
A Multilevel Security Model
For Distributed Object Systems

Vincent Nicomette and Yves Deswarte

LAAS-CNRS & INRIA
7, Avenue du Colonel Roche

31077 Toulouse Cedex - France
Telephone: +33/61 33 62 88 - Fax: +33/61 33 64 11

(nicomett@laas.fr, deswarte@laas.fr)

A b s t r a c t . In this paper, the Bell-LaPadula model for multilevel secure
computer systems is discussed. We describe the principles of this model
and we try to show some of its limits. Then we present some possible
extensions of this model, with their drawbacks and advantages. We finally
present our own extension of the model for object-oriented systems. In
this last section, we first explain the principles of our security policy,
then we describe the rules of our authorization scheme and we give an
example of a typical scenario in a distributed object-oriented system.

1 Introduct ion

During the last few years, object-oriented programming has been the most im-
por tan t issue of software engineering. Thanks to its power of abstract ion and
re-usability, the object model appears to be suitable to the development of nowa-
days systems which are increasingly complex. But this object model does not fit
easily the usual protection models. As a mat te r of fact, most of these protection
models are based on the notions of subjects and objects that do not correspond
to the notion of object as defined in the object-oriented languages. Furthermore,
the information flows in object systems have a very concrete and natural embod-
iment in the form of requests and corresponding replies. To prevent confidential
information leakage through these information flows, we propose a multilevel
security model.

As such, our model is similar to the well-known Bell-LaPadula model, which
is promoted by the US Depar tment of Defense. Bel l -LaPadula ' s rules do prevent
illegal information flows but are often too restrictive. The purpose of this paper
is thus to present a confidentiality model which has the same properties as
the Bell-LaPadula model but which is less restrictive. Section 2 is dedicated to
the presentation of the Bell-LaPadula model and its main drawbacks. Section
3 presents some extensions which have been proposed for this model. Section 4
introduces our protection model and gives an illustration of this model by means
of a detailed example. Section 5 demonstrates how this model prevents illegal
information flows. Section 6 compares this model to existing models and section
7 presents some perspectives for future work.

81

2 The Bel l -LaPadula model

The Bell-LaPadula model [1] is a prominent model for mandatory access-control
mechanisms enforcing a multilevel security policy in automated information-
processing systems. The Bell-LaPadula model was adopted as the formal policy
in the US Department of Defense's influential Trusted Computer System Eval-
uation Criteria (TCSEC), commonly known as the Orange Book [2]. In order
to obtain the "B" classification of the Orange Book, a system must enforce a
mandatory access-control mechanism based on the Bell-LaPadula model's formal
security policy.

The Bell-LaPadula model is a state machine model that abstractly describes
a system in terms of system states, and rules that enable transitions between
states. The state of the system includes a set of triples that define the current
access mode each subject has to each object in the system. A subject represents
an active entity, such as a process. An object is a passive container of data, such
as a file. The set of all modes in which a subject can access an object is (execute,
read, append, write):

- execute corresponds to: neither observation nor alteration;
- read corresponds to: observation with no alteration;
- append corresponds to: alteration with no observation;
- write corresponds to: both observation and alteration.

Different security levels are defined and partially ordered. Each object is
assigned one security level which is called the classification attribute of the object
and each subject is assigned two security levels: the first one represents the
clearance of the subject and is a static level, the second one is the current security
level of the subject; it is required that the clearance of the subject dominates
the current security level of the subject.

This model describes two access-control rules:

- T h e s imp le s e c u r i t y p r o p e r t y : A state is secure iff, for every subject in
the system with the ability to observe an object, the subject's clearance is
greater than or equal to the object's classification.

- T h e * - p r o p e r t y : A state is secure iffno subject may observe the contents of
an object O1 and store information in an object 02 unless O2's classification
is greater than or equal to O1's classification.
The definition of the *-property can be refined in terms of current security
level:
A state is secure iff for each access (subject, object, access mode) in the
system :

�9 the object classification dominates the subject current security level if
the access mode is append;

�9 the object classification equals the subject current security level if the
access mode is write;

�9 the object classification is dominated by the subject current security
level if the access mode is read.

82

The simple security property prevents users from accessing information they
are not cleared to access and the *-property prevents the information flow from
a high level of classification to a lower level of classification in the system.

The main drawback of this model is that the *-property is too restrictive. For
example, in a system which enforces a security policy based on the Bell-LaPadula
model, let us consider a user, logged in as SECRET, who reads a CONFIDENTIAL

file and then makes a copy of this file. The *-property requires the user to create
the copy with a classification which is at least SECRET. But obviously the clas-
sification of the information which is contained in the copy is the same as the
classification of the information of the original file, i.e., CONFIDENTIAL. Thus, the
*-property requires the user to create a file with a label that does not correspond
to the real classification of its content. This example puts the emphasis on one
of the main drawback of the Bell-LaPadula model: the classification of the infor-
mation in the system goes on increasing. This increasing leads to a degradation
of the information in terms of accessibility. Thus, such a system needs the inter-
vention of trusted subjects in order to periodically declassify the information.
Trusted subjects are subjects that can be relied on not to compromise security.
Thus their operations in the system are not submitted to the access control rules.
They can declassify information, which is an illegal operation according to the
access control rules of the model. In sum, the main problems with this model are
not the things it allows but the things it disallows [3]. Many operations that are
in fact secure will be disallowed by the model. The systems that choose to use
the Bell-LaPadula model either strictly implement it and thus accept a degrada-
tion in the functionality of the system, or implement a lot of services as trusted
subjects.

