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Abs t rac t .  A new discrete 3D polygon called Supercover Polygon is in- 
troduced. The polygon is a tunnel free plane segment defined by vertices 
and edges. An edge is a 3D line segment. Two different polygons can share 
a common edge and if they do, the union of both polygons is tunnel free. 
This is definition of discrete polygons that has the "most" properties in 
common with the continuous polygon. It seems particularly interesting 
for modelization of discrete scenes by way of digitization. 

1 Introduction 

The need for a discrete modeling environment emerges in many different fields : 
in medical imaging with reconstruction problems, in flight simulation for scene 
modeling, in the gaming industry, etc. One key element for tha t  is the discrete 
3D polygon. In this paper  a new 3D discrete polygon definition, the Supercover 
Polygon, is introduced. The supereover polygon seems to be an interesting can- 
didate for the digitization of continuous polygons because of it 's many properties 
in common with it. The Supercover polygon has the following properties : 

- the polygon is a 3D plane segment; 
- the polygon is tunnel free; 
- the polygon is defined by a sequence of vertices all belonging to the same 

continuous plane; 
- two consecutive vertices are linked by an edge which is a discrete 3D line 

segment. They separate the interior of the discrete polygon from the rest of 
the discrete plane; 

- if two polygons share a common edge then the union of the two polygons is 
tunnel free. 

The Supercover has many properties of the continuous Euclidean 3D polygon. 
This is not the case with classical 3D polygons [4]. Classically 3D polygons are 
defined as 2-dimensional separating objects (no 6-connected holes) and not as 
tunnel free objects (without any holes at  all). The problem is tha t  it is difficult to 
connect two classical polygons and to conserve the 2-dimensional (6-connected) 
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separation. Another problem is that  in many applications 2-dimensional sep- 
aration is not enough since there are still 1-dimensional (18-connected) and 
0-dimensional (26-connected) tunnels. In discrete ray tracing for instance a 0- 
dimensional ray can pass a wall formed by these classical polygons. This is a 
serious problem for such applications. These and other problems are avoided by 
the Supercover Polygon. 

In section 2 we present the notations and principal definitions used in this pa- 
per. In section 3 we deal with the definition and properties of objects defined 
as supereover of a continuous object. The Supercover polygon is introduced. We 
conclude in section 4. 

2 Prel iminaries  

[.] is the Integer Part. Function Invariant by Translation (i.e. Ix] is the greatest 
integer smaller or equal to m [2]). {x}, where x is a real or rational value, is 
the Euclidean remainder {x} = x -  [m]. The greatest common divisor for three 
integers a, b, c is noted GCD (a, b, e). A ~J B stands for A O B where A N B = 0. 
Z is the set of the integers, N the set of the positive integers, N* the set of the 
strictly positive integers and ]R the set of the real numbers. A discrete point is a 
point in Z a. A digital point is a point in 1R 3 with integer coordinates. A discrete 
(rasp. digital) object is a set of discrete (rasp. digital) points. A voxel V is a unit 
cube [ x -  �89 + �89 x [y - 1  [z - 1  , ~, y + �89 x 2,~ + �89 centered on a digital point 
of coordinates (m, y, z). Each voxel has a unique corresponding discrete point 
and vice-versa. 
The notation used in this paper  to describe the connectivity relations is different 
from the classical 3D one. The proposed notation is more consistent with exten- 
sions to higher dimensions [1]. Two grid points A(al, a2, a3) and B(bl,b2, b3) 
are said to  be N-dimensional neighbors (N=0,1 or 2) if e~ = la~ - b~l _< i and if 
N < 3 - e l  - e 2 - e 3 .  The definition of N-dimensional connectivity, N-dimensional 
arcs and N-dimensional paths are immediately deduced from this notation. A dis- 
crete object has a k-dimensional tunnel if a k-dimensional arc can go "through" 
the discrete object without intersection. A more formal definition can be found 
in [3]. A discrete object is said to be k-dimensional separating if the object has 
no k-dimensional tunnel. A discrete object tha t  is 0-dimensional separating is 
simply said to be tunnel free. The supercover S ~ of a continuous object S are 
all the discrete points with corresponding voxel V such that  V n S 5 A ~ [3]. The 
supercover has some interesting properties such as : (S U T) ~ = S ~ 0 T ~ and 
S C T ~ S TM c T ~. 

A discrete plane is defined analytically as the discrete points solutions of a dou- 
ble Diophantine inequality. The following definition has been introduced by J-P. 
R6veill6s [5]. 

