
Discrete Surfaces

Computational Geometry and Discrete
Computations*

Olivier Devillers

INRIA, BP 93~ 06902 Sophia-Antipolis cedex
01ivier. Devillers@sophia. inria, fr

Abstract . In this talk we describe some problems arising in practi-
cal implementation of algorithms from computational geometry. Going
to robust algorithms needs to solve issues such as rounding errors and
degeneracies. Most of the problems are closely related to the incompat-
ibility between on one side algorithms designed for continuous data and
on the other side the discrete nature of the data and the computations
in an actual computer.

1 I n t r o d u c t i o n .

Computational geometry began in the last seventies, and since has been
developed as a whole domain inside theoretical computer science. Re-
search in that area has been very active. Several books [2, 8, 15, 18] and
journals are devoted to the field (IJCGA. CGTA~ DCG). As suggested by
the name itself, "computational geometry" deals with the computation of
geometric objects, and more precisely is devoted to the design of geometric
algorithms and the study of their complexities.

Below are detailed the main hypotheses which are usually made in
computational geometry papers. These hypotheses are very important,
they induce simplifications and an abstract framework for the design of
algorithms which contribute to the success of the field and its produc-
tivity. But these hypotheses are also a major drawback, because they
turn the algorithms too abstract and make them far from the reality of
programming.

As a main example, I will use the problem of sorting n real numbers.
Even if sorting is not really a geometric problem (people can argue that
one dimensional geometry is not geometry), it is a good example to illus-
trate the major points on a very simple and easy to understand problem.
In some cases, I will also add some more geometric example.

An important point about geometric algorithms is that they combine
geometric and combinatorial aspects. The result of the algorithm is often

* Work supported in part by ESPRIT LTR 21957 (CGAL)

318

combinatorial, in the sorting example the result is a permutation of size n.
But the algorithm involves geometric tests, in our example comparisons
of real numbers. In the abstract framework, such a geometric test takes
continuous data (e.g.: two real numbers x and y) and returns some discrete
data (e.g.: x is smaller/equal/greater than y); such a test or predicate often
consists in evaluating the sign of some expression (e.g.: sign of x - y).

C o m p l e x i t y . Complexity usually means asymptotic complexity, that is
the order of magnitude of the number of basic operations needed to solve
the problem in terms of the size of the input. For example sorting n
numbers costs O(n log n) comparisons. In such a notation, the big O hides
a constant which can be important in practice, but is often forgotten in
theoretical papers and never precisely studied.

Lower bounds are usually proved either by evaluating the size of the
output, or in the Information Theory Bound model. In the ITB model,
we assume that the algorithm is only allowed to make binary decisions
and then the smallest number of decisions needed to solve the prob-
lem is evaluated using Ben'Or theorems, basically the logarithm of the
number of combinatorially different possible results is a lower bound.
Such a lower bound only involves binary decision and does not count
the amount of work needed between two decisions. For example sorting
needs X?(n log n) = ~9(log n!) binary decisions.

M o d e l of c o m p u t a t i o n . To count the basic operations, we have to
define precisely what a basic operation is. The usual hypothesis is that
a geometric predicate can be evaluated in constant time and thus the
complexity analysis usually only counts the number of such predicates
needed by the algorithm to establish an upper bound on the complexity.

Algorithms are usually designed using a real-number arithmetic, and
thus a constant time operation is often an arithmetic operation such as
comparison, addition, or multiplication of two real-numbers. This as-
sumption cannot correspond to the reality of a computer because either
the bit length of the number is fixed, and then the arithmetic available is
not a real-number arithmetic but a rounded floating point arithmetic, or
the bit length is not fixed, but in that case the time needed to perform
an operation is no longer constant.

Sometimes, people even use stronger "basic operations" such as the
solving of an system of equations of bounded size and bounded degree
(still assumed to need a "constant time").

319

Lower bounds are also concerned by the model of computation, the
Information Theory Bound is valid on Turing machine but not on RAM
machine. For example, bucket sort works in linear time.

D e g e n e r a t e cases. Together with the real-number arithmetic, an usual
unrealistic hypothesis is the absence of degenerate cases. A situation
is said to be degenerated if a small perturbation of the input may not
preserve that situation. In the sorting example, the situation is said de-
generated if two values are equal. A more geometric example: the fact
that three points in the plane are cocircular is not degenerated since three
points always define a circle but four cocircular points is a degenerated
situation because a small perturbation of one point can move it inside or
outside the circle defined by the three others.

