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A b s t r a c t .  In this paper, the Bell-LaPadula model for multilevel secure 
computer systems is discussed. We describe the principles of this model 
and we try to show some of its limits. Then we present some possible 
extensions of this model, with their drawbacks and advantages. We finally 
present our own extension of the model for object-oriented systems. In 
this last section, we first explain the principles of our security policy, 
then we describe the rules of our authorization scheme and we give an 
example of a typical scenario in a distributed object-oriented system. 

1 Introduct ion 

During the last few years, object-oriented programming has been the most  im- 
por tan t  issue of software engineering. Thanks to its power of abstract ion and 
re-usability, the object model appears to be suitable to the development of nowa- 
days systems which are increasingly complex. But this object model does not fit 
easily the usual protection models. As a mat te r  of fact, most  of these protection 
models are based on the notions of subjects and objects that  do not correspond 
to the notion of object as defined in the object-oriented languages. Furthermore,  
the information flows in object systems have a very concrete and natural  embod- 
iment in the form of requests and corresponding replies. To prevent confidential 
information leakage through these information flows, we propose a multilevel 
security model. 

As such, our model is similar to the well-known Bell-LaPadula model, which 
is promoted  by the US Depar tment  of Defense. Bel l -LaPadula ' s  rules do prevent 
illegal information flows but are often too restrictive. The purpose of this paper  
is thus to present a confidentiality model which has the same properties as 
the Bell-LaPadula model but which is less restrictive. Section 2 is dedicated to 
the presentation of the Bell-LaPadula model and its main drawbacks. Section 
3 presents some extensions which have been proposed for this model. Section 4 
introduces our protection model and gives an illustration of this model by means 
of a detailed example.  Section 5 demonstrates  how this model prevents illegal 
information flows. Section 6 compares this model to existing models and section 
7 presents some perspectives for future work. 
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2 The Bel l -LaPadula model  

The Bell-LaPadula model [1] is a prominent model for mandatory access-control 
mechanisms enforcing a multilevel security policy in automated information- 
processing systems. The Bell-LaPadula model was adopted as the formal policy 
in the US Department of Defense's influential Trusted Computer System Eval- 
uation Criteria (TCSEC), commonly known as the Orange Book [2]. In order 
to obtain the "B" classification of the Orange Book, a system must enforce a 
mandatory access-control mechanism based on the Bell-LaPadula model's formal 
security policy. 

The Bell-LaPadula model is a state machine model that  abstractly describes 
a system in terms of system states, and rules that  enable transitions between 
states. The state of the system includes a set of triples that  define the current 
access mode each subject has to each object in the system. A subject represents 
an active entity, such as a process. An object is a passive container of data, such 
as a file. The set of all modes in which a subject can access an object is (execute, 
read, append, write): 

- execute corresponds to: neither observation nor alteration; 
- read corresponds to: observation with no alteration; 
- append corresponds to: alteration with no observation; 
- write corresponds to: both observation and alteration. 

Different security levels are defined and partially ordered. Each object is 
assigned one security level which is called the classification attribute of the object 
and each subject is assigned two security levels: the first one represents the 
clearance of the subject and is a static level, the second one is the current security 
level of the subject; it is required that the clearance of the subject dominates 
the current security level of the subject. 

This model describes two access-control rules: 

- T h e  s imp le  s e c u r i t y  p r o p e r t y :  A state is secure iff, for every subject in 
the system with the ability to observe an object, the subject's clearance is 
greater than or equal to the object's classification. 

- T h e  * - p r o p e r t y :  A state is secure iffno subject may observe the contents of 
an object O1 and store information in an object 02 unless O2's classification 
is greater than or equal to O1's classification. 
The definition of the *-property can be refined in terms of current security 
level: 
A state is secure iff for each access (subject, object, access mode) in the 
system : 

�9 the object classification dominates the subject current security level if 
the access mode is append; 

�9 the object classification equals the subject current security level if the 
access mode is write; 

�9 the object classification is dominated by the subject current security 
level if the access mode is read. 
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The simple security property prevents users from accessing information they 
are not cleared to access and the *-property prevents the information flow from 
a high level of classification to a lower level of classification in the system. 

The main drawback of this model is that  the *-property is too restrictive. For 
example, in a system which enforces a security policy based on the Bell-LaPadula 
model, let us consider a user, logged in as SECRET, who reads a CONFIDENTIAL 

file and then makes a copy of this file. The *-property requires the user to create 
the copy with a classification which is at least SECRET. But obviously the clas- 
sification of the information which is contained in the copy is the same as the 
classification of the information of the original file, i.e., CONFIDENTIAL. Thus, the 
*-property requires the user to create a file with a label that  does not correspond 
to the real classification of its content. This example puts the emphasis on one 
of the main drawback of the Bell-LaPadula model: the classification of the infor- 
mation in the system goes on increasing. This increasing leads to a degradation 
of the information in terms of accessibility. Thus, such a system needs the inter- 
vention of trusted subjects in order to periodically declassify the information. 
Trusted subjects are subjects that  can be relied on not to compromise security. 
Thus their operations in the system are not submitted to the access control rules. 
They can declassify information, which is an illegal operation according to the 
access control rules of the model. In sum, the main problems with this model are 
not the things it allows but  the things it disallows [3]. Many operations that  are 
in fact secure will be disallowed by the model. The systems that  choose to use 
the Bell-LaPadula model either strictly implement it and thus accept a degrada- 
tion in the functionality of the system, or implement a lot of services as trusted 
subjects. 