D e f i n i t i o n  1. Discrete plane in dimension 3 
A discrete plane in dimension 3 is defined by: 
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. ( d , a ,  b, c, co )=  + I0,co[} 

L co 

where  a, b, c, d c Z; co c N* and GCD (a, b, c) = 1. 

a, b, c are the  coefficients of the  discrete plane, co is called the  arithmetical 
thickness and  d the  translation constant of the  plane. T h e  value ax + by + cz + d 
is called the  control value of the  discrete plane. A plane segment is a connected 
subset  of a plane. 
We can assume wi thout  loss of general i ty  t h a t  GCD (a, b, c) = 1 because if 
GCD(a ,b , c )  = u >  1, then  P(d ,a ,b , c ,  co) = p ( [ d ] , a  b _c CO,~ whereco '  

[~] § l i p  { ~ }  > {d}  and  c o ' =  [~] else. 
We can also assume wi thout  loss of general i ty  t ha t  the  coefficients defining 
a discrete plane are integers since we are only interested here in plane seg- 
ments  (Polygons) of finite size. Let  us suppose t h a t  we have a discrete plane 
P = P(d, a, b, c, co) defined with coefficients a, b, c, delI~3; co e N* and t h a t  we are 

only considering a finite pa r t  of space I = [0, p]3. The  coefficients are decom- 
posed as follow a = ao+~oo + a 2 ,  b = b o + ~  +b2, c = c o + ~  +c2, d = do+ ~ +d2 

F F 

where ao, al,bo, bl, e0, el,  do, dl,/) are integers and  a2, b2, e2, d2 posit ive real then  
it is easy to  see t h a t  P = P (4pd0 + dl, 4pao + al, 4pbo + bl, 4pco + Cl, 4pco) on I .  

3 S u p e r c o v e r  P o l y g o n  

P r o p o s i t i o n  2. Supercover of a continuous plane 
Let us consider the continuous 3D plane P defined by ax ~- by § cz § d = O, 

with a, b, c, d e Z. 
The supercover Pw of the continuous plane P is defined by the discrete points: 

- e l s e p w = e  d +  2 , , , c ,  l a l + l b l + l e l + t  

This  p rope r ty  makes  the  link between the  Supercover  and  the  analyt ical  de- 
fined discrete plane. The  op t imal  a r i thmet ica l  thickness for a tunnel  free discrete 
p lane  is lal + I b] + Icl [1] : a discrete plane if not tunnel  free for an a r i thmet ica l  
thickness smaller  t han  laB § Ibl § [c I and  if one a rb i t r a ry  point  is removed from 
the  plane a tunnel  is created.  This  means t h a t  the  Supercover  is tunnel  free and  
t h a t  for Is] + Jb I + Jc I even, the  supercover  plane is not of op t ima l  thickness.  I f  

a point  verifying ax + by § cz = 4 -lal+lbl+[cl is removed the  remain ing  discrete 
2 

object  is still tunnel  free. 
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Proof. : For what follows, we suppose without loss of generality that 0 < a < 
b _< c. Let us call pI  the discrete planes presented in the proposition as being 
equal to P~'. 
Let us first consider ~he case where a + b § e = 2e + 1 is odd. The arithmetical 
thickness of PI is a~ = 2e + 1. 
Is P~  C P~ ? The closest integer points to the continuous plane who do not 
belong to P~ are the points solution of ax + by + cz + d = ~(e + 1). Let's consider 
a point A (t, u, v) solution for e + 1. It is easy to see that  the closest point of the 
voxel corresponding to A to the continuous plane is B (t - �89 u - 1 ~ , v -  1 ) , a n d  

we h a v e a ( t - � 8 9  + ( u - � 8 9  + d : e + l - e =  1. This means that  P 
does not cut the voxel corresponding to A. The same is true for - (e + 1). This 
proves that  P~  C P~. 
Is P~ C P~  ? Let 's consider a point A (t, u, v) c P~. 
We have B ( t -  ~ g, u -  �89 v - �89 one vertex of the voxel corresponding to A, 

such that  a ( t - � 8 9  + ( u - � 8 9  + ( v - � 8 9  + d =  at + b u + c v + d - e  <_ O, and 
C (t + �89 + �89 + �89 a second vertex, such that a (t + �89 + �89 + 1)+ 
d = at + bu + cv + d + e >_ O. This means that  the voxel corresponding to A is 
cut by P. This achieves the proof for the case where w is odd that  P~ = P~.  
Let us now consider the case where a+b+c = 2e is even. We have then w = 2 e + l  
which leads to the same demonstration as above. 

Let us now define a 3D discrete line segment : 

Def in i t i on  3. Discrete 3D line segment 
The 3D discrete line segment between the points A and B is the supercover 
AB~'of the continuous line segment AB.  

