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A b s t r a c t .  Concentrators are interconnection networks that provide vertex- 
disjoint directed paths to satisfy interconnection requests. An intercon- 
nection network is non-blocking in the strict sense if every compati- 
ble interconnection request can be satisfied regardless of any existing 
interconnections. We show a size optimal bound of O(n 1+~') for syn- 
chronous strictly non-blocking 7n-bruited (an, fin)-concentrators with 
non-full capacity a~d constant depth k, and present a size upper bound of 

0(n1+~/'~7) for synchronous strictly non-blocking fin-hmited (an, fin)- 
concentrators with full capacity and constant depth k. 

1 I n t r o d u c t i o n  

The interconnection network of an information transmission system provides media- 
tion between a set of inputs (sources of information) and a set of outputs (sinks of 
information). The graph-theoretic design and analysis of interconnection patterns can 
idealize such networks. Interconnection networks are classified according to the type of 
interconnections that they provide. Several generic types of interconnections that have 
been studied extensively in the literature (see [Clo53], [Ben65], [DDPWS3], [FFP88], 
and [Daigl]) are concentration, superconcentration, connection, expansion, and parti- 
tion. An orthogonal classification of interconnection networks, based upon the network 
capability of allowing an interconnection to be destroyed and created dynamically with- 
out disturbing any of the other existing interconnections in the network, results in three 
genera ofinterconnection capability: rearrangeabillty, wide-sense non-blockingness, and 
strictly non-blockingness. 

The study of interconnection networks is relevant to theoretical computer science in 
areas such as parallel computations, graph pebbhng, oblivious computations for many 
naturally occurring functions, modeling circuits with limited depth and unbounded 
fan-in, and implementation on parallel computers of algorithms for sorting. 

In this paper, we study the size-depth complexity tradeoff for strictly non-blocking 
fixed ratio concentrators. More specifically, we show a size optimal bound of 6)(n 1+ ~) 
for synchronous strictly non-blocking "yn-limited (an, fin)-concentrators with non-full 

capacity and constant depth k, and present a size upper bound of O(n I+T~) for 
synchronous strictly non-blocking fin-limited (an, fin)-concentrators with full capacity 
and constant depth k. Our motivation for studying the size-depth tradeoffs for con- 
centrators and generalized-concentrators derives from considering the gap between the 
lower and upper size bounds versus depth for connectors and generalized-connectors 
([Fri88], [FFP88], and [Clo53]) in the strictly non-blocking context. 
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1.1  P r e l i m i n a r i e s  

We shall abbreviate "directed graph" to "digraph". For a graph or digraph G, denote 
by V(G) the vertex set of G, and by E(G) the edge set of G. The out-neighborhood of 
a vertex v in G is denoted by Fo~t(v). For a directed path P in a digraph G, denote 
by r the terminus of P.  

For positive integers n and m, an (n, m)-network G = (V, E, 1, O) is an acyclic 
digraph with vertex set V and edge set E, a set 1 of n distinguished vertices called 
inputs,  and a set O of m other distinguished vertices called outputs.  We shall use the 
same denotat ion G for a network and its underlying acycfic digraph when the context 
is clear. The size of a network is the size of its underlying digraph. 

Two directed paths in a digraph are compatible if their intersection is a common 
initial directed subpath of them, which may possibly be empty. A route in a network 
G = (V, E, I ,  O) is a directed path from an input  to an output.  The depth of G is 
the maximum number  of edges in a route in G. A state S of G is a set of pairwise 
compatible routes, or equivalently, S is the set of all routes of a directed forest with 
its roots at 1 and leaves at O. A state S saturates a vertex v in G if v appears in a 
directed path of S. 

A concentration request in a network is an input.  A concentration request is satis- 
fied by a route if the route is directed from the concentration request. A generalized- 
concentration assignment is a multi-set of concentration requests. A generMized-concentration 
assignment A is satisfied by a state S if each concentra t ionrequest  u E A is satisfied 
by a number  of routes of S equal to the multipficity of u in A. 