A second important drawback of the Bell-LaPadula model has been under-
lined in many papers: this model does not prevent the existence of covert chan-
nels. Covert channels are paths not normally intended for information transfer
at all, but which could be used to signal some information towards lower levels.
The problem of covert channels is directly connected to the sharing of different
resources of the system (storage resources or timing resources). A covert channel
may be used in two ways:

- directly by a malicious user with a high clearance who intentionally transmits
information to a malicious user with a low clearance; in that ease, the users
both collaborate in order to realize illegal information flows;

- indirectly by a Trojan horse: a user with a high clearance involuntarily ex-
ecutes the Trojan horse which transmits information to the malicious user
with a low clearance.

As originally formulated, some of the rules in Bell-LaPadula model allowed in-
formation to be transmitted improperly through control variables (storage chan-
nels). As reported by Landwehr in [3], Walter et al. established a final form of
the model in which the rules of the model do not contain storage channels,
but in which timing channels can exist. Unfortunately, timing channels can be
implemented easily, if a resource is shared between high and low users. For ex-
ample, a process pl might vary its paging rate in response to some sensitive da ta

83

it observes. Another process P2 (whose current security level is inferior to the
current security level of Pl) may observe the variations in paging rate and "de-
cipher" them to reveal the sensitive data. There is no rule in the Bell-LaPadula
model that can prevent such an information flow. Further reading about the
Bell-LaPadula model and its drawbacks can be found in [4], [5], [6].

3 S o m e e x t e n s i o n s o f t h e m o d e l

3.1 T h e f l oa t ing labels m e t h o d

In [7], John Woodward explains that the over-classification problem stems from
the fact that, in traditional implementations of secure/trusted systems, such as
SCOMP [8], subjects and objects inherit the sensitivity label of their creator. If
we consider the example given in the previous section, when the user logs in at a
SECRET level, the system creates a SECRET command interpreter to service him.
When the user enters a copy file command, the command interpreter creates
a SECRET process to run the command. This process is SECRET because it is
created by a S~CRET level command interpreter. The copy process creates a new
file into which it intends to copy the CONFIDV.NTL~L file but this new file must
be created S~CRET thus over-classifying the data.

John Woodward proposes to associate two labels to each process and data in
the system. The first label (called the sensitivity label) is a floating label that is
intended to represent the actual sensitivity of the data stored in an object. Upon
creation, each object must have the lowest sensitivity level of the system because
it contains no data. In the same way, upon subject creation, the sensitivity
label of the subject must represent the sensitivity of the data of its address
space. Furthermore, if a subject executes a system call in such a way that its
whole address space is reinitialized, then the sensitivity label of the subject must
represent the sensitivity of this new address space even if this new sensitivity
label is lower than the previous one. The second label that is associated with
each object and subject of the system is a security label exclusively used for
mandatory access control. This label is called MACL (Mandatory Access Control
Level). It represents for an object the classification of the data that it contains
and for a subject the clearance, i.e., the maximum level of data that it can
read. The sensitivity level of a subject or object can never exceed its MACE. An
example of such a labeling is detailed in Figure 1.

J. Woodward argues that this method allows to properly label a file which
is to be exported from the system because the sensitivity label represents the
actual level of information stored in the file. He also explains that any user in
the system can set (using a trusted/privileged system command) a file's security
level to the sensitivity level of this file when he wants to share this file with
someone he trusts.

It seems to be interesting to keep this sensitivity label with each object and
subject in the system. As a ma%er of fact, if we consider the declassification
process, the sensitivity label allows to declassify the information at a level that

Notations:

X[Y] means that:

X = sensitivity label

Y = MACL

with:

U = unclassified
C = confidential

S = secret

84

User logs in with SECRET clearance

I Creates U[S] process

e s s

es C[Sl

Fig. 1. Floating labels

Creates U[S]
Lille and writes

is really the actual level of the information. Thus, there is no need for trusted
users in order to es t imate the information which is to be declassified.

The main drawback of this model is the creation of covert channels that
do not exist in the Bell-LaPadula model, in particular storage channels. For
example, let us imagine a user p with a SECRET clearance who wants to give
information to a user q with a CONFIDENTIAL clearance. The user p declassifies
several files from SECRET classification to CONFIDENTIAL classification (in order
to be authorized to realize this declassification, the user p had taken care of not
writing information with classification higher than CONFIDENTIAL in these files).
When the declassification process is realized, the user q can read all these files
and in particular their names. If the user q knows that a name which begins
with a vowel means 0 and that a name which begins with a consonant means 1,
there is an illegal information flow thanks to this covert channel.

There are also t iming channels in this model. Let us imagine for example a
user p who chooses to declassify some files at some very precise dates. If a user

85

q with a lower clearance can notice these precise dates (each date corresponds
to the precise moment when he can read one more file), then he can use these
dates to receive information from p.