P r o p o s i t i o n  4. link between discrete line segment and plane 
The intersection of the supercovers of all the Euclidean planes containing A B  is 
A B  ~ . 

This property is the basis of the Supercover Polygon definition. It means 
that  whatever orientation the discrete polygon has, the edge does not change, 
therefore two different polygons will be able to share a common edge. 

P,roof. : Cohen-Kaufman have proved that  a supercover is unique [3] which 
proves that  A B  ~' is included in the intersection of the supercovers of the planes. 
Let's now imagine a discrete point C that belongs to the intersection of the 
supercovers and that does not belong to A B  ~. Let's call L the closest point of 
the voxel corresponding to C to the segment A B  and M the closest point of A B  
to the voxel. We can define a continuous plane containing A B  and ol~hogonal 
to LM.  This plane does not cut the voxel corresponding to C and so C can't  
belong to the intersection of all the supercovers. 
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P r o p o s i t i o n  5. Line inclusion 
Let 's  consider the continuous segment A B  and a point C of the segment, then 
the discrete 3i) line A C  w and C B  ~ are included in the discrete line A B  w, and 
A B  ~ = A C  ~ U C B  ~. 

The proof is obvious. The 2D version of this property is also interesting to 
consider for other applications. 

D e f i n i t i o n  6. Discrete 3D polygon 
Let 's  consider a sequence of n > 3 points (A0, ..., Ak (x~, Yk, zk), . . . ,  A n - l )  such 
that  axk § byk + ezk § d = O. 
The Supercover Polygon is defined as the supercover of the continuous polygon 
defined by the sequence of points. We call edge of the discrete polygon the dis- 
crete line segment AiAi+l  (with A ,  = A0) and we call interior of the discrete 
polygon all the points of the polygons who do not belong to an edge. 

Note that  the interior of a discrete 3D polygon can be empty. 

P r o p o s i t i o n  T. Properties of the discrete 3D polygon 
The discrete 3D polygon is a discrete plane segment, is tunnel free and the union 
of two 3D discrete polygons sharing a common edge A B  is tunnel flee. 

Proof  of Proposition 7 is simple. We can use proposition 5 to connect without 
problems 3D polygons who are not sharing a complete common edge. This can 
be very useful for the modelization of complex discrete scenes. 

P r o p o s i t i o n  8. Separation property 
Let 's  consider a discrete polygon based on a discrete plane P. The edges of the 
polygon O-dimensional separate the interior of the polygon from the rest of P.  

0-dimensional separation means here that  no 0-dimensional paths within 
P can cross the  border (here the edge) without intersection. Cohen-Kaufman 
proved tha t  a supereover is 0-dimensional separating [3]. This is a direct appli- 
cation of their result. 

4 C o n c l u s i o n  a n d  D i s c u s s i o n  

At the basis of the results presented in this paper is the supercover of a contin- 
uous object. The supereover of a continuous object is formed by all the discrete 
points whose corresponding voxel "touches" the continuous object. The link with 
previous results of discrete geometry is made by the fact tha t  the supercover of a 
continuous plane is a discrete analytical plane [5]. The discrete supercover poly- 
gon is defined as the supercover of a 3D polygon defined in the continuous world. 
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By defining a 3D line segment as the supercover of a continuous line segment, 
we are able to define edges for the supercover polygon. These discrete edges 
have similar properties than  the continuous ones : they are independent of the 
orientation of the polygon and so two different supereover polygons can share a 
common edge. Another important  property of the supercover polygon is tha t  it 
is tunnel free. 

This 3D discrete polygon is an interesting alternative to the classical 3D poly- 
gon [4] for the digitization of a continuous polygon. Many topological properties 
of the continuous polygon are preserved. We think that  the supercover polygon 
could be a good choice for a complex discrete scene modelization for applications 
like discrete flight simulation, discrete ray tracing, etc. 

However, several important  questions remain open. The first question con- 
cerns the ari thmetical  thickness of the Supercover polygon. In certain cases, the 
supercover polygon is one point thicker than the optimal thickness needed to 
obtain a tunnel free polygon. Is it possible to define a Supercover polygon that  
is always of optimal thickness ? The definition of a corresponding 3D discrete 
line is the key issue here. We haven' t  found any satisfactory answer so far. An- 
other open question is : Is it possible to find a polygon definition that  is simply 
2-dimensional separating ? It  is not very difficult to define a 2-dimensional sep- 
arat ing polygon as plane segment of a 2-dimensional tunnel separating plane 
(called naive plane by &P. R6veill6s), but we loose most of the properties of 
the Supercover polygon such as compatible edge definition, etc. These and other 
questions need to be solved before we will be able to build a discrete analytical 
modeling environment compatible with classical continuous analytical modeling 
environments. 
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