 
frame contour displacements. This field is obtained using Gaussian density ker- 
nels which are parameterised in terms of the variance-covariance matrices for 
predicted contour displacements. The underlying variance model accommodates  
both the effects of raw image noise on estimated surface normals. The evidential 
field effectively couples contour displacements to the intensity features on suc- 
cessive frames through a process of statistical contour tracking. Hard contours 
are extracted using a dictionary-based relaxation process. 
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