A second important  drawback of the Bell-LaPadula model has been under- 
lined in many papers: this model does not prevent the existence of covert chan- 
nels. Covert channels are paths not normally intended for information transfer 
at all, but  which could be used to signal some information towards lower levels. 
The problem of covert channels is directly connected to the sharing of different 
resources of the system (storage resources or timing resources). A covert channel 
may be used in two ways: 

- directly by a malicious user with a high clearance who intentionally transmits 
information to a malicious user with a low clearance; in that  ease, the users 
both collaborate in order to realize illegal information flows; 

- indirectly by a Trojan horse: a user with a high clearance involuntarily ex- 
ecutes the Trojan horse which transmits information to the malicious user 
with a low clearance. 

As originally formulated, some of the rules in Bell-LaPadula model allowed in- 
formation to be transmitted improperly through control variables (storage chan- 
nels). As reported by Landwehr in [3], Walter et al. established a final form of 
the model in which the rules of the model do not contain storage channels, 
but  in which timing channels can exist. Unfortunately, timing channels can be 
implemented easily, if a resource is shared between high and low users. For ex- 
ample, a process pl might vary its paging rate in response to some sensitive da ta  
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it observes. Another process P2 (whose current security level is inferior to the 
current security level of Pl) may observe the variations in paging rate and "de- 
cipher" them to reveal the sensitive data. There is no rule in the Bell-LaPadula 
model that  can prevent such an information flow. Further reading about the 
Bell-LaPadula model and its drawbacks can be found in [4], [5], [6]. 

3 S o m e  e x t e n s i o n s  o f  t h e  m o d e l  

3.1 T h e  f l oa t ing  labels  m e t h o d  

In [7], John Woodward explains that the over-classification problem stems from 
the fact that,  in traditional implementations of secure/trusted systems, such as 
SCOMP [8], subjects and objects inherit the sensitivity label of their creator. If 
we consider the example given in the previous section, when the user logs in at a 
SECRET level, the system creates a SECRET command interpreter to service him. 
When the user enters a copy file command, the command interpreter creates 
a SECRET process to run the command. This process is SECRET because it is 
created by a S~CRET level command interpreter. The copy process creates a new 
file into which it intends to copy the CONFIDV.NTL~L file but this new file must 
be created S~CRET thus over-classifying the data. 

John Woodward proposes to associate two labels to each process and data  in 
the system. The first label (called the sensitivity label) is a floating label that  is 
intended to represent the actual sensitivity of the data  stored in an object. Upon 
creation, each object must have the lowest sensitivity level of the system because 
it contains no data. In the same way, upon subject creation, the sensitivity 
label of the subject must represent the sensitivity of the data  of its address 
space. Furthermore, if a subject executes a system call in such a way that  its 
whole address space is reinitialized, then the sensitivity label of the subject must 
represent the sensitivity of this new address space even if this new sensitivity 
label is lower than the previous one. The second label that  is associated with 
each object and subject of the system is a security label exclusively used for 
mandatory access control. This label is called MACL (Mandatory Access Control 
Level). It represents for an object the classification of the data  that  it contains 
and for a subject the clearance, i.e., the maximum level of data  that  it can 
read. The sensitivity level of a subject or object can never exceed its MACE. An 
example of such a labeling is detailed in Figure 1. 

J. Woodward argues that  this method allows to properly label a file which 
is to be exported from the system because the sensitivity label represents the 
actual level of information stored in the file. He also explains that  any user in 
the system can set (using a trusted/privileged system command) a file's security 
level to the sensitivity level of this file when he wants to share this file with 
someone he trusts. 

It seems to be interesting to keep this sensitivity label with each object and 
subject in the system. As a ma%er of fact, if we consider the declassification 
process, the sensitivity label allows to declassify the information at a level that  



Notations: 

X[Y] means that: 

X = sensitivity label 

Y = MACL 

with: 

U = unclassified 
C = confidential 

S = secret 
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User logs in with SECRET clearance 

I Creates U[S] process 

e s s  

es C[Sl 

Fig. 1. Floating labels 

Creates U[S] 
Lille and writes 

is really the actual level of the information. Thus,  there is no need for trusted 
users in order to es t imate  the information which is to be declassified. 