3.2 C a u s a l d e p e n d e n c i e s

Bruno d'Ausbourg [9] presents an original way to model the information flow
in multilevel systems. He describes a system as a set of points. A point (o,t)
references an object o at a time t. These points evolve with time and this evolving
is due to elementary transitions made by the system. An elementary transition
can modify a point: then, at instant t, it sets a new value v for the object o of
the point. This instant t and the new value v functionally depend on previous
points. This dependency on previous points is named causal dependency. The
causal dependency of (o,t) on (o',t') with t ' < t is denoted by (o~,t ') --+ (o,t).
The causality cone is defined as:

co e(o,t) = { (o ' , t ') l (o ' , t ') (o,t)}
where --+* is the transitive closure of the relation -e.

These causal dependencies makes up the structure of information flows inside
the system. If a subject has any knowledge about the internal functioning of the
system, then he is able to know the internal scheme of causal dependencies. So
if a user has knowledge of the internal functioning of the system and if he can
observe an output point x0, then he is able to infer any information in cone(xo),
i.e., he is able to observe all the points in cone(xo).

With respect to disclosure of information, a system is considered secure if a
subject can observe only the objects he has the right to observe. If we note Obs,
the set of objects that a user s can observe and R~ the set of objects that this
user is authorized to observe, we can say that the system is secure if: Obss C R,.

In a system enforcing a multilevel security policy, d 'Ausbourg explains that
two conditions are sufficient to guarantee the security of the system. In such
a system, a classification level l(x) is assigned to points x and a clearance l(s)
is assigned to subjects s. The first condition is that the clearance of a user s
dominates the set of output points O, that he can observe:

Vs, zo ~ O~ ~ l(:~o) ~ Z(s)
The second condition requires a monotonic increasing of levels over causal de-
pendencies:

vx, vu, x -+ l(x) <
This model is interesting because it contributes in a new way of formalizing

the information flows in a system. Furthermore, what makes this formalization
interesting is its minimal aspect: the notion of causal dependencies allows the
information flows to be described in a minimal way. Thus, if we define a security
policy and an authorization scheme based on this notion of causal dependencies,
the rules of the authorization scheme can describe the minimum conditions that
are to be enforced in a system in order to prevent the information flows. From this
point of view, this model is better that the Bell-LaPadula model that controls
the information flows with too severe measures. For example, in the model based
on causal dependencies, a user SECRET can change the label of an object from

86

SECRET to UNCLASSIFIED if it is reinitialized. As a matter of fact, the dependencies
that can be established for this operation do not lead to illegal information flows.

The main drawback of such a model seems to be the difficulty to enforce
it in real systems. As a matter of fact, it seems to be difficult to very closely
establish the causal dependencies in a system, just as the set of objects that
may be observed by a subject. Furthermore, the author does not indicate any
formal method which could help the administrators to precisely evaluate the
causal dependencies in a system. And this evaluation even becomes more tricky
in distributed systems where subjects and objects from multiple sites may co-
operate.

4 A m u l t i l e v e l s e c u r i t y m o d e l f o r d i s t r i b u t e d

o b j e c t s y s t e m s

4.1 Secure ent i t ies

Our model is based on two main concepts: the notions of objects and activities.
These entities are assigned labels as will be explained in the next paragraph.

The objects of our model are objects as defined in the object-oriented lan-
guages. Each object is made up of a private state information and a set of
operations which represent the object interface. The operations defined on an
object are called methods and are the only way to modify the state of the ob-
ject or to get information from this state. The communication between objects
consists in sending messages. An object O calls a method of an other object O ~
by sending O I a request. This message consists of a method selector and a list
of arguments.

An activity in distributed object systems consists in a succession of method
executions and requests through different objects of the system. This set of
method executions and requests are dependent and collaborate to achieve a
high-level task (e.g., printing a file on a printer). An activity exchanges informa-
tion with the different objects it accesses. This notion is similar to the notion
presented for the Chorus micro-kernel in [10]. In Figure 2, an activity is repre-
sented. This activity realizes a high-level task: recording a scene. This activity
consists in:

1. Starting the execution of the method Record-Scene of the object Client,
2. Making a request to the method Record of the object Recorder,
3. Starting the execution of the method Record of the object Recorder,
4. Making a request to the method Take of the object Movie-Camera,
5. Executing the method Take of the object Movie-Camera,
6. Returning to the method Record,
7. Making a request to the method Write of the object Video.Tape,
8. Executing the method Write of the object Video-Tape,
9. Returning to the method Record.

10. Returning to the method Record-Scene.

87

Movie-Camera
(Method: take)

Client Recorder ~

~ e ~ ~ . _ V ~ ~ V i d e o - T a p e)

Fig. 2. An activity

The point in the notion of activity is the idea of dependence, of collaboration:
an activity is made of a set of method executions that form parts of the same
global operation from a user point of view.

