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Abst rac t  

It is proved that digitM polynomial segments and their least squares polynomial fits are in one- 
to-one correspondence. This enables an efficient representation of digital polynomial segments by 
n + 3 pararneters, under the condition that an upper bound, say n, for the degrees of the digitized 
polynomials is assumed. One of such representations is (zl ,  rn, an, a n - i , . . . ,  no), where xl and m 
are the z-coordinate of the left endpoint and the number of digital points, respectively, while a,, 
an-l,  . . . ,  ao are the coefficients of the least squares polynomial fit Y = onX ~ +on- 1X n-  1 + . . .+  a0, 
for a given digital polynomial segment. 
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1 I n t r o d u c t i o n  

Consider a polynomial curve 7, in the Euclidean plane, with the equation y = an " z "  + an-1 " 
z ~-1 + . . .  + al �9 • + no. A digital curve is defined to be the result of subjecting a polynomial 
curve to a certain digitization process. The polynomial curve 7 will be digitized by the method with 
which the first digital points (points with integer coordinates, often referred to as pixels) below a 
given polynomial curve are taken. 0bviously, this is equivalent to translating the curve by -0 .5  in 
the vertical direction and rounding. 

Thus the associated set of digital points for the polynomial curve 7, called a digital polynomial 
curve, is defined by 

P ( 7 ) = { ( i , [ a n . i ' ~ + a , ~ _ l . i ~ - l + . . . + a l . i + a o J ) , i  is an integer } 

where [kJ denotes the greatest integer not larger than k. 

In general, we will be dealing with finite subsets of P(7)  or, more precisely, with digital polynomial 
curve segments that are obtained by digitizing parts of polynomiM curves lying between the lines 
z = Xl and x = z2, for some numbers z l  and x2. Without  loss of generality, we can assume that  Xl 
and x2 are integers. If x2 - Xl is equal to m - 1, then the digital polynomial curve segment P,~(7, Zl) 
for the considered po]ynomiai curve 7 is defined as: 

{ ( i ,  Lan. i  n + a n _ l . i n - l  + . . .  + a l . i + a O j ) ,  i =  z l , x  l + l , . . . , ; z :  l + ( m - l ) = x , ) .  Pm(7,zl) 

Obviously, m is the number of digital points in the digital polynomial curve segment P,~(7,Xl). 

One of the earliest problems considered in pattern recognition and image vision was the representa- 
tion and the recognition of sets of digital (lattice) points that  result from digitized straight lines or line 
segments ([2,3,10,13,18]). An analogous study for the circles has been also carried out ([9,13,17,19]). 
Similar problems have been of interest to number theorists and in fact some of results date b~ck to 
the time of Bernoulli ([4,5,8]). 
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The purpose of this paper is to give an efficient representation for digital polynomial segments of 
arbitrary length. For such a representation n + 3 parameters are used, where the degree of polynomial 
is assumed to be bounded by n. Pm(7 ,x l )  can be uniquely represented by ( x l , m , a , ~ , a , ~ _ l , . . .  ,a0), 
where z 1 and m are the x-coordinate of the left endpolnt and the length of digital polynomial segment, 
respectively, while a0, a~ . . . .  , a~ are the coeffidents of its least squares polynomial fit Y = a,~X '~ + 

@,~-i Xn-x + �9 �9 �9 + 4 0 .  

The idea to use the least squares line fit for representation of digital lines is proposed by Melter 
and P~osenfeld ([15]). Melter e t a l .  ([16]) proved tha t  the least squares line fit uniquely determines 
the digital line on a segment. Thus, any digital line segment can be  uniquely coded by four numbers 
(zx,n,  b0,bx) where z l  is its z-coordinate of the left endpoint,  the integer n is the number  of digital 
points, and be and bl are the Coefficients of the least squares llne fit Y = be + b l X  for the given 
digital line segment. Let us mention that  this representation is an alternative to the  well-known 
representation of digital lines suggested by Dorst and Smeulders ([7]) and to the one by adjacent 
pairs given by Lindenbaum and Koplowitz ([14]). The least squares method was applied in ([21]) 
on digital parabola segments (understood as the second degree polynomials - not as a conic curve). 
Three-dimensional surfaces have been studied in [11]. 