The main  drawback of this model is the creation of covert channels that  
do not exist in the Bell-LaPadula model, in particular storage channels. For 
example,  let us imagine a user p with a SECRET clearance who wants to give 
information to a user q with a CONFIDENTIAL clearance. The user p declassifies 
several files from SECRET classification to CONFIDENTIAL classification (in order 
to be authorized to realize this declassification, the user p had taken care of not 
writing information with classification higher than CONFIDENTIAL in these files). 
When the declassification process is realized, the user q can read all these files 
and in particular their names. If  the user q knows that  a name which begins 
with a vowel means 0 and that  a name which begins with a consonant means 1, 
there is an illegal information flow thanks to this covert channel. 

There are also t iming channels in this model. Let us imagine for example a 
user p who chooses to declassify some files at some very precise dates. If  a user 
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q with a lower clearance can notice these precise dates (each date corresponds 
to the precise moment  when he can read one more file), then he can use these 
dates to receive information from p. 

3.2 C a u s a l  d e p e n d e n c i e s  

Bruno d'Ausbourg [9] presents an original way to model the information flow 
in multilevel systems. He describes a system as a set of points. A point (o,t) 
references an object o at a time t. These points evolve with time and this evolving 
is due to elementary transitions made by the system. An elementary transition 
can modify a point: then, at instant t, it sets a new value v for the object o of 
the point. This instant t and the new value v functionally depend on previous 
points. This dependency on previous points is named causal dependency. The 
causal dependency of (o,t) on (o',t') with t '  < t is denoted by (o~,t ') --+ (o,t). 
The causality cone is defined as: 

co e(o,t) = { (o ' , t ' ) l (o ' , t ' )  (o,t)} 
where --+* is the transitive closure of the relation -e.  

These causal dependencies makes up the structure of information flows inside 
the system. If a subject has any knowledge about the internal functioning of the 
system, then he is able to know the internal scheme of causal dependencies. So 
if a user has knowledge of the internal functioning of the system and if he can 
observe an output  point x0, then he is able to infer any information in cone(xo), 
i.e., he is able to observe all the points in cone(xo). 

With respect to disclosure of information, a system is considered secure if a 
subject can observe only the objects he has the right to observe. If we note Obs, 
the set of objects that  a user s can observe and R~ the set of objects that  this 
user is authorized to observe, we can say that the system is secure if: Obss C R,. 

In a system enforcing a multilevel security policy, d 'Ausbourg explains that  
two conditions are sufficient to guarantee the security of the system. In such 
a system, a classification level l(x) is assigned to points x and a clearance l(s) 
is assigned to subjects s. The first condition is that  the clearance of a user s 
dominates the set of output  points O, that  he can observe: 

Vs, zo ~ O~ ~ l(:~o) ~ Z(s) 
The second condition requires a monotonic increasing of levels over causal de- 
pendencies: 

vx, vu, x -+ l(x) < 
This model is interesting because it contributes in a new way of formalizing 

the information flows in a system. Furthermore, what makes this formalization 
interesting is its minimal aspect: the notion of causal dependencies allows the 
information flows to be described in a minimal way. Thus, if we define a security 
policy and an authorization scheme based on this notion of causal dependencies, 
the rules of the authorization scheme can describe the minimum conditions that  
are to be enforced in a system in order to prevent the information flows. From this 
point of view, this model is better that  the Bell-LaPadula model that  controls 
the information flows with too severe measures. For example, in the model based 
on causal dependencies, a user SECRET can change the label of an object from 
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SECRET to UNCLASSIFIED if it is reinitialized. As a matter of fact, the dependencies 
that can be established for this operation do not lead to illegal information flows. 

The main drawback of such a model seems to be the difficulty to enforce 
it in real systems. As a matter of fact, it seems to be difficult to very closely 
establish the causal dependencies in a system, just as the set of objects that 
may be observed by a subject. Furthermore, the author does not indicate any 
formal method which could help the administrators to precisely evaluate the 
causal dependencies in a system. And this evaluation even becomes more tricky 
in distributed systems where subjects and objects from multiple sites may co- 
operate. 

4 A m u l t i l e v e l  s e c u r i t y  m o d e l  f o r  d i s t r i b u t e d  

o b j e c t  s y s t e m s  

4.1 Secure ent i t ies  

Our model is based on two main concepts: the notions of objects and activities. 
These entities are assigned labels as will be explained in the next paragraph. 

The objects of our model are objects as defined in the object-oriented lan- 
guages. Each object is made up of a private state information and a set of 
operations which represent the object interface. The operations defined on an 
object are called methods and are the only way to modify the state of the ob- 
ject or to get information from this state. The communication between objects 
consists in sending messages. An object O calls a method of an other object O ~ 
by sending O I a request. This message consists of a method selector and a list 
of arguments. 

An activity in distributed object systems consists in a succession of method 
executions and requests through different objects of the system. This set of 
method executions and requests are dependent and collaborate to achieve a 
high-level task (e.g., printing a file on a printer). An activity exchanges informa- 
tion with the different objects it accesses. This notion is similar to the notion 
presented for the Chorus micro-kernel in [10]. In Figure 2, an activity is repre- 
sented. This activity realizes a high-level task: recording a scene. This activity 
consists in: 

1. Starting the execution of the method Record-Scene of the object Client, 
2. Making a request to the method Record of the object Recorder, 
3. Starting the execution of the method Record of the object Recorder, 
4. Making a request to the method Take of the object Movie-Camera, 
5. Executing the method Take of the object Movie-Camera, 
6. Returning to the method Record, 
7. Making a request to the method Write of the object Video.Tape, 
8. Executing the method Write of the object Video-Tape, 
9. Returning to the method Record. 