One of the important features of our model is that we distinguish two object
families: the stateless objects and the stateful objects. In the previous example,
the activity flows information from the object Movie-Camera to the object Video-
Tape. The object Recorder does not keep any memory of the information that it
receives from the object Movie-Camera; it simply writes this information in the
object Video-Tape. Yet, the object Recorderis accessed by the activity as the two
other objects. We can generalize this idea: any object stores data but these data
may be classified in two categories: the system data and the application data.
The application data are the data which compose the state of the object from the
application point of view, i.e., the data that are declared in the source code of
the object by the programmer. The system data are data added by the system
in the object to control the execution of the object (for example the process
stack). A stateless object is an object which does not store application data: its
state is initialized at each invocation. There is no information flow between two
successive requests that access a stateless object. This notion of stateless object
is analogous to the notion of "object reuse" of the Orange Book [2]. Conversely,
a stateful object is an object which stores application data and whose methods
consist in reading or writing these data. A lot of examples of stateless objects
can be found in classical systems such as Unix. For instance, an NFS server
is a stateless object. This server does not keep in memory any of the requests
that it receives. Its state is initialized at each invocation. All object managers,
in general, are stateless objects (browsers for example). We will see in the next

88

section that this notion of stateless object will be useful to implement a less
restrictive authorization policy than the Bell-LaPadula policy while preventing
in the same way the illegal information flows.

The goal of a multilevel security policy is to prevent users to get information
they are not cleared to access. As we suppose that each task realized in the
system by a user is realized by means of an activity, we can prevent illegal
information flows between users by preventing illegal information flows between
activities. We must thus ensure that an activity with a high security level cannot
transmit information to an activity with a lower security level (we will define in
the next section how a security level is assigned to an activity). Yet, two activities
may exchange information by accessing the same object (one activity writes an
object and the other activity reads this object). Thus, we have to control in
our system all interactions between activities and objects, i.e., to control each
request accessing an object.

In order to realize these access controls, we have to assign security levels
to the different entities of our model. We basically assign a security level to
each user of the system. As the objects are the containers of information of the
system, we have to assign them a security level (we will differently label stateless
and stateful objects). In order to control each interaction between activities and
objects, we have to assign security levels to the different requests of our system.

4.2 T h e different labels

We define a finite set of security levels partially ordered with respect to a binary
relation "<" .
Users:

A label is associated to each user of the system. This label represents the
user's clearance.
Objects:

We label in a different way the stateless and the stateful objects. A label
Lo is associated to each stateful object O. This label is the classification of
the object. It represents the classification of the data that compose the state of
the object. This classification is fixed and cannot be changed during the object
lifetime.

Two labels Llowo and Lhigho are associated to each stateless object O
(Ltowo <_ Lhigho). [Llowo, Lhigho] is a confidence interval defining the trust
one can put on the object. As a mat ter of fact, a stateless object does not store
any application data, and thus cannot be assigned a classification as a stateful
object. Nevertheless, each stateless object may be accessed by an activity like a
stateful object. Each activity carries information with a particular security level.
Each stateless object may thus potentially access this information. The labels
we assign to a stateless object represent the trust one can put in this object,
i.e., the trust that one can put on the actions that the object, as active entity,
can execute. The high label represents the highest security level of data that
can be read by the object. The low label represents the lowest security level of
data that could be written by the object. Let us imagine, for example, that a

89

stateless object is in fact a Trojan horse that keeps a local copy of all the data
that are carried by all the requests accessing it. The low label of the object will
guarantee that the copy will not be created with a label inferior to this label.
This means that a future, malicious activity will need a clearance superior or
equal to this low label to read the data. Conversely, the Trojan horse cannot
read and then store data with a level highest than Lhigho. Let us imagine an
administrator of a system who decides to use a new freeware NFS server that he
gets from an anonymous ftp server. The administrator then estimates the trust
that he can put in this NFS server (which is supposed to be a stateless object)
and thus assigns it a confidence interval representing this trust.
Requests:

Just as we said in the previous paragraph, each activity in the system car-
ries information and exchanges information with the objects it accesses. Thus,
an activity must be labeled. We assign a parenthesis of labels (i.e., two labels)
to each activity a. These labels are noted Llowa and Lhigha. These labels are
floating labels and may change according to the type and the labels of the ob-
jects accessed by the activity. The low label represents the classification of the
information carried by the activity, i.e., the highest level of the information that
has been previously read by the activity. The high label represents the clearance
of the activity. This clearance is initialized with the clearance of the user who
started this activity. The parenthesis can then be noted: [classification, clear-
ance]. The information carried by an activity is in fact carried by the different
requests among the objects of the system it accesses. Thus, in order to make
access controls in our model, we have to label these requests. We assign a paren-
thesis of fixed labels to each request r. These labels are noted Llowr and Lhighr.
Let us imagine that an activity is composed of n requests (rl , r2, ...r~). The first
request rl accesses an object in order to provoke the execution of one of its
methods. This execution leads to the sending of a new message, the request r2.
The parenthesis of labels of r2 will depend on the parenthesis of labels of rl and
on the type and labels of the object accessed by rl . Thus, the parenthesis of the
different requests will be different according to the different objects accessed by
the activity. The labels of the activity [LIowa, Lhigh~] (which are floating labels)
will successively be [Llow~l , Lhigh,1] ... [Llow,.,, Lhigh~.].