When a geometric predicate reduce to the sign of an expression, the
positive and negative cases are the two regular answers, and the null case
is the degenerated one.

Computational geometry papers usually assume that there is no degen-
erate cases. This assumption is justified by the fact that in a continuous
world such cases have a null probability to occur. But in the computer
world where data are discretized, this probability is no longer null, and
such cases actually occur.

O r g a n i z a t i o n . I will first describe in Section 2 some problems due to
the above hypotheses and the intrinsic discrete nature of geometric data.
Then we investigate the two main approaches used to cope with this.
In Section 3, we look for means to use discrete data as if we were in a
continuous world and, in Section 4, we expose solutions having a more
discrete spirit.

2 R e a l - n u m b e r s a r i t h m e t i c y i e l d s n o n i m p l e m e n t a b l e
a l g o r i t h m s .

Most of the geometric algorithms rely on geometric theorems which are
true in the usual mathematical setting, where the geometric objects have
real coordinates. Unfortunately, these theorems are no longer true when
real coordinates are replaced by usual machine representable numbers such
as f l o a t or double; and the geometric properties are replaced by numer-
ical predicates evaluated using the rounded floating point arithmetic.

For example a simple fact such as "If points a, b, c are collinear and

a, b, d are collinear and a ~ b then a, c, d are colIinear" is no longer reliable,

320

when collinear means that some arithmetic expression is evaluated to 0 in
a rounded computation. For the sorting example, we will assume that the
machine comparisons is not transitive (which is hopefully false in actual
computers); for the sake of illustration, we assume that entries are decimal
numbers, and that our computer is able to compare only integers and thus
rounds the number before comparing them.

Thus, most of the geometric theorems are not valid in the computer
context, but still, most of the geometric algorithms rely on these geometric
theorems. Therefore some situations may appear as incoherent if the input
data make some theorem fail. Since such a situation is supposed to be
impossible, it is not planned in the program and it fails or falls in an
infinite loop or maybe just computes a wrong result.

Many examples of this kind exist in geometric soRwares [17]. The
above simple example is very representative of the problems, since a com-
mon case is that some transitivity property, which is true in theory, is not
verified, and the cycle created will correspond to an infinite loop in the
program behavior. Imagine that the rounded computation answers that
x > y, y > x, x < z and y < z and bubble sort runs on an array starting
by x, y and z. At each new traversal of the array z and y will be swapped,
thus if the program runs until the order is fine, it wilt loop infinitely.

In the following sections we will sketch two solutions to the fact that
geometric theorems are not true in the computer model of computation. In
Section 3 the model of computation is modified so that relevant theorems
still hold. In Section 4 weaker theorems are proved in the computer model
of computation and other algorithms based on these new theorems are

used.

3 I m p l e m e n t i n g r e a l - n u m b e r s a r i t h m e t i c .

The most common way to ensure that geometric theorems hold is to com-
pute with enough precision so that the rounding done by the floating
point computation cannot introduce a wrong decision (a wrong answer to
a predicate).

3.1 D i f f e r e n t ways o f h a v i n g p rec i se c o m p u t a t i o n s .

I n t e g e r a n d r a t i o n a l a r i t h m e t i c . Precise computations generally means
exact computations. If the input data are integer (resp. rational) and the
predicate corresponds to the evaluation of a polynomial (resp. rational)
formula, then computations can be done using exact computations with
integer (resp. rational) of arbitrary length.

321

These exact tests can be achieved using standard libraries of large
numbers, or some more specifically geometric methods devoted to some
predicates [5, 1].

A r b i t r a r y l e n g t h f loa t ing p o i n t n u m b e r s . Exact computation can
also be achieved with floating point numbers, but of arbitrary length.
Such a number of "indefinite precision" is often represented as the sum of
a set of usual machine floating point numbers of "fixed precision", and the
precise definition of the rounding operation in the IEEE standard is used
to make arithmetic operations exactly, using a few machine operations

[19, 201 .

A l g e b r a i c s y s t e m . Sometimes, the predicate does not reduce to the
evaluation of an expression, it can consist in the sign of the solution of
some algebraic system, and even an exact arithmetic does not allow to
compute that solution exactly. In that case, numerical methods can be
used in a robust way. The result can be computed up to some small error,
so that the sign is guaranteed [4].