10. Returning to the method Record-Scene. 
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Movie-Camera 
(Method: take) 

Client Recorder ~ 

~ e  ~ ~ . _  V ~ ~  V i d e o - T a p e )  

Fig. 2. An activity 

The point in the notion of activity is the idea of dependence, of collaboration: 
an activity is made of a set of method executions that form parts of the same 
global operation from a user point of view. 

One of the important features of our model is that we distinguish two object 
families: the stateless objects and the stateful objects. In the previous example, 
the activity flows information from the object Movie-Camera to the object Video- 
Tape. The object Recorder does not keep any memory of the information that it 
receives from the object Movie-Camera; it simply writes this information in the 
object Video-Tape. Yet, the object Recorderis accessed by the activity as the two 
other objects. We can generalize this idea: any object stores data but these data 
may be classified in two categories: the system data and the application data. 
The application data are the data which compose the state of the object from the 
application point of view, i.e., the data that are declared in the source code of 
the object by the programmer. The system data are data added by the system 
in the object to control the execution of the object (for example the process 
stack). A stateless object is an object which does not store application data: its 
state is initialized at each invocation. There is no information flow between two 
successive requests that access a stateless object. This notion of stateless object 
is analogous to the notion of "object reuse" of the Orange Book [2]. Conversely, 
a stateful object is an object which stores application data and whose methods 
consist in reading or writing these data. A lot of examples of stateless objects 
can be found in classical systems such as Unix. For instance, an NFS server 
is a stateless object. This server does not keep in memory any of the requests 
that it receives. Its state is initialized at each invocation. All object managers, 
in general, are stateless objects (browsers for example). We will see in the next 
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section that  this notion of stateless object will be useful to implement a less 
restrictive authorization policy than the Bell-LaPadula policy while preventing 
in the same way the illegal information flows. 

The goal of a multilevel security policy is to prevent users to get information 
they are not cleared to access. As we suppose that each task realized in the 
system by a user is realized by means of an activity, we can prevent illegal 
information flows between users by preventing illegal information flows between 
activities. We must thus ensure that an activity with a high security level cannot 
transmit  information to an activity with a lower security level (we will define in 
the next section how a security level is assigned to an activity). Yet, two activities 
may exchange information by accessing the same object (one activity writes an 
object and the other activity reads this object). Thus, we have to control in 
our system all interactions between activities and objects, i.e., to control each 
request accessing an object. 

In order to realize these access controls, we have to assign security levels 
to the different entities of our model. We basically assign a security level to 
each user of the system. As the objects are the containers of information of the 
system, we have to assign them a security level (we will differently label stateless 
and stateful objects). In order to control each interaction between activities and 
objects, we have to assign security levels to the different requests of our system. 

4.2 T h e  different labels  

We define a finite set of security levels partially ordered with respect to a binary 
relation "<" .  
Users: 

A label is associated to each user of the system. This label represents the 
user's clearance. 
Objects: 

We label in a different way the stateless and the stateful objects. A label 
Lo is associated to each stateful object O. This label is the classification of 
the object. It represents the classification of the data  that  compose the state of 
the object. This classification is fixed and cannot be changed during the object 
lifetime. 

Two labels Llowo and Lhigho are associated to each stateless object O 
(Ltowo <_ Lhigho). [Llowo, Lhigho] is a confidence interval defining the trust 
one can put  on the object. As a mat ter  of fact, a stateless object does not store 
any application data, and thus cannot be assigned a classification as a stateful 
object. Nevertheless, each stateless object may be accessed by an activity like a 
stateful object. Each activity carries information with a particular security level. 
Each stateless object may thus potentially access this information. The labels 
we assign to a stateless object represent the trust one can put in this object, 
i.e., the trust that one can put  on the actions that  the object, as active entity, 
can execute. The high label represents the highest security level of data  that  
can be read by the object. The low label represents the lowest security level of 
data  that  could be written by the object. Let us imagine, for example, that  a 
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stateless object is in fact a Trojan horse that  keeps a local copy of all the data  
that  are carried by all the requests accessing it. The low label of the object will 
guarantee that  the copy will not be created with a label inferior to this label. 
This means that  a future, malicious activity will need a clearance superior or 
equal to this low label to read the data. Conversely, the Trojan horse cannot 
read and then store data  with a level highest than Lhigho. Let us imagine an 
administrator of a system who decides to use a new freeware NFS server that  he 
gets from an anonymous ftp server. The administrator then estimates the trust 
that  he can put  in this NFS server (which is supposed to be a stateless object) 
and thus assigns it a confidence interval representing this trust. 
Requests: 

