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Abstract. We mainly show that the cutwidth of the mesh of d-ary 
d ' ' +  :~ �9 trees MT(d,n) satisfies ~-~(~+a)~s - 1 _< c(MT(d, n)) -< "~V, if d > 

2, we also show that the bandwidth of this graph b(MT(d,n)) is in 

0 (d '~+x d"-1 ,~(d-1)]' 

1 I n t r o d u c t i o n  a n d  d e f i n i t i o n s  

In this paper, we focus on the bandwidth and the cutwidth of a graph, two 
well known graph parameters.  They are defined as follows. We use graph theory 
notations of [3]; let G be a graph, V(G) (resp. E(G)) the set of vertices (resp. 
edges) of G. Consider s  the set of all the labelings of V(G) ; a labeling of 
V(G) is a bijection l between V(G) and {0 , . . . ,  IV(G)[ - 1}. The bandwidth of 

F \ 

by b(G)--- min ( max [l(X) -I(X')[].  G is defined 
t~CG) k[X,X']~E(G) / 

y \ 

The cutwidth of d is e(Q)--- rain ( max cl(X)), where 
16s kxev(G) / 

el(X) = [{[Y,Y'] e E ( G ) :  l(Y) <_ I(X) < I(Y')}[. 

Finding the bandwidth and the cutwidth of a graph are known to be NP- 
complete problems [5, 7]. These parameters are useful to determine good VLSI 
designs for interconnection networ[s, by considering the Thompson grid model 
of VLSI layout [8]. We deal here with the mesh of d-ary trees. This graph is an 
interesting interconnection network for parallelism, since it uses both tree and 
grid structures (see section 2). Good parallel algorithms have been developed in 
it [1, 6], and it has been proposed as a good parallel computer topology for some 
applications to images analysis [4]. 
Let us first precise that  in all the following, we use some language theory nota- 
tions. Let {0, . . .  ,d  - 1} be an alphabet, with d > 2, and v be a word on it. We 
denote by Ivl the length of v, i.e. the number of letters in v; we denote by e the 
empty word, i.e. ]e I = 0. Each letter ~ 6 {0 , . . . ,  d - 1} is also considered as an 
element of 77d. 

* This work was supported by the "Op6ration RUMEUR" of the French PRC PRS. 
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The mesh of d-ary trees, introduced in [1], is a generalization of the mesh of 
binary trees (i.e. MT(2, n)) [6]. It is defined as follows. 

- The vertices of MT(d, n) are all the couples (u; v) of words of {0, .., d - 1}*, 
such that  [u I = n and Iv[ < n, or Iv[ = n and [u[ < n. 

- There is an edge between two vertices (u; v) and (w; z) in MT(d, n) iff [u[ --- 
n, u = w and Iv, z] 6 E(T(d,n)), or [v I = n, v = z and [u;w] 6 E(T(d,n)). 
This edge is denoted by the pair [(u; v), (w; z)]. 

By definition, for any u 6 {0, . . .  , d -  1}'*, the subgraph of MT(d,n) induced 
by the vertices of the form (u; v) (resp. (v; u)), with v 6 { 0 , . . . ,  d - 1}*, is iso- 
morphic to T(d,n). In MT(d, n), the column tree (resp. line tree), isomorphic 
to T(d,n) with root (e;u) (resp. (u;e)), is denoted by T(e;u) (resp. T(~;e)). 

/ 
o f  is d n d ' * - I  The number of vertices MT(d,n) IV(MT(d,n))[ = ~d '~ + 2-Ta-T).We 

will also use the following recursive construction of MT(d, n) from MT(d, n -1 ) .  
1. Consider first d ~ disjoint copies of MT(d, n -  1), each one denoted by MT~I,j (d, n -  
1) with ( i , j )  6 {0, . . .  ,d - 1} 2. A vertex (u;v) in MTi,j(d,n - 1) is denoted by 
(u;v),,j. 
2. We add 2d n new vertices: d n vertices (w;e), with w 6 {0, . . .  , d -  1} ~ and d '~ 
vertices (e; w). Then, we add the set of edges 

U : --uq U : = u i } .  
( i , ] )6{0 ..... a-l} 2 

By associating each vertex (u; v)ij to the vertex (ui; v j) in Mr(d,  n), it is easy 
to see that  the graph we obtain is isomorphic to MT(d, n). 