4.3 T h e access ru l e s

Our authorization scheme is composed of mandatory access rules based on the
different labels we have just presented. These rules cannot be bypassed.

4.3.1 Notion of read access and write access

In the rest of the paper, the term of read access and write access must be un-
derstood in a very precise sense. We call read access on a stateful object O, any
execution of a method of O which provokes an information flow from the internal
state of O to the activity which executes the method. Reciprocally, we call write
access any execution of a method of 0 which provokes an information flow from

90

the activity which executes the method to the internal state of O. We will call
read-write access any execution of a method of O which provokes an exchange
of information between the activity which executes the method and the state
of O (it is not worth considering "null access", i.e. methods which provoke no
information flow between a stateful object and the request).

4.3.2 Access Rules

Access to stateless objects:

If a request r may access a stateless object O (through invoking any of its
methods) then the intersection of [LIowo, Lhigho] and [LIow~, Lhighr] is not
empty. (R1)
Access to stateful objects:

With respect to stateful objects, the security policy is enforcing the following
rules (these rules derive from the Bell-LaPadula security policy rules):

s i m p l e s e c u r i t y c o n d i t i o n :
If a request r may read a stateful object O, then Lo < Lhigh~. (R2)

* - p r o p e r t y :
If a request r may write a stateful object 0 , then Llowr < Lo. (R3)

To enforce these rules, each method of a stateful object is assigned an at-
t r ibute indicating which kind of access is realized by the method: read, write or
read-write.

4.4 T h e access c o n t r o l s c h e m e

In this section we consider the current request r of an activity a which accesses
an object O.

- If O is a stateless object:

* If Lhighr < Llowo or Lhigho < Llowr:
the access is denied. (R4)

| If Llowo < Lhighr and Llow~ < Lhigho:
the access is authorized with restriction: [Llowa, Lhigha] is changed
to [Max(nlow~, nlowo), M in(Lhigh~, Lhigho)]. (R5)

This restriction means that the next request r ~ of the activity a will be la-
beled [Llowr, , nhigh~,] = [Max(Llow~, Llowo), M in(Lhigh~ , Lhigha)].
Note the particular case: if [Llowo, Lhigho] C [Llow~, Lhigha], then
the access is authorized without restriction since Max(Llow~, Llowo) =
Llowa and Min(Lhigh~, Lhigho) = Lhigha.

Rule (R4) guarantees that the request may not access objects unless the
intersection of the reqnest's parenthesis and the object 's confidence interval
is not empty. Rule (R5) describes the evolution of the parenthesis of an
activity accessing an object 0 by a request r: If an activity accesses a stateless

9]

object whose low label dominates the current classification of the information
carried by the activity then this current classification has to be set to this
label. If an activity accesses an object whose high label is dominated by the
clearance of the activity then the clearance of the activity has to be set to
the high label of the object.

- If O is a stateful object:

�9 If method m is a read method and if Lhigh,. < Lo :
the access is denied. (1%6)

�9 If method m is a read method and if Lo < Lhighr :
the access is authorized with restriction:
Llowa is changed to Maz(Llowa, Lo). (1%7)

Note the particular case: if Max(Llow~,Lo) = Llowa, the access is
authorized without restriction.

,, If method m is a write method and if Lo < Llowr:
the access is denied. (R8)

�9 If method m is a write method and if Llow, < Lo:
the access is authorized with no restriction. (R9)

�9 If method m is a read-write method and if Lo is not in the interval
[Llow~ , Lhighr]:

the access is denied. (R10)

�9 If method m is a read-write method and if Lo is in the interval
[Llowr, Lhighr]:

the access is authorized with restriction:
nlowa is changed to Max(Llowa, no). (R l l)

Note the particular case: if Max(Llowa,Lo) = Llowa, the access is
authorized without restriction.

Rules (R6) and (RT) describe the evolution of the parenthesis of an activity
making a read access to a stateful object. An activity must not read a stateful
object whose classification dominates the high label of the activity (R6). If an
activity makes a read access to an object whose classification dominates the
classification of the information carried by the activity (i.e., the low label), then
this low label has to be set to the classification of the object (1%7). There is no
restriction to be applied to the activity's parenthesis when an activity makes
a write access to a stateful object. As a mat ter of fact, the sensitivity of the
information carried by the activity does not change during such an access: there
is only an information flow from the activity to the object. So, whether the
access is authorized, or it is denied, no restriction is to be applied. An activity
can always make a write access to a stateful object whose classification dominates
the classification of the information carried by the activity (1%9) and an activity
cannot make a write access to a stateful object whose classification is dominated
by the classification of the information carried by the activity (this corresponds
to the *-property of the Bell-LaPadula model) (1%8).

92

4.5 A n e x a m p l e o f an a u t h o r i z a t i o n s c h e m e

In the following example, we consider that a SECRET user U wants to print an
UNCLASSIFIED file f3 on printer P4 whose confidence interval is [UNCLASSIFIED,
CONFIDENTIAL]. The set of objects which take place in the execution of this
action are represented in Figure 3. U is a user (a person) of the system, psi a
print server of class PrintServer, fs2 a file server of class FileServer, f3 a file of
class File, P4 a printer of class Printer and t f a transient file located on the site
of psi.