Just as we said in the previous paragraph, each activity in the system car- 
ries information and exchanges information with the objects it accesses. Thus, 
an activity must be labeled. We assign a parenthesis of labels (i.e., two labels) 
to each activity a. These labels are noted Llowa and Lhigha. These labels are 
floating labels and may change according to the type and the labels of the ob- 
jects accessed by the activity. The low label represents the classification of the 
information carried by the activity, i.e., the highest level of the information that  
has been previously read by the activity. The high label represents the clearance 
of the activity. This clearance is initialized with the clearance of the user who 
started this activity. The parenthesis can then be noted: [classification, clear- 
ance]. The information carried by an activity is in fact carried by the different 
requests among the objects of the system it accesses. Thus, in order to make 
access controls in our model, we have to label these requests. We assign a paren- 
thesis of fixed labels to each request r. These labels are noted Llowr and Lhighr. 
Let us imagine that  an activity is composed of n requests (rl ,  r2, ...r~). The first 
request rl  accesses an object in order to provoke the execution of one of its 
methods. This execution leads to the sending of a new message, the request r2. 
The parenthesis of labels of r2 will depend on the parenthesis of labels of rl  and 
on the type and labels of the object accessed by rl .  Thus, the parenthesis of the 
different requests will be different according to the different objects accessed by 
the activity. The labels of the activity [LIowa, Lhigh~] (which are floating labels) 
will successively be [Llow~l , Lhigh,1] ... [Llow,.,, Lhigh~.]. 

4.3 T h e  access  ru l e s  

Our authorization scheme is composed of mandatory access rules based on the 
different labels we have just presented. These rules cannot be bypassed. 

4.3.1 Notion of read access and write access 

In the rest of the paper, the term of read access and write access must be un- 
derstood in a very precise sense. We call read access on a stateful object O, any 
execution of a method of O which provokes an information flow from the internal 
state of O to the activity which executes the method. Reciprocally, we call write 
access any execution of a method of 0 which provokes an information flow from 
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the activity which executes the method to the internal state of O. We will call 
read-write access any execution of a method of O which provokes an exchange 
of information between the activity which executes the method and the state 
of O (it is not worth considering "null access", i.e. methods which provoke no 
information flow between a stateful object and the request). 

4.3.2 Access Rules 

Access to stateless objects: 

If a request r may access a stateless object O (through invoking any of its 
methods) then the intersection of [LIowo, Lhigho] and [LIow~, Lhighr] is not 
empty. (R1) 
Access to stateful objects: 

With respect to stateful objects, the security policy is enforcing the following 
rules (these rules derive from the Bell-LaPadula security policy rules): 

s i m p l e  s e c u r i t y  c o n d i t i o n :  
If a request r may read a stateful object O, then Lo < Lhigh~. (R2) 

* - p r o p e r t y :  
If a request r may write a stateful object 0 ,  then Llowr < Lo. (R3) 

To enforce these rules, each method of a stateful object is assigned an at- 
t r ibute indicating which kind of access is realized by the method: read, write or 
read-write. 

4.4 T h e  access  c o n t r o l  s c h e m e  

In this section we consider the current request r of an activity a which accesses 
an object O. 

- If O is a stateless object: 

* If Lhighr < Llowo or Lhigho < Llowr: 
the access is denied. (R4) 

| If Llowo < Lhighr and Llow~ < Lhigho: 
the access is authorized with restriction: [Llowa, Lhigha] is changed 
to [Max( nlow~, nlowo ), M in( Lhigh~, Lhigho )]. (R5) 

This restriction means that  the next request r ~ of the activity a will be la- 
beled [Llowr, , nhigh~,] = [Max( Llow~, Llowo ), M in( Lhigh~ , Lhigha)]. 
Note the particular case: if [Llowo, Lhigho] C [Llow~, Lhigha], then 
the access is authorized without restriction since Max(Llow~, Llowo) = 
Llowa and Min(Lhigh~, Lhigho) = Lhigha. 

Rule (R4) guarantees that  the request may not access objects unless the 
intersection of the reqnest's parenthesis and the object 's confidence interval 
is not empty. Rule (R5) describes the evolution of the parenthesis of an 
activity accessing an object 0 by a request r: If an activity accesses a stateless 
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object whose low label dominates the current classification of the information 
carried by the activity then this current classification has to be set to this 
label. If an activity accesses an object whose high label is dominated by the 
clearance of the activity then the clearance of the activity has to be set to 
the high label of the object. 

- If O is a stateful object: 

�9 If method m is a read method and if Lhigh,. < Lo : 
the access is denied. (1%6) 

�9 If method m is a read method and if Lo < Lhighr : 
the access is authorized with restriction: 
Llowa is changed to Maz(Llowa, Lo). (1%7) 

Note the particular case: if Max(Llow~,Lo) = Llowa, the access is 
authorized without restriction. 