While there exist constant space representations for digital lines and digital parabolas in  literature, 
no such representation is currently known for digital polynomials of degree greater than  two. The 
representation given in this paper is the first one. Let us mention here that  if a plane curve is 
digitized, then the curve equation and the base description can be used for a trivial representation of 
its digitization. However, this trivial method has several deficiencies. For illustration, we give two of 
them: 

- in real world image processing an equation of digitized curve is usually unknown. For example: 
given a 2D picture of "digital pyramid", one can assume that  its edges are digital line segments, but  
the equations of the lines containing its original edges still remain unknown; 

- there are infinitely many curve segments (even of different kinds), the digitizations of which 
give the same digital curve segments. Therefore, a unique method for "one-to-one" mapping between 
digital curve segments and their representations would be useful (note: the trivial method mentioned 
above does not satisfy this request). 

:It is proved in Section 3 tha t  digital poiynomial segments and their least  squares polynomial fits are 
in "one-to-one" correspondence. Determination of the least squares fitting polynomial for a given set 
of points is a linear problem and consequently, it is easily solvable. Unfortunately, the determination 
of the least squares curve fits for some other curves is usually a nonlinear problem and consequently 
this is a problem of high computational complexity. Let us note tha t  the representation of digital 
curve segments by their least squares curve fits is snitable because it is natural ly to expect tha t  the 
least squares fit curve "looks like" the original curve. 

2 P r e l i m i n a r i e s  

A finite set of points in the plane is called a scatter diagram. The  least squares curve fit for the 
scatter diagram is a curve, which minimizes the total  sum of the squares of the vertical distances from 
the curve to the data  points. The method for determining such a curve is well-known from statistics, 
e.g. Burr  ([6]). 

If the scatter diagram is given by {(xi, y{), i = 1, 2 , . . .  , m )  and the  equation of its least squares 
polynomial is Y = a,~X ~ + a , ~ - l X  ~-1 + . . .  + a0, then the function 

F ( ~ , ~ - I  . . . . .  ~e) = ~ ( ~  + ~ _ 1 ~ - 1  + . . .  + ~o - y~)~ 
i = 1  
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should be minimized. Thus the following n + 1 equ~tlons: 

8F 0F aF 
Oan = O, 8a,~-1 "= 0 . . . .  , aao 0 

must be satisfied. This gives the following system of n + 1 equations with n + l  variables: 

~ m m 

�9 ~ ' : ~ "  E : ~  ~  + + ao �9 E : 1  a t ,  ~ ~ § a n - 1  " . . .  

i = 1  i = 1  i = 1  
r n  r n  

o~ �9 E = ~  ~-~ + o~-~ E 4  =-2 + . . .  + = o .  E = ?  -~ 
i = l  i = 1  i = 1  

rt~ m r n  

=o " E ~ r  + o~_~ ~ = r  -~ + . . .  + ~o �9 E 1  
/ = 1  / = 1  {=1  

m 

= Ev,~ 
i = l  

i = 1  

m 

----  E Yi �9 
i = 1  

(0 

If the previous scatter diagram is a digital curve segment, then xl = xi-1 + 1 (for i = 2 , . � 9149  m) is 
satisfied. There are 2n 4- 1 coefficients in the previous system�9 They are: 

m 

So =~1 
i = l  

rn 

i = l  

~n 

= V" x? ~ 
~=1 

The coefficients &,  & . . . . .  &n can be calculated recursively by using a well-known technique ([12]), 
and the previous system becomes 

22,, a,, + 32, , - i  �9 a,~-i + . . . +  & ao = ~-~y~z'~ 
i = l  

tr~ 

S2,~-, a,, + S~_~ . a,,-1 + . � 9  $~-1 " ao = ~ y ~ , ~ . - 1  
i = l  

, , .  
r~  

& an + & - I  " an-1 + . . . + S o  ao = ~ y ~  
i = 1  

(2) 

The coefficients a~, a , - t ,  . . . ,  ao of the least squares polynomial fit can be determined by solving 
the above system. The following theorem shows that the determinant of the system (1) is different 
from zero for m > n. Consequently, the system (1) has the unique solution in these cases. The system 
(1) has infinitely many solutions for m < n, because there exist infinitely many polynomials of degree 
n that pass m points with pairwise different absdssas. For illustration, we give that this determinant 

is equal to 2 - ~ m l  3(m + 1)2(m - 1)~(m - 2)(m + 2) for z l  = 0 and n - 2. Therefore, the system has 
the unique solution for m > 2. 

T h e o r e m  1 The sys tem (1) can be solved uniquely, whenever m > n is satisfied. 