U

O
fs2 f3

sl

|

|

Fig. 3. Objects cooperation

The hierarchy of labels used in our example is represented below just as the
labels of the different components of the system:

UNCLASSIFIED < CONFIDENTIAL < SECRET < TOPSECRET.

User U : SECRET

psx : [CONFIDENTIAL, SECRET] (stateless object)
fs2 :[UNCLASSIFIED, SECRET] (stateless object)
P4 : [UNCLASSIFIED, CONFIDENTIAL] (stateless object)
f3 : UNCLASSIFIED (stateful object with methods read(), write(), update()

and delete())

The scenario cart be summarized as follows:

93

- User U logs in the system with a SECRET clearance. The activity a starts
executing the first request for U. This request is the invocation of method
print f of print server psi. This first request (message 1) is labeled [UNCLAS-
SIFIED, SECRET]. The low label is UNCLASSIFIED because the activity does not
hold any sensitive information. The high label represents the clearance of the
user V.

- Print server psi is a stateless object labeled [CONFIDENTIAL, SECRET]. The in-
tersection between the parenthesis of labels of the request and the confidence
interval of psi is not empty, but as Llowr < Llowp, 1 <_ Lhighr < Lhighp,,,
the access is authorized with restriction: Llowa is changed to CONFIDENTIAL,
i.e., the parenthesis of the activity is changed to [CONFIDENTIAL, SECRET] (cf.
R5).

- The activity goes on by invoking method readf of file server fs2 (m essag e
2). This request is labeled [CONFIDENTIAL, SECRET]. f 8 2 is a stateless ob-
ject labeled [UNCLASSIFIED, SECRET]. The access is thus authorized without
restriction (cf. R5).

- The activity then makes an access to method read of f3 (message 3). This
request is labeled [CONFIDENTIAL, SECRET]. f3 is a stateful object which is
labeled UNCLASSIFIED and the access is a read access. The access is thus
authorized without restriction (cf. RT).

- The activity then returns to fs2 and then to psi in two replies labeled [CON-
FIDENTIAL, SECRET] (messages 4 a n d 5). These two replies are authorized
without restriction because their parenthesis of labels is respectively included
in the confidence interval of fs2 and psi (particular case of R5).

- psi creates a temporary file t f in which it copies f3 (messages 6). This
creation request is part of the same activity and thus must be labeled
[CONFIDENTIAL, SECRET]. The file t f is a stateful object created with la-
bel Lt] = Llowr 1. psi makes a write access to t f with a [CONFIDENTIAL,
SECRET] request, t f is a stateful object and Llowr <_ Lt], thus the access is
authorized with no restriction (cf. R9).

- The activity then accesses printer P4 through method print (message 7).
The request is labeled [CONFIDENTIAL, SECRET], P4 is a stateless object and
the intersection between the parenthesis of labels of the request and the con-
fidence interval of P4 is not empty. But, as Llowp4 < Llowr _~ Lhiyhp4 <
Lhigh~, the access is authorized with restriction: Lhigh~ is changed to CON-
FIDENTIAL (cf. RN).

- P4 then invokes method read of t f (message 8). The request is now labeled
[CONFIDENTIAL, CONFIDENTIAL] (because of the previous access to P4), t f is
a stateful object, the invoked method is a read method and Lt] = Llow~,
the access is thus authorized without restriction. The return of this request
(me s sa ge 9) is labeled [CONFIDENTIAL, CONFIDENTIAL] and is authorized
because this parenthesis of labels is included in the confidence interval of
psi. After printing, P4 deletes file t f (message 10) in a [CONFIDENTIAL,

1 The label of a transient stateful object is defined by a parameter of the creation
request. Its level must be higher than or equal to the lower labeI of the request.

94

CONFIDENTIAL] request. The access is authorized with no restriction because
Llowr = Lt] (delete is a write access).

5 Preventing the illegal information flows

5.1 P r o o f

This section is dedicated to the demonstration that our model prevents the illegal
information flows. We describe here how we prevent these illegal information
flows thanks to the set of rules that we have presented in the previous sections.

Preventing the illegal information flows consists in demonstrating that there
does not exist a way for a user to infer information whose classification dominates
the clearance of the user. This information inference might imply the collabora-
tion of several users and the handling of several objects in the system. This can
be expressed in the following way :

We want to verify that if s is a user, 0 a stateful object and L, < Lo, then
there do not exist series {il, i2, ...il} and {jl, j2,--.j,~} such as:

(sjl , 0i l , read) A (sjl , 0i2, write) A (sj2 , Oil, read) A . . . A (sj.~, Oil, read).
with sj~ = s and O~ 1 = O.

In the context of our model, this means that there do not exist series of activities
and objects whose collaboration allow illegal information flows. Formally, this
means, that there do not exist series {il, i2, ...it} and {kl, k2, ...,]g,} such as:

(akl, Oil, read) A (ak~ , 0i2, write) A (ak2, 0i2, read) A (a~2, Oil, write) A . . .
h (ak~, Oi,, read) (ak, is an activity; the last one, ak, is started by u ~ r sj,~)

(ak~ , Oil, read) implies:
�9 Lo~ <_ Lhighakl (Rule R1)
. nlowak~ is changed to Max(Llowak~, no,~) (Rule R7)

(ah~, 0i2, write) implies:
�9 Llowak~ ~_ Lo~: (Rule R9).
(with Llowak~ changed according to the access to Oil).