,, If method m is a write method and if Lo < Llowr: 
the access is denied. (R8) 

�9 If method m is a write method and if Llow, < Lo: 
the access is authorized with no restriction. (R9) 

�9 If method m is a read-write method and if Lo is not in the interval 
[Llow~ , Lhighr]: 

the access is denied. (R10) 

�9 If method m is a read-write method and if Lo is in the interval 
[Llowr, Lhighr]: 

the access is authorized with restriction: 
nlowa is changed to Max(Llowa, no). (R l l )  

Note the particular case: if Max(Llowa,Lo) = Llowa, the access is 
authorized without restriction. 

Rules (R6) and (RT) describe the evolution of the parenthesis of an activity 
making a read access to a stateful object. An activity must not read a stateful 
object whose classification dominates the high label of the activity (R6). If an 
activity makes a read access to an object whose classification dominates the 
classification of the information carried by the activity (i.e., the low label), then 
this low label has to be set to the classification of the object (1%7). There is no 
restriction to be applied to the activity's parenthesis when an activity makes 
a write access to a stateful object. As a mat ter  of fact, the sensitivity of the 
information carried by the activity does not change during such an access: there 
is only an information flow from the activity to the object. So, whether the 
access is authorized, or it is denied, no restriction is to be applied. An activity 
can always make a write access to a stateful object whose classification dominates 
the classification of the information carried by the activity (1%9) and an activity 
cannot make a write access to a stateful object whose classification is dominated 
by the classification of the information carried by the activity (this corresponds 
to the *-property of the Bell-LaPadula model) (1%8). 
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4.5 A n  e x a m p l e  o f  an  a u t h o r i z a t i o n  s c h e m e  

In the following example, we consider that  a SECRET user U wants to print an 
UNCLASSIFIED file f3 on printer P4 whose confidence interval is [UNCLASSIFIED, 
CONFIDENTIAL]. The set of objects which take place in the execution of this 
action are represented in Figure 3. U is a user (a person) of the system, psi a 
print server of class PrintServer, fs2 a file server of class FileServer, f3 a file of 
class File, P4 a printer of class Printer and t f  a transient file located on the site 
of psi. 

U 

O 
fs2 f3 

sl  

| 

| 

Fig. 3. Objects cooperation 

The hierarchy of labels used in our example is represented below just as the 
labels of the different components of the system: 

UNCLASSIFIED < CONFIDENTIAL < SECRET < TOPSECRET. 

User U : SECRET 

psx : [CONFIDENTIAL, SECRET] (stateless object) 
fs2 :[UNCLASSIFIED, SECRET] (stateless object) 
P4 : [UNCLASSIFIED, CONFIDENTIAL] (stateless object) 
f3 : UNCLASSIFIED (stateful object with methods read(), write(), update() 

and delete()) 

The scenario cart be summarized as follows: 
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- User U logs in the system with a SECRET clearance. The activity a starts 
executing the first request for U. This request is the invocation of method 
print f  of print server psi. This first request (message  1) is labeled [UNCLAS- 
SIFIED, SECRET]. The low label is UNCLASSIFIED because the activity does not 
hold any sensitive information. The high label represents the clearance of the 
user V. 

- Print server psi is a stateless object labeled [CONFIDENTIAL, SECRET]. The in- 
tersection between the parenthesis of labels of the request and the confidence 
interval of psi is not empty, but as Llowr < Llowp, 1 <_ Lhighr < Lhighp,,, 
the access is authorized with restriction: Llowa is changed to CONFIDENTIAL, 
i.e., the parenthesis of the activity is changed to [CONFIDENTIAL, SECRET] (cf. 
R5). 

- The activity goes on by invoking method readf of file server fs2 (m essag e  
2). This request is labeled [CONFIDENTIAL, SECRET]. f 8  2 is a stateless ob- 
ject labeled [UNCLASSIFIED, SECRET]. The access is thus authorized without 
restriction (cf. R5). 

- The activity then makes an access to method read of f3 (message  3). This 
request is labeled [CONFIDENTIAL, SECRET]. f3 is a stateful object which is 
labeled UNCLASSIFIED and the access is a read access. The access is thus 
authorized without restriction (cf. RT). 

- The activity then returns to fs2 and then to psi in two replies labeled [CON- 
FIDENTIAL, SECRET] (messages  4 a n d  5). These two replies are authorized 
without restriction because their parenthesis of labels is respectively included 
in the confidence interval of fs2 and psi (particular case of R5). 

- psi creates a temporary file t f  in which it copies f3 (messages  6). This 
creation request is part of the same activity and thus must be labeled 
[CONFIDENTIAL, SECRET]. The file t f  is a stateful object created with la- 
bel Lt] = Llowr 1. psi makes a write access to t f  with a [CONFIDENTIAL, 
SECRET] request, t f  is a stateful object and Llowr <_ Lt], thus the access is 
authorized with no restriction (cf. R9). 

- The activity then accesses printer P4 through method print (message  7). 
The request is labeled [CONFIDENTIAL, SECRET], P4 is a stateless object and 
the intersection between the parenthesis of labels of the request and the con- 
fidence interval of P4 is not empty. But, as Llowp4 < Llowr _~ Lhiyhp4 < 
Lhigh~, the access is authorized with restriction: Lhigh~ is changed to CON- 
FIDENTIAL (cf. RN). 

