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Abstract .  In this talk we describe some problems arising in practi- 
cal implementation of algorithms from computational geometry. Going 
to robust algorithms needs to solve issues such as rounding errors and 
degeneracies. Most of the problems are closely related to the incompat- 
ibility between on one side algorithms designed for continuous data and 
on the other side the discrete nature of the data  and the computations 
in an actual computer. 

1 I n t r o d u c t i o n .  

Computational geometry began in the last seventies, and since has been 
developed as a whole domain inside theoretical computer science. Re- 
search in that area has been very active. Several books [2, 8, 15, 18] and 
journals are devoted to the field (IJCGA. CGTA~ DCG). As suggested by 
the name itself, "computational geometry" deals with the computation of 
geometric objects, and more precisely is devoted to the design of geometric 
algorithms and the study of their complexities. 

Below are detailed the main hypotheses which are usually made in 
computational geometry papers. These hypotheses are very important, 
they induce simplifications and an abstract framework for the design of 
algorithms which contribute to the success of the field and its produc- 
tivity. But these hypotheses are also a major drawback, because they 
turn the algorithms too abstract and make them far from the reality of 
programming. 

As a main example, I will use the problem of sorting n real numbers. 
Even if sorting is not really a geometric problem (people can argue that 
one dimensional geometry is not geometry), it is a good example to illus- 
trate the major points on a very simple and easy to understand problem. 
In some cases, I will also add some more geometric example. 

An important point about geometric algorithms is that they combine 
geometric and combinatorial aspects. The result of the algorithm is often 

* Work supported in part by ESPRIT LTR 21957 (CGAL) 



318 

combinatorial, in the sorting example the result is a permutation of size n. 
But the algorithm involves geometric tests, in our example comparisons 
of real numbers. In the abstract framework, such a geometric test takes 
continuous data (e.g.: two real numbers x and y) and returns some discrete 
data (e.g.: x is smaller/equal/greater than y); such a test or predicate often 
consists in evaluating the sign of some expression (e.g.: sign of x - y). 

C o m p l e x i t y .  Complexity usually means asymptotic complexity, that is 
the order of magnitude of the number of basic operations needed to solve 
the problem in terms of the size of the input. For example sorting n 
numbers costs O(n log n) comparisons. In such a notation, the big O hides 
a constant which can be important in practice, but is often forgotten in 
theoretical papers and never precisely studied. 

Lower bounds are usually proved either by evaluating the size of the 
output,  or in the Information Theory Bound model. In the ITB model, 
we assume that the algorithm is only allowed to make binary decisions 
and then the smallest number of decisions needed to solve the prob- 
lem is evaluated using Ben'Or theorems, basically the logarithm of the 
number of combinatorially different possible results is a lower bound. 
Such a lower bound only involves binary decision and does not count 
the amount of work needed between two decisions. For example sorting 
needs X?(n log n) = ~9(log n!) binary decisions. 

M o d e l  of  c o m p u t a t i o n .  To count the basic operations, we have to 
define precisely what a basic operation is. The usual hypothesis is that  
a geometric predicate can be evaluated in constant time and thus the 
complexity analysis usually only counts the number of such predicates 
needed by the algorithm to establish an upper bound on the complexity. 

Algorithms are usually designed using a real-number arithmetic, and 
thus a constant time operation is often an arithmetic operation such as 
comparison, addition, or multiplication of two real-numbers. This as- 
sumption cannot correspond to the reality of a computer because either 
the bit length of the number is fixed, and then the arithmetic available is 
not a real-number arithmetic but a rounded floating point arithmetic, or 
the bit length is not fixed, but in that case the time needed to perform 
an operation is no longer constant. 

Sometimes, people even use stronger "basic operations" such as the 
solving of an system of equations of bounded size and bounded degree 
(still assumed to need a "constant time"). 
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Lower bounds are also concerned by the model of computation, the 
Information Theory Bound is valid on Turing machine but not on RAM 
machine. For example, bucket sort works in linear time. 

D e g e n e r a t e  cases.  Together with the real-number arithmetic, an usual 
unrealistic hypothesis is the absence of degenerate cases. A situation 
is said to be degenerated if a small perturbation of the input may not 
preserve that  situation. In the sorting example, the situation is said de- 
generated if two values are equal. A more geometric example: the fact 
that  three points in the plane are cocircular is not degenerated since three 
points always define a circle but four cocircular points is a degenerated 
situation because a small perturbation of one point can move it inside or 
outside the circle defined by the three others. 