This leads to: Lo~ < Lo~ and thus to: Lo~I ~_ Lo~ .." ~ Lo~

On the other hand, (ak~, Oil, read) implies: Lor ~_ Lhighak . Furthermore, as
the activity ha. is started by the user sj,~, we have the relation: Lhighak, ~_
L~, , . This leads to: Lo~ ~_ L~s~.

We thus obtain: Lo~ ~_ Lo~ . . . ~_ Lo~ ~ L, ,~ and thus Lo~, ~_ L~j~, i.e.,
Lo ~_ L, which is contrary to the hypothesis (Ls ~_ Lo).

5.2 V a l i d a t i o n process a n d cover t channe l s

We have presented in the previous sections some important notions of our model:
the stateless objects and the at tr ibutes assigned to each method of a stateful
object (read, write, read/write). The flexibility of our model and its interest

95

with respect to the Bell-LaPadula security policy depend on the fact that we
can or cannot validate such entities in the system. Given that, our model needs
some validation processes in order to verify that an object which is supposed
to be stateless is actually stateless (i.e., that it does not keep in local variables
some information carried by the requests that access it). The confidence interval
that we assign to a stateless object represents the trust we have for this object
to be really a stateless object, thanks to the validation process. In the same way,
we need to validate that each method of a stateful object which pretends to be
a read (respectively write, read/write) method is actually a read (respectively
write, read/write) method. We think that techniques like program proof, code
analysis would quite easily allow to make such verifications. As a mat ter of fact,
the properties that we want to check are quite simple. In order to check that a
stateless object is actually a stateless object, we have to check that it does not
keep in memory any information exchanged with the activities which access it.
We can make this verification by checking that a stateless object reinitializes
all its local variables after each method invocation. In order to check that a
read method (for instance) is actually a read method, we have to check that the
method only reads information from the activities which access it but does not
give any information to these activities. If the messages are sent via sockets for
example, we thus have to check all socket handlings in the source code of the
method and check that all these bundlings consist in reading information on the
sockets.

In the same say, we must validate each object of the system to check that it
cannot use a covert channel. A secure computer system ideally would not allow
communication channels to exist. But eliminating all the covert channels in a
secure system is in fact a quasi-impossible task: as soon as some resources of the
system are shared, there are covert channels. Furthermore, eliminating all the
covert channels in a system may lead to a non-responsive, non-reliable system.
Given that , it is generally better to find ways to minimize illicit information
leakage through such covert channels. Tha t is the approach chosen in this paper.
The model we present does not eliminate the existence of covert channels but
aims at limiting the use of these covert channels: we consider that we can validate
each object introduced in the system in a way that we can trust it not to try
to transmit information using a covert channel. This validation is realized "off-
line", i.e., before introducing the object in the system. This validation concerns
all the objects of the system, stateless objects as well as stateful objects. One
could pretend that this task seems quite difficult. We think it is not. As a mat ter
of fact, it is commonly agreed that it is possible to identify all the covert channels
that may exist on a system and that it is possible to measure their brandwidth.
The B3 evaluation [2] of a system requires this identification and these measures,
and B3 and even A1 systems do exist. So, if it is possible to identify the covert
channels of a system, we assert that it is then possible to detect in a source code,
the mechanisms that may try to exploit these covert channels (such analysis even
seems easier that the analysis of the existence of covert channels).

If we consider that we cannot trust our validation process (i.e., methods to

96

assign the confidence interval to stateless objects, mechanisms to check that a
read (respectively write, read/write) method is really a read (respectively write,
read/write) method and processes that verify that an new object introduced
in the system does not try to transmit information through covert channels), a
pessimistic solution is to consider that all objects are stateful (a single label is
thus assigned to each object), that all the operations in the system are read/write
and that all the activities have a parenthesis reduced to: LIowa = Lhigha. This
leads us to use the classical Bell-LaPadula model directly applied to distributed
object systems.

6 Related work

One of the main characteristics of our model is that we always try to assign
an activity the classification that actually represents the classification of the
information carried by the activity. This allows to avoid the over-classification
of the information because objects that are created are assigned a label that
actually reflects the sensitivity of their state. The floating labels proposed by
John Woodward (see Section 3.1) aim at implementing tile same property even
if this implementation does not address object systems.