- P4 then invokes method read of t f  (message  8). The request is now labeled 
[CONFIDENTIAL, CONFIDENTIAL] (because of the previous access to P4), t f  is 
a stateful object, the invoked method is a read method and Lt] = Llow~, 
the access is thus authorized without restriction. The return of this request 
(me s sa ge  9) is labeled [CONFIDENTIAL, CONFIDENTIAL] and is authorized 
because this parenthesis of labels is included in the confidence interval of 
psi. After printing, P4 deletes file t f  (message  10) in a [CONFIDENTIAL, 

1 The label of a transient stateful object is defined by a parameter of the creation 
request. Its level must be higher than or equal to the lower labeI of the request. 
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CONFIDENTIAL] request. The access is authorized with no restriction because 
Llowr = Lt] (delete is a write access). 

5 Preventing the illegal information flows 

5.1 P r o o f  

This section is dedicated to the demonstration that  our model prevents the illegal 
information flows. We describe here how we prevent these illegal information 
flows thanks to the set of rules that  we have presented in the previous sections. 

Preventing the illegal information flows consists in demonstrating that  there 
does not exist a way for a user to infer information whose classification dominates 
the clearance of the user. This information inference might imply the collabora- 
tion of several users and the handling of several objects in the system. This can 
be expressed in the following way : 

We want to verify that  if s is a user, 0 a stateful object and L, < Lo, then 
there do not exist series {il, i2, ...il} and {jl, j2,--.j,~} such as: 

(sjl , 0i l ,  read) A (sjl , 0i2, write) A (sj2 , Oil, read) A . . . A (sj.~, Oil, read). 
with sj~ = s and O~ 1 = O. 

In the context of our model, this means that there do not exist series of activities 
and objects whose collaboration allow illegal information flows. Formally, this 
means, that  there do not exist series {il, i2, ...it} and {kl, k2, ..., ]g,} such as: 

(akl, Oil, read) A (ak~ , 0i2, write) A (ak2, 0i2, read) A (a~2, Oil, write) A . . . 
h (ak~, Oi,, read) (ak, is an activity; the last one, ak, is started by u ~ r  sj,~) 

(ak~ , Oil, read) implies: 
�9 Lo~ <_ Lhighakl (Rule R1) 
. nlowak~ is changed to Max(Llowak~, no,~) (Rule R7) 

(ah~, 0i2, write) implies: 
�9 Llowak~ ~_ Lo~: (Rule R9). 
(with Llowak~ changed according to the access to Oil). 

This leads to: Lo~ < Lo~ and thus to: Lo~I ~_ Lo~ .." ~ Lo~ 

On the other hand, (ak~, Oil, read) implies: Lor ~_ Lhighak .  Furthermore, as 
the activity ha. is started by the user sj,~, we have the relation: Lhighak, ~_ 
L~, , .  This leads to: Lo~ ~_ L~s~. 

We thus obtain: Lo~ ~_ Lo~ . . .  ~_ Lo~ ~ L, ,~ and thus Lo~, ~_ L~j~, i.e., 
Lo ~_ L, which is contrary to the hypothesis (Ls ~_ Lo). 

5.2 V a l i d a t i o n  process  a n d  cover t  channe l s  

We have presented in the previous sections some important notions of our model: 
the stateless objects and the at tr ibutes assigned to each method of a stateful 
object (read, write, read/write). The flexibility of our model and its interest 
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with respect to the Bell-LaPadula security policy depend on the fact that  we 
can or cannot validate such entities in the system. Given that,  our model needs 
some validation processes in order to verify that  an object which is supposed 
to be stateless is actually stateless (i.e., that  it does not keep in local variables 
some information carried by the requests that  access it). The confidence interval 
that  we assign to a stateless object represents the trust we have for this object 
to be really a stateless object, thanks to the validation process. In the same way, 
we need to validate that  each method of a stateful object which pretends to be 
a read (respectively write, read/write) method is actually a read (respectively 
write, read/write) method. We think that techniques like program proof, code 
analysis would quite easily allow to make such verifications. As a mat ter  of fact, 
the properties that we want to check are quite simple. In order to check that  a 
stateless object is actually a stateless object, we have to check that  it does not 
keep in memory any information exchanged with the activities which access it. 
We can make this verification by checking that a stateless object reinitializes 
all its local variables after each method invocation. In order to check that  a 
read method (for instance) is actually a read method, we have to check that  the 
method only reads information from the activities which access it but does not 
give any information to these activities. If the messages are sent via sockets for 
example, we thus have to check all socket handlings in the source code of the 
method and check that  all these bundlings consist in reading information on the 
sockets. 