We also give the notations and the definitions we use in the next section, 
similar to the ones of [2]. Let G be a graph and 17 be a partition of V(G). For 
each element lr 6 17, we define w(zr) as the cocycle of r i.e. the set {[X,X'] 6 
E(G) " Z 6 7r, X'  ~_ ~r}. We note max11 = max 17rl and mazda = max Iw(Tr)l. We 

also denote by G[~] the subgraph of G induced by ~. 
�9 The quotient graph of G by 17, denoted by Q - G/rl, is defined by 

- V ( Q )  = 17, 
- [r Tr'] 6 E(Q) r (Tr # 7r',3X 6 r ,  3X'  6 ~': [X,X']  6 E(G)). 

�9 Let IQ be a labeling of ~/(q) and IG be a labeling of V(G). For each v 6 17, we 
represent by la[zr] the set of all the labels of vertices in r by IG. We say that  IG is 
compatible with Iq if for any r e / / ,  we h a v e  IG[Tr] is a n  interval [m~, .., M~] and 
if for each ~r' 6 17 such tha t  lq(r < IQ(~r) (resp. lq ( r ' )  < Iq(~r)), M,, < m~ 
(resp. m~, > M~r). 
�9 For each 7r E 17, 

~+(Tr) = min l{[Z,Z'] 6 E(G): X' 6 ~r', ~r' such that Iq(~') > lq(~r)}l 
X6~r 

6Z(r ) = ~ n I { [ X , X '  ] e E ( G ) :  X '  e ~r', 7r' such tha t  lQ(Tr') < lq(~r)} I. 

The edge-bissection of G is denoted by bise(G) (see [3]). 
With  a general result of [2] and with an original construction, we show in [1] the 

next result. 
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Proposition 1. b(MT(d ,n) )  is in 0 ( d'~+l n(d-1) ~ 

In the next section, we also use the following result from [2]. 

Theorem 2. Let IQ be a labeling of V(Q)  achieving the cutwidth of Q, and let 
IG be a labeling of V(G) compatible with 1Q. 

+ + - I 1" rain 

(2.) > b i s , ( a )  

2 T h e  c u t w i d t h  of  MT(d, n) 

P r o p o s i t i o n 3 .  / f n  ~ 2, then c (MT(2 ,n ) )  is in 0(2 '~) and if d >_ 3, 
d'~+2(d'*(d+l)-2) 2 

- c(MT(d,  n)) ~ 4(d2,~((da_d)(d+2)+l)_d~(d4+2d~+3d 2 _4d+l)+d3+3d 3_d)) 
d'*( da +d2 +4)-(  d 4 -32+2) 

- c (MT(d ,n ) )  <_ 2(4-1) 

dr*4-3 
C o r o l l a r y 4 .  I f  n > 2, then if d > 3, d~-~(d+l)* - 1 < c (MT(d ,n ) )  < d-1 

- -  - -  8 - -  - -  " 

P r o o f  o f  t h e  p r o p o s i t i o n .  
1. Let us show the upper bound. 
a. Let us first define a p a r t i t i o n / / o f  V ( M T ( d , n ) ) ,  with d > 2 and n > 1. T/ 
contains d 2 + 2d parts : d 2 parts ~:i,i with ( i , j )  e {0, . . .  ,d - 1}2; d other parts, 
each one denoted by ~ri,~, and d last parts lr~,i. They are defined by 

- ~ri,j is the set of all the vertices (m;m')  E V ( M T ( d , n ) )  such tha t  i is the 
first letter of m and j the first letter of m ~. 