3.2 F i l t e r s .

The above methods to reach exact computations solve many of our prob-

lems, but they are expensive. A way to reduce the cost of exact compu-

tation is to use rounded computation whenever it is possible and to use

exact computations only were there is some doubt on the accuracy of the
rounded result.

W h a t is a f i l ter? A filter is an approximate evaluator for the result
associated to a certifier which may guarantee some property about the
precision of that result. Such a filter is often a rounded computation of an
expression and an upper bound on the error done during this computation;
If the error is smaller than the computed value, then the sign of the
expression is certified. If the certifier fails then the exact computation has
to be done (or a less cheap but more accurate filter must be tried) [12, 161.

For our weak comparisons described in the introduction, an example
of filter is

compute x-y

if x-y > 2 then return x>y

else if x-y _< -2 then return x<y

else return filter failed

322

H o w is a f i l ter efl3cient? In practice, rounded computations is most
often able to give the right answer, so that the aim of the filter is to find
the very few cases where the rounded computation is not accurate enough.

If we still are interested in the comparison test, if we assume that the
operands are randomly chosen in interval [0, N] and the filter failed on
x<y if x-y< 2, then the probability of failure is

1 FIN fmin(2r247 4

]0 N-Z

Thus if N is large the probability of failure of the filter is small.
Under some hypotheses on the data, the probability of failure of the

filter can be evaluated and if it is small enough, it justifies the choice of the
filter (see [6] for result for collinearity and cosphericity tests). Hypotheses
of random distribution on the data may be unvalid in practice, because
some data are by nature degenerated. In that case, the expression whose
signe we are looking for can be null, but the probability that it is smaller
than e and non null is still small and an adequate filter can be designed.

4 D e s i g n i n g a l g o r i t h m s for d i s c r e t e - n u m b e r s a r i t h m e t i c .

An alternative to exact computation consists in ensuring some combinato-
rial property by some combinatorial way of computing (instead of relying
on geometric theorems).

To ensure that the geometric theorems needed by the algorithm are
not violated when evaluating predicates, a solution consists in not com-
puting any predicates which can be deduced from former evaluations. For
example, if the points a<b and b<c have been evaluated to be true, and at
some point the algorithm asks for a<c?, the numerical predicate should
not be evaluated because previous evaluations and transitivity imply that
the answer is "yes". Such an algorithm is called parsimonious by Knuth

[131.
This kind of approach can also be used in a weaker way, that is ensur-

ing weaker properties than the real geometric properties. A good example
is Sugihara and Iri's algorithm [21] for Delaunay triangulation. This algo-
rithm verifies during the insertion of each new point that the constructed
triangulation is a good topological triangulation (a planar graph, so that
each face is a triangle and each edge exists onty once). If the geometric
predicates are exact then the algorithm construct the Delaunay triangula-
tion, otherwise the algorithm guarantees that it does not fail and actually
constructs a topological triangulation. So that another algorithm needing

323

a triangulation as input can use the result without trouble. Unfortu-

nately, this algorithm does not ensure that the constructed triangulation

is topologically equivalent to the Delaunay triangulation of some input,
since there exist topological triangulations that cannot be realized as a
Delaunay one [7].

Similar phenomena arise in other problems, for example an algorithm
computing an arrangement of lines may guarantee some properties on
line intersections, but not more complicated ones such as Pappus theorem
[13]. Thus the computed arrangement may be not realizable by actual
lines, such an arrangement is called an arrangement of pseudo-lines. This
difference is important since the combinatorial properties are different

[111.

5 C o n c l u s i o n .

Solving robustness problems in computational geometry which rely on the
discrete nature of computer computations is currently a big issue in the

field and mobilizes many researchers. Many discussions at the last ACM
symposium on computational geometry and the first workshop on applied
computational geometry were about this topic. The main issues are the
design of fast and exact code to answer geometric predicates (a simple
geometric question such as "on which side of this plane does this point
lie?") and the creation of new algorithms which do not rely on geometric
theorems that are impossible to guarantee using computer arithmetic.

Related works concern also new kinds of analysis. The intrinsic com-
plexity of the geometric predicates can be studied [14, 3], or restricted
models of computation were only a small number of well defined geomet-
ric predicates are allowed can be developed [i0, 9].