When a geometric predicate reduce to the sign of an expression, the 
positive and negative cases are the two regular answers, and the null case 
is the degenerated one. 

Computational  geometry papers usually assume that  there is no degen- 
erate cases. This assumption is justified by the fact that in a continuous 
world such cases have a null probability to occur. But in the computer 
world where data  are discretized, this probability is no longer null, and 
such cases actually occur. 

O r g a n i z a t i o n .  I will first describe in Section 2 some problems due to 
the above hypotheses and the intrinsic discrete nature of geometric data. 
Then we investigate the two main approaches used to cope with this. 
In Section 3, we look for means to use discrete data  as if we were in a 
continuous world and, in Section 4, we expose solutions having a more 
discrete spirit. 

2 R e a l - n u m b e r s  a r i t h m e t i c  y i e l d s  n o n  i m p l e m e n t a b l e  
a l g o r i t h m s .  

Most of the geometric algorithms rely on geometric theorems which are 
true in the usual mathematical  setting, where the geometric objects have 
real coordinates. Unfortunately, these theorems are no longer true when 
real coordinates are replaced by usual machine representable numbers such 
as f l o a t  or double;  and the geometric properties are replaced by numer- 
ical predicates evaluated using the rounded floating point arithmetic. 

For example a simple fact such as "If points a, b, c are collinear and 

a, b, d are collinear and a ~ b then a, c, d are colIinear" is no longer reliable, 
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when collinear means that  some arithmetic expression is evaluated to 0 in 
a rounded computation. For the sorting example, we will assume that  the 
machine comparisons is not transitive (which is hopefully false in actual 
computers); for the sake of illustration, we assume that entries are decimal 
numbers, and that  our computer is able to compare only integers and thus 
rounds the number before comparing them. 

Thus, most of the geometric theorems are not valid in the computer 
context, but still, most of the geometric algorithms rely on these geometric 
theorems. Therefore some situations may appear as incoherent if the input 
data  make some theorem fail. Since such a situation is supposed to be 
impossible, it is not planned in the program and it fails or falls in an 
infinite loop or maybe just computes a wrong result. 

Many examples of this kind exist in geometric soRwares [17]. The 
above simple example is very representative of the problems, since a com- 
mon case is that  some transitivity property, which is true in theory, is not 
verified, and the cycle created will correspond to an infinite loop in the 
program behavior. Imagine that  the rounded computation answers that  
x > y, y > x, x < z and y < z and bubble sort runs on an array starting 
by x, y and z. At each new traversal of the array z and y will be swapped, 
thus if the program runs until the order is fine, it wilt loop infinitely. 

In the following sections we will sketch two solutions to the fact that  
geometric theorems are not true in the computer model of computation. In 
Section 3 the model of computation is modified so that  relevant theorems 
still hold. In Section 4 weaker theorems are proved in the computer model 
of computation and other algorithms based on these new theorems are 

used. 

3 I m p l e m e n t i n g  r e a l - n u m b e r s  a r i t h m e t i c .  

The most common way to ensure that  geometric theorems hold is to com- 
pute with enough precision so that  the rounding done by the floating 
point computation cannot introduce a wrong decision (a wrong answer to 
a predicate). 

3.1 D i f f e r e n t  ways  o f  h a v i n g  p rec i se  c o m p u t a t i o n s .  

I n t e g e r  a n d  r a t i o n a l  a r i t h m e t i c .  Precise computations generally means 
exact computations. If the input data  are integer (resp. rational) and the 
predicate corresponds to the evaluation of a polynomial (resp. rational) 
formula, then computations can be done using exact computations with 
integer (resp. rational) of arbitrary length. 
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These exact tests can be achieved using standard libraries of large 
numbers, or some more specifically geometric methods devoted to some 
predicates [5, 1]. 

A r b i t r a r y  l e n g t h  f loa t ing  p o i n t  n u m b e r s .  Exact computation can 
also be achieved with floating point numbers, but of arbitrary length. 
Such a number of "indefinite precision" is often represented as the sum of 
a set of usual machine floating point numbers of "fixed precision", and the 
precise definition of the rounding operation in the IEEE standard is used 
to make arithmetic operations exactly, using a few machine operations 

[19, 201 . 

A l g e b r a i c  s y s t e m .  Sometimes, the predicate does not reduce to the 
evaluation of an expression, it can consist in the sign of the solution of 
some algebraic system, and even an exact arithmetic does not allow to 
compute that  solution exactly. In that  case, numerical methods can be 
used in a robust way. The result can be computed up to some small error, 
so that  the sign is guaranteed [4]. 