~ri,~ (resp ~r,;j ) is the set of all the vertices (m;e) (resp (e;m'))  where i 
(resp. j )  is the first letter of m (resp. m') 

By definition, lrl;e and ~r~;j are two independant sets of vertices of MT(d ,  1). 
Moreover, it is easy to see t h a t / / i s  a parti t ion of V ( M T ( d , n ) ) .  Let us denote 
by Q the graph G/N.  We now consider a couple ( i , j )  E {0, . . .  ,d  - 1} 2. 
�9 Consider ( iu;jv)  a vertex in a part  ~ri,i. If  X is a vertex in M T ( d , n ) ,  with 
X ~ 7ri,j, and if [( iu; jv) ,X] e E ( M T ( d , n ) ) ,  then v = e and X = (iu;e) e 7q,~, 
or u = e and X = (e;jv) E ~r~,i. 
Hence, the edges of Q are pairs [Tri,/, ~ri;,] and [ri,i , ~re;i]. Then, by associating 
to each part  7ri,i the couple ( i ; j ) ,  and to each part ~'i,, (resp. ~re,i) the couple 
(i; e) (resp. (e; j)) ,  we can conclude that  Q is isomorphic to MT(d ,  1). 
�9 The subgraph of M T ( d , n )  induced by ~ri,i is isomorphic to M T ( d , n  - 1). 
This can be directly deduced from the definition o f / 7  and by following the 
recursive construction of MT(d ,  n) from MT(d ,  n - 1) given in section 1: we as- 
sociate to each vertex ( iu;jv)  in 7ri,j the vertex (u;v) e Y ( M T ( d , n -  1)). Since 
I~ri,~] = I~r~,i I = d n, then maxlI  -- I Y ( M T ( d , n  - 1)) I. 
�9 Iw(Tri,j)l = I{(iu;j) e ~ri,i} U {( i ;v j )  e 7ri,i}[ = 2d '~-1. Moreover, in M T ( d , n )  
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the degree of each vertex from 7ri;~ and from lr~,i is equal to d. Hence, since 
I~ , . I  = I~.,jl  = ~ ' - ~ ,  t h e n  i ~ ( ~ , ~  = I~(~. ,~)1 = d l ~ , . I  = d ~. So  - ~  = a ~ 

b. To use Theorem 2, we give an upper  bound for c(MT(d, 1)) by using a la- 
belling o fT(d ,  1) (see [1]), for d > 2. Hence, we show that  if d > 2, c~MT(d, 1)) < 
(d + 2)[~] - d .  If d --- 2, MT(2 ,  1) is a cycle of length 8 and so c(MT(2,1)) = 2. 

c. We can now apply Theorem 2. Assume d > 2 and n > 1, 

c(MT(d,n)) < ((d H- 2)[~] - d -  1 ) d ~ +  
max (c (MT(d ,n -  1)) H- 2dn-1; d a - -  (dn-l.L~J)) 

We then deduce from this inequality an upper  bound for c(MT(d,n)), i.e. 

r d~(a~+d2+a)-(d4+3d+2)~ i f  d - 2, we show by the same way c(MT(d,n)) <_ | 2(d-~) | "  
tha t  c(MT(2,n)) ~ 2 '~+2 - 6. 

2. We now deal with the lower bound. We give a detailed sketch of the proof. 
We know that  bis~(MT(2,n)) is in 0(2 ,~) [6]. To determine bise(MT(d,n)) with 
d > 2, we give a routing function R in MT(d,n). Then,  bise(MT(d,n)) > 
~V(MT(d,n))I 2 q-1 2.cg(a) , with cg(R) the congestion of R (see [1]). Thus, we show tha t  

bis~(MT(d, n)) >__ 

d,,+~(a"(a + ~) - 2)~ 
4(d~.((d3 - d)(~ + 2) + 1) - d~(d4 + :d3 + 3d2 - 4d + 1) + d~ + 3d~ - d)) 

We conclude with Theorem 2.2 . 
[] 
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