A c k n o w l e d g m e n t s . The author would like to thank the committee of
the sixth Discrete Geometry for Computer Imagery for inviting him to
present this work.

R e f e r e n c e s

1. F. Avnaim, J.-D. Boissonnat, O. Devillers, F. Preparata, and M. Yvinec. Eval-
uation of a new method to compute signs of determinants. In Proc. llth Annu.
ACM Sympos. Comput. Geom., pages C16-C17, 1995.

2. J.-D. Boissonnat and M. Yvinec. Gdomdtrie algorithmique. Ediscienee interna-
tional, Paris, 1995.

324

3. C. Burnikel. Exact Computation of Voronoi Diagrams and Line Segment Intersec-
tions. Ph.D thesis, Universitg.t des SaarIandes, March 1996.

4. Christoph Burnikel, Jochen KSnnemann, Kurt Mehlhorn, Stefan Ns Stefan
Schirra, and Christian Uhrig. Exact geometric computation in LEDA. In Prom
11th Aunu. ACM Sympos. Comput. Geom, pages C18-C19, 1995.

5. If. L. Clarkson. Safe and effective determinant evaluation. In Proc. 23rd Annu.
IEEE Sympos. Found. Comput. Sci., pages 387-395, 1992.

6. O. Devillers and F. Preparata. A probabilistic analysis of the power of arithmetic
filters. Research Report to appear~ INRIA, BP93, 06902 Sophia-Antipolis, France,
1996.

7. M. B. Dillencourt. Realizability of Delaunay triangulations. Inform. Process. Lett.,
33:283-287, 1990.

8. H. Edelsbrunner. Algorithms in Combinatorial Geometry, volume 10 of EATCS
Monographs on Theoretical Computer Science. Springer-Verlag, Heidelberg, West
Germany, 1987.

9. Jeff Erickson. New lower bounds for convex hull problems in odd dimensions. In
Proc. 12th Annu. ACM Sympos. Comput. Geom., pages 1-9, 1996.

10. Jeff Erickson and Raimund Seidel. Better lower bounds on detecting affine and
spherical degeneracies. In Proc. 3~th Annu. IEEE Sympos. Found. Comput. Sei.
(FOCS 93), pages 528-536, 1993.

11. Stefan Felsner. On the number of arrangements of pseudolines. In Proc. 12th
Annu. ACM Sympos. Comput. Geom., pages 30-37, 1996.

12. S. Fortune and C. J. Van Wyk. Efficient exact arithmetic for computational ge-
ometry. In Proc. 9th Annu. ACM Sympos. Comput. Geom., pages 163-172, 1993.

13. Donald E. Knuth. Axioms and Hulls, volume 606 of Lecture Notes in Computer
Science. Springer-Verlag, Heidelberg, Germany, 1992.

14. G. Liotta, F. P. Preparata, and R. Tamassia. Robust proximity queries in implicit
Voronoi diagrams. Research Report CS-96-16, Brown University, Providence, RI,
1996.

!5. K. Mehlhorn. Data Structures and Algorithms 3: Multi-dimensional Searching
and Computational Geometry, volume 3 of EATCS Monographs on Theoretical
Computer Science. Springer-Verlag, Heidelberg, West Germany, 1984.

16. K. Mehlhorn and S. Ngher. The implementation of geometric algorithms. In Pron.
i3th World Computer Congress 1FIP9~, volume 1, pages 223-231, 1994.

17. D. Michelucci. Arithmetic isuues in geometric computations. In Proc. 2nd Real
Numbers and Computer Conf., pages 43-69, Marseilte, France, 1995.

18. F. P. Preparata and M. I. Shamos. Computational Geometry: An Introduction.
Springer-Verlag~ New York, NY, 1985.

19. D. Priest. Algorithms for arbitrary precision floating point arithmetic. In Proc.
tOth Syrup. on coputer arithmetic, pages 132-143, 1991.

20. Jonathan R. Shewchuk. Robust adaptive floating-point geometric predicates. In
Proc. i2th Annu. ACM Sympos. Comp'~t Geom., pages t41-150, 1996.

21. K. Sugihara and M. Iri. A robust topology-oriented incremental algorithm for
Voronoi diagrams. Internat. J. Comput. Geom. Appl., 4:179-228, 1994.