Proof .  The determinant of the system (1) can be expressed as follows: 
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rn ~7. r,~ 

$ , "*" 

~=I i=1 '/=1 rt~ m rn 

~ - ~  ... E 4  -~ 
i=l {=1 ~=1 
�9 "~ % . . . . .  ;, 

i=1 i = l  i = l  

1 

X~ -1  

4 
1 

n 

.., Z 1 

... 1 

[ ~  ~'-~ -.. ~I 1 
�9 X~" lg~  - 1  . . ,  ~ l  1 

n n -1  I 
Xrn Zrn " "  ~n '~ I 

Xi n, X. n X. n X. n 
12 '"  ~n ~n+l  ~ - 1  ~ j 1  ~ - 1  ~.-~ 

" ' "  ~n {.+I 

Z.~ z .t x !  ~.~ x ;  
l<il<i2...<in<{n§ <r~ I1 12 ' ' �9 ~n In+l 

- - 1 1 . . .  1 1 

z ~  x -~-z x ~  1 [ ~1 ~ 

r , . , - I  1 i 
~'~ X{2 Xl 2 

x.n x. ~-1 x ! 
2:n n -1  2~1 

~nq-i ~{r*+l :.+1 

n X~ X~> Xn " 12 

I 
X n-1  X n-I 2~-i X.n-1 

: I  ~2 "*" In ~n+l 

1 x.1 x l = 
= l<il<i2.,.<i.<in+l<mE x{ll Xi~ "'" ,n ~.+1 

- - 1 1 . . .  1 1 

H (xi~ - xik) 2 �9 
1<il <.o.<{a+~ <m l < j < k < n + l  

The second equality follows from Binet-Cauchy's theorem ([1])�9 In this way, the first determinant 
is represented as the  sum of squares of determinants of order m. The last  inequality is strict because 
the summands  in the  last  sum are strictly positive. They are squares of Vandermonde determinants 
and these determinants  are non-zero, since the abscissas Xl, ..., z,~ are assumed to be all distinct�9 o 

In the  rest of the  paper, the inequality m > n will be assumed,  bu t  not  mentioned. If the scatter 
diagram is taken to be Pro(V, z l)  then the solution of the sys tem (1) will be denoted by an(7), a ~ - 1 ( 7 ) ,  

. . . .  ~o(~)- 

3 Least squares representation for digital polynomial segments 

A key question considered in this paper, is whether there exist two different digital polynomial 
segments,  P,n(V, x l )  and Prn(fl, xl) ,  tha t  result from digitization of two polynomials of degree less or 
equal to n, with the  same least squares polynomial fit, i.e., with an(v) = an(~),  a ~ - 1 ( 7 )  = a = - l ( f l ) ,  
�9 . . ,  a0(7) = a0(fl). The negative answer will be given. TbJs means  tha t  digital polynomial segments 
and their least squares polynomial fits are in one-to-one correspondence. 

T h e o r e m  2 Let P,~('r, zl) and P,~(fl, zl)  be two digital polynomial segments. If a=(7), a=-1(7) . . . . .  
no(v) and an(/3), an-l(fl), . . . ,  no(Z) are the coefficients of the least squares polynomial fits associated 
to P,~(V, zt)  and P,~(~,xl) ,  respectively, then: 

Can(v) = an(,G) A an-t(V) = an-l(,G) A . . .  A ao(7) = ao(fl)) ~ P,~(V,xl) = em(fl, xl). 

Proo f .  The direction 

follows from the definitions. The opposite direction will be proved by a contradiction. 
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Let the scatter  diagrams of digital polynomial segments P,,~(7, x~) and P,~(~, ~I) be: 
t , 

Pm(%Xl)  = {(xi,Yl),i = 1 , . . . , m )  and Pm(fl, Xl) = {(xi, yi),* = 1 , . . . , m ) ,  

We start  by an interpretation of the sums 
rn  rn  ~ m 

.X 2 .X .  n y ( ~ ) = ~ , ,  Y x ~ ( ~ ) = ~ , a , ~ , ,  YX~(~)=~y, ~, ..., Yx~(~)=~y, , ,  
i = 1  i = 1  i = 1  i = l  

which appear on the right-hand sides of the equalities of the system (1). For convenience and without 
loss of generality, in the rest of the proof, we can assume that  yi > 0 and y~ > 0, i = 1,2, . . .  , m  
(otherwise the translat ion in the vertical direction by - min {Yl, Y~} can be applied). 

i=l~2~...,ra 

�9 k Yl - is the number  of digital points below the digitized polynomial segment and above the 
i=l  

x-a~ds,  

rn 

�9 ~-~:~iYi - can be understood as the sum of the abscissa values of all digital points lying between 

the digitized polynomial segment and the x-axis. 
rn  

~ 2  �9 ~ i Yi - is the sum of the squares of the abscissa values of all digital points lying between the 

digitized polynomial segment and the x-axis. 

rn  

X r~ . �9 ~ ~ y,  - is the sum of n- th  powers of the abscissa values of all digital points lying between the 
i = l  

digitized polynomial segment and the ::-axis. 