This idea has also been exploited in object oriented databases. The SODA
model [11] is based on the notions of object and method activation. In SODA, an
object may have a label protecting the whole object or a set of labels protect-
ing independently each attribute of the object and the whole object itself. Each
method activation (the active entity in SODA) is assigned a clearance level and a
current classification level. The clearance level is an upper bound for the current
classification level and this current level can raise according to the objects ac-
cessed by the method activation. Just as in our model, the login method begins
execution with classification level equal to SYSTEM LOW. The security policy in
the SODA model is defined by rules that are similar to the rules we have presented
here except one: a method may not modify an object unless the current classifi-
cation level of the method is dominated by the level of the object and after the
modification, the current classification level of the method becomes equal to the
level of the object. We think that this modification of the current classification
level of the method is not justified. As we said in the previous section, we think
that it is possible to verify that some modifications are strictly write accesses
(i.e., information flows from the method activation to the object) and that, in
such cases, there is no reason to increase the current classification level of the
method activation. Furthermore, the way of labeling the objects and particularly
the attributes of the objects in SODA is only well suited to database systems and
corresponds to a client/server model rather than a model based on cooperative
objects. We think that this granularity of protection does not correspond to ob-
ject oriented systems in which the protection rather addresses the whole state of
the object. Thus, we think that it may be quite difficult to adapt SODA'S model
to distributed object systems.

In the message filter object-oriented model, Jajodia and Kogan [12] choose

97

to assign one label to each object. Objects can exchange information only by
sending messages. Thus, the principle of the model is to control all information
flows by mediating the flow of messages. The message filter takes appropriate
action upon intercepting a message and examining the classification of the sender
and the receiver. Each method activation is assigned a level given by a variable
rlevel. Jajodia and Kogan explain that the intuitive significance of rlevel is that
it keeps track of the least upper bound of all objects encountered in a chain of
method invocations, going back to the root of the chain (this rlevel corresponds
to the classification of an activity of our model). This model has also some
additional features in order to eliminate some timing channels. In [13], this model
has also been proposed, in the context of a discretionary system. Even if this
model is an interesting adaptation of the Bell-LaPadula model to object systems,
we think that its main drawback is that it uniformly considers the objects of the
system (and thus assigns a single label to stateless objects). This model is thus
as restrictive as the Bell-LaPadula model in classical systems.

7 Conclusion and future work

The Bell-LaPadula security model prevents illegal information flows in a multi-
level system but is too restrictive. We have proposed in that paper a multilevel
security model that is derived from the Bell-LaPadula model but that is less
restrictive (thanks to the notion of stateless objects) and that is adapted to the
distributed object systems.

It should be interesting to study the adaptation of other security policies to
distributed object systems. For example, we think it an interesting future work
to study the adaptation of Biba's [14] integrity policy to object systems.

References

1. D. Bell and L. LaPadula, "Secure Computer Systems: unified Exposition and Mul-
tics Interpretation," Tech. Rep. MTR-2997, MITRE Co., July 1975.

2. "U.S. Departeinent of Defense Trusted Computer Security Evaluation Criteria
(TCSEC)." 5200.28-STD, December 1985.

3. C. Landwehr, "Formal Models for Computer Security," ACM Computing Surveys,
vol. 3, pp. 247-278, September 1981.

4. E. R. Lindgreen and I. Herschberg, "On the Validity of the Bell-LaPadula Model,"
Computers and Security, vol. 13, pp. 317-333, 1994.

5. J. McLean, "Reasoning about Security Models," in Proc. o] Symposium on Re-
search in Security and Privacy, IEEE Computer Society Press, (Oakland, Califor-
nia(USA)), pp. 123-131, 1987.

6. D. Bell, "Concerning 'Modeling' of Computer Security," in Proc. o] Symposium
on Research in Security and Privacy, IEEE Computer Society Press, (Oak[and,
California(USA)), pp. 8-13, 1988.

7. J. Woodward, "Exploiting the Dual Nature of Sensitivity Labels," in Proc. of Sym-
posium on Research in Security and Privacy, [EEE Computer Society Press, (Oak-
land, California(USA)), pp. 23-30, 1987.

98

8. L. Fraim, "Scomp: A Solution to the Multilevel Security Problem," IEEE Com-
puter, vol. 16, pp. 26-34, July 1983.

9. B. d'Ausbourg, "Implementing Secure Dependencies Over a Network by Designing
a Distributed Security Subsystem," in Proc. of European Symposium on Research
in Computer Security, (Brighton(UK)), pp. 249-266, November 1994.

10. J. Banino, J. Fabre, M. Guillemont, G. Morisset, and M. Rozier, "Some Fault-
Tolerant Aspects of the Chorus Distributed System," in Proc. of 5th International
Conference on Distributed Computing Systems, (Denver, Colorado), pp. 430-437,
May 1985.

11. T. Keefe, W. Tsai, and M. Thuraisingham, "SODA: a Secure Object-oriented
Database System," Computers and Security, vol. 8, no. 6, pp. 517-533, 1989.

12. S. Jajodia and B. Kogan, "Integrating an Object-Oriented Data Model with Multi-
Level Security," in Proc. of the 1990 IEEE Symposium on Security and Privacy,
(Oakland, CA), pp. 48-69, May 1990.

13. E. Bertino, P. Samarati, and S. Jajodia, "High Assurance Discretionary Access
Control for Object Bases," in Proc. of 1st ACM Conference on Computer and
Communications Security, (Fairfax, Virginia (USA)), pp. 140-150, November 1993.

14. K. Biba, "Integrity Considerations for Secure Computer Systems," Tech. Rep.
ESD-TR 76-372, MITRE Co., April 1977.