In the same say, we must validate each object of the system to check that  it 
cannot use a covert channel. A secure computer system ideally would not allow 
communication channels to exist. But eliminating all the covert channels in a 
secure system is in fact a quasi-impossible task: as soon as some resources of the 
system are shared, there are covert channels. Furthermore, eliminating all the 
covert channels in a system may lead to a non-responsive, non-reliable system. 
Given that ,  it is generally better to find ways to minimize illicit information 
leakage through such covert channels. Tha t  is the approach chosen in this paper. 
The model we present does not eliminate the existence of covert channels but  
aims at limiting the use of these covert channels: we consider that  we can validate 
each object introduced in the system in a way that  we can trust it not to try 
to transmit  information using a covert channel. This validation is realized "off- 
line", i.e., before introducing the object in the system. This validation concerns 
all the objects of the system, stateless objects as well as stateful objects. One 
could pretend that  this task seems quite difficult. We think it is not. As a mat ter  
of fact, it is commonly agreed that it is possible to identify all the covert channels 
that may exist on a system and that it is possible to measure their brandwidth. 
The B3 evaluation [2] of a system requires this identification and these measures, 
and B3 and even A1 systems do exist. So, if it is possible to identify the covert 
channels of a system, we assert that  it is then possible to detect in a source code, 
the mechanisms that  may try to exploit these covert channels (such analysis even 
seems easier that  the analysis of the existence of covert channels). 

If we consider that  we cannot trust our validation process (i.e., methods to 
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assign the confidence interval to stateless objects, mechanisms to check that  a 
read (respectively write, read/write) method is really a read (respectively write, 
read/write) method and processes that verify that  an new object introduced 
in the system does not try to transmit information through covert channels), a 
pessimistic solution is to consider that  all objects are stateful (a single label is 
thus assigned to each object), that  all the operations in the system are read/write 
and that  all the activities have a parenthesis reduced to: LIowa = Lhigha. This 
leads us to use the classical Bell-LaPadula model directly applied to distributed 
object systems. 

6 Related work 

One of the main characteristics of our model is that  we always try to assign 
an activity the classification that  actually represents the classification of the 
information carried by the activity. This allows to avoid the over-classification 
of the information because objects that are created are assigned a label that  
actually reflects the sensitivity of their state. The floating labels proposed by 
John Woodward (see Section 3.1) aim at implementing tile same property even 
if this implementation does not address object systems. 

This idea has also been exploited in object oriented databases. The SODA 
model [11] is based on the notions of object and method activation. In SODA, an 
object may have a label protecting the whole object or a set of labels protect- 
ing independently each attribute of the object and the whole object itself. Each 
method activation (the active entity in SODA) is assigned a clearance level and a 
current classification level. The clearance level is an upper bound for the current 
classification level and this current level can raise according to the objects ac- 
cessed by the method activation. Just as in our model, the login method begins 
execution with classification level equal to SYSTEM LOW. The security policy in 
the SODA model is defined by rules that  are similar to the rules we have presented 
here except one: a method may not modify an object unless the current classifi- 
cation level of the method is dominated by the level of the object and after the 
modification, the current classification level of the method becomes equal to the 
level of the object. We think that this modification of the current classification 
level of the method is not justified. As we said in the previous section, we think 
that  it is possible to verify that  some modifications are strictly write accesses 
(i.e., information flows from the method activation to the object) and that,  in 
such cases, there is no reason to increase the current classification level of the 
method activation. Furthermore, the way of labeling the objects and particularly 
the attributes of the objects in SODA is only well suited to database systems and 
corresponds to a client/server model rather than a model based on cooperative 
objects. We think that  this granularity of protection does not correspond to ob- 
ject oriented systems in which the protection rather addresses the whole state of 
the object. Thus, we think that it may be quite difficult to adapt SODA'S model 
to distributed object systems. 

In the message filter object-oriented model, Jajodia and Kogan [12] choose 
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to assign one label to each object. Objects can exchange information only by 
sending messages. Thus, the principle of the model is to control all information 
flows by mediating the flow of messages. The message filter takes appropriate 
action upon intercepting a message and examining the classification of the sender 
and the receiver. Each method activation is assigned a level given by a variable 
rlevel. Jajodia and Kogan explain that the intuitive significance of rlevel is that 
it keeps track of the least upper bound of all objects encountered in a chain of 
method invocations, going back to the root of the chain (this rlevel corresponds 
to the classification of an activity of our model). This model has also some 
additional features in order to eliminate some timing channels. In [13], this model 
has also been proposed, in the context of a discretionary system. Even if this 
model is an interesting adaptation of the Bell-LaPadula model to object systems, 
we think that its main drawback is that it uniformly considers the objects of the 
system (and thus assigns a single label to stateless objects). This model is thus 
as restrictive as the Bell-LaPadula model in classical systems. 

7 Conclusion and future work 

The Bell-LaPadula security model prevents illegal information flows in a multi- 
level system but is too restrictive. We have proposed in that paper a multilevel 
security model that is derived from the Bell-LaPadula model but that is less 
restrictive (thanks to the notion of stateless objects) and that is adapted to the 
distributed object systems. 

It should be interesting to study the adaptation of other security policies to 
distributed object systems. For example, we think it an interesting future work 
to study the adaptation of Biba's [14] integrity policy to object systems. 
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