Let us assume, on the contrary, that  there exist two different digital pdynomia l  segments Pro(7, zl) 
and P,n(~,xl), where the degrees of polynomials 7 and/~ are at most  n, wi th  the same associated 
coefficients of the least squares polynomial fits, i.e., with a=(7) = a=(~), a=-1(7) = a~-l(f~) . . . . .  
ao(~/) = a0(/~). Also, let the digital polynomial segments Pm(v,xl) and Pm(~,zl) be obtained by 
digitization of the polynomial segments - /and/~ ,  respectively. From the uniqueness of the solution of 
the system (1), it follows that  there must  be 

r ( v )  = E y ~  = y~ 
~=1 i=-1 

m i 

vx l ( ' r )  = E ~iv~ = E :~y~ 
i = I  i = l  

f YX2(7) 2 x~yl 2 ' = = xl Yi 
/ = 1  / = 1  

= = z~ yi  = Y X ~ ( Z )  
i = 1  i = 1  

= Y ( Z ) ;  

= Y x l ( z )  ; 

= Y X 2 ( ~ )  ; 
(a) 

Let us denote the  set of digital points belonging to the area A, below the polynomial 7 and above 
z-axis, and let us denote the set of digital points belonging to the area B,  below the polynomial 
and above the x-axis. Let for a digital point A , x(A) and y(A) denote the abscissa and ordinate 
of A, respectively; in other words, A = (z(A) ,y(A)) .  Then the equalities of (3) and the abm, e 
interpretation of the sums of (3) give: 

E l =  
AEA\B  A e B \ A  

A~A\B AeB\A 
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,(A)~ = ~ ~(~)~ 
/~EA\B a6B\A 

,., 

~ A \ B  AmB\A 

Let y.y(x) = a,~. x ~ + an- l "  z " - I  + . . .  + at" x -l- ao be t]~.e equation of the polynomial 7. An important 
remark is that ~ ( x ( A ) )  - ~(~) > 0 mr A e A \ B  while ~ ( ~ ( A ) )  - ~(A) < 0 for A e B \A .  

I f  ~] y(A) >__ ~ y ( A ) ,  thea a contradiction caa be made il l  the following way: 
AEA\B ~.s 

o < F, ((~," ~(a)" + o~_~. ~(a),-~... + ~ .  ~(~) + ~o. i) - y(a)) = 
aeA\B 

= an. ~ ~(~)"+a._l- ~ ~(a) "-~+...+~,. ~ ~(a)+~0. ~ 1- ~ y(a)_< 
~EA\B aeA\B AC:A\B ~.6A\B AEA\B 

<-~ .  E ~(ar+~,_~.  E ~(ar  -~+...+o~" E ~(a)+~o. E I -  E y(a)= 
,~.s AeB\A AeS\A AeBXA ~.eB\A 

= ~ (an ' x (A )  n + a~-1 ,x (A)  n- I  + . . .  + a l .  x(A) + ao-1) - y(A)) < O, 
~B\A 

The first and the last inequality are strict because the set differences A\B and B\A are nonempty 
(the difference of the considered digital polynomial segments is assumed). 

If ~] y(A) < ~ y(A),  then an analogous contradiction can be made with the polynomial 
&EA\B A6B\A 

$,instead of 7. [] 

4 C o m m e n t s  a n d  c o n c l u s i o n  

The least squares fitting technique is applied to digital polynomial segments. It is shown that digital 
polynomial segments and their least squares polynomial fits are in one-to-one correspondence provided 
that the degree of digitized polynomials is bounded. This result enables us to define an efficient repre- 
sentation for digital polynomial segments that results from digitization of polynomials with bounded 
degree, say n. Such a representation requires only n + 3 parameters. Two of them are integers, while 
the rest of them are rationals. 
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