3.2 F i l t e r s .  

The above methods to reach exact computations solve many of our prob- 

lems, but they are expensive. A way to reduce the cost of exact compu- 

tation is to use rounded computation whenever it is possible and to use 

exact computations only were there is some doubt on the accuracy of the 
rounded result. 

W h a t  is a f i l ter?  A filter is an approximate evaluator for the result 
associated to a certifier which may guarantee some property about the 
precision of that  result. Such a filter is often a rounded computation of an 
expression and an upper bound on the error done during this computation; 
If the error is smaller than the computed value, then the sign of the 
expression is certified. If the certifier fails then the exact computation has 
to be done (or a less cheap but more accurate filter must be tried) [12, 161. 

For our weak comparisons described in the introduction, an example 
of filter is 

compute x-y 

if x-y > 2 then return x>y 

else if x-y _< -2 then return x<y 

else return filter failed 
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H o w  is a f i l ter  efl3cient? In practice, rounded computations is most 
often able to give the right answer, so that the aim of the filter is to find 
the very few cases where the rounded computation is not accurate enough. 

If we still are interested in the comparison test, if we assume that  the 
operands are randomly chosen in interval [0, N] and the filter failed on 
x<y if x-y< 2, then the probability of failure is 

1 FIN fmin(2r247 4 

]0 N-Z 

Thus if N is large the probability of failure of the filter is small. 
Under some hypotheses on the data, the probability of failure of the 

filter can be evaluated and if it is small enough, it justifies the choice of the 
filter (see [6] for result for collinearity and cosphericity tests). Hypotheses 
of random distribution on the data may be unvalid in practice, because 
some data are by nature degenerated. In that case, the expression whose 
signe we are looking for can be null, but the probability that  it is smaller 
than e and non null is still small and an adequate filter can be designed. 

4 D e s i g n i n g  a l g o r i t h m s  for  d i s c r e t e - n u m b e r s  a r i t h m e t i c .  

An alternative to exact computation consists in ensuring some combinato- 
rial property by some combinatorial way of computing (instead of relying 
on geometric theorems). 

To ensure that the geometric theorems needed by the algorithm are 
not violated when evaluating predicates, a solution consists in not com- 
puting any predicates which can be deduced from former evaluations. For 
example, if the points a<b and b<c have been evaluated to be true, and at 
some point the algorithm asks for a<c?, the numerical predicate should 
not be evaluated because previous evaluations and transitivity imply that 
the answer is "yes". Such an algorithm is called parsimonious by Knuth 

[131. 
This kind of approach can also be used in a weaker way, that  is ensur- 

ing weaker properties than the real geometric properties. A good example 
is Sugihara and Iri's algorithm [21] for Delaunay triangulation. This algo- 
rithm verifies during the insertion of each new point that the constructed 
triangulation is a good topological triangulation (a planar graph, so that 
each face is a triangle and each edge exists onty once). If the geometric 
predicates are exact then the algorithm construct the Delaunay triangula- 
tion, otherwise the algorithm guarantees that it does not fail and actually 
constructs a topological triangulation. So that another algorithm needing 
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a triangulation as input can use the result without trouble. Unfortu- 

nately, this algorithm does not ensure that the constructed triangulation 

is topologically equivalent to the Delaunay triangulation of some input, 
since there exist topological triangulations that cannot be realized as a 
Delaunay one [7]. 

Similar phenomena arise in other problems, for example an algorithm 
computing an arrangement of lines may guarantee some properties on 
line intersections, but not more complicated ones such as Pappus theorem 
[13]. Thus the computed arrangement may be not realizable by actual 
lines, such an arrangement is called an arrangement of pseudo-lines. This 
difference is important since the combinatorial properties are different 

[111. 

5 C o n c l u s i o n .  

Solving robustness problems in computational  geometry which rely on the 
discrete nature of computer computations is currently a big issue in the 

field and mobilizes many researchers. Many discussions at the last ACM 
symposium on computational geometry and the first workshop on applied 
computational  geometry were about  this topic. The main issues are the 
design of fast and exact code to answer geometric predicates (a simple 
geometric question such as "on which side of this plane does this point 
lie?") and the creation of new algorithms which do not rely on geometric 
theorems that are impossible to guarantee using computer arithmetic. 

Related works concern also new kinds of analysis. The intrinsic com- 
plexity of the geometric predicates can be studied [14, 3], or restricted 
models of computation were only a small number of well defined geomet- 
ric predicates are allowed can be developed [i0, 9]. 
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