Two network parameters c and r that  govern respectively the network capacity (an 
achievable lower bound on the number of possible simultaneous concentrat ion requests 
allowed in the network) and request multiplicity (an achievable lower bound on the 
number  of possible simultaneous concentration requests with common input  allowed 
in the network) are associated with generalized-concentration. For positive integers c 
and r with c > r, a generalized-concentration assignment A is (c, r)-l imited if each 
concentrat ion request in A has multipficity at most r and the sum of all multiplicities 
in A is at most c. A state S is (c, r)-limited if the unique generalized-concentration 
assignment A(S) satisfied by S is (c,r)-limited. A concentration request u is (e,r)- 
limited in a state S if the multi-set obtained by adjoining the concentrat ion request u 
to A(S) is a (c, r)-limited generalized-concentration assignment. 

A strictly non-blocking (c, r)-timited (n, m)-generalized-concentrator is an (n, rn)- 
network for which the set of all (c, r)-limited states is closed under the (c, r)-l imited 
generalized-concentration extension: for every (c, r)-limited state $1 and every (c, r)- 
fimited concentration request u in $1, there exists a (c,r)-limited state $2 such that  
$1 C $2 and $2 contains an additional route satisfying the concentration request u. 

The notion of generalized-connection is defined analogously (see [Dai91]). For (c, r)- 
l imited (n,m)-generMized-concentrators and (n,m)-genera]ized-connectors, the case 
when c = m is referred to as full capacity. The adjective "(c, 1)-limited (n, m)-generaJJzed- 
" refers to a non-generalized context and is thus abbreviated to "c-fimited (n, m)-" in 
this paper. 

A network is synchronous provided that  all the routes in the network have the same 
length. In a synchronous network G = (V, E, 1, O) with depth k, the vertex set V can 
be part i t ioned into k + 1 disjoint ranks (V~)/k=0 and the edge set E can be parti t ioned 
into k disjoint stages (Ei)~=a in an obvious manner  such that  V0 = I ,  Vk = O, and El 
is the set of edges directed from V/_I into V/for i = 1, 2 . . . .  , k. 

A special type of concentrators with their parameters, input  and output  cardinal- 
ities and network capacity, in a fixed ratio are called fixed ratio concentrators,  that  
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is, they are represented as 7n-limited (an, fln)-concentrators for some positive integer 
constants cr fl, and "~ such that c~ > fl > 7- 

1.2 P r e v i o u s  W o r k  

Pippenger [Pip74] showed that strictly non-blocking concentrators with capacity c must 
have size ~t least 3clog 3 c -  O(c). Dai ([Dai93] and [Dai94]; see Theorem 3 below) ob- 
tained the size optimal bounds for strictly non-blocking c-limited (n, m)-concentrators 
and (c, r)-limited (n, m)-generalized-concentrators with depth 1, and lower bound size- 
depth tradeoffs for their synchronous versions with arbitrary depth k. 

For non-blocking connectors, Bassalygo and Pinsker [BP74] proved that strictly 
non-blocking (n, n)-connectors exist with size O(n log n); and an explicit construction 
was obtained through the work of Margulis [Mar75] and Gabber and Galil [GG81]. 
Friedman [Fri88] showed a lower bound size-depth tradeoff, n 2 and ~2(n 1+~-~ ) for 
synchronous strictly non-blocking (n, n)-connectors with depth 2 and depth k > 3, re- 
spectively. Clos [Clo53] gave a size upper bound versus depth for these networks, which 

is O(n~+~) for depth 2 j -  1. For strictly non-blocking (n,n)-generalized-connect0rs, 
Bassalygo and Pinsker [BP80] proved that such networks must have size ~2(n 2) for any 
depth. 

2 C o n s t r u c t i o n  o f  E x p a n d i n g  N e t w o r k s  

~Ve present an upper bound on the size of synchronous strictly non-blocking fixed 
ratio concentrators with non-full capacity versus constant depth, which turns out to 
be optimal. The size bound is achieved via an explicit construction of intercounection 
networks with strong expanding property and appropriate size. 

(~)i=0 Suppose that G is a synchronous network with depth k, and rank partition k 
(Ei)i=a. Construct a synchronous network G ~ with depth k + 1, and stage partition k 

t ~,,~k+l such that: and rank partition t~l~k+l and stage partition ~ i j i = l  k v i ] i = O  

1. Vi ~ = ~ for i = 0,1 . . . .  ,k, V~+: is disjoint from V(G) with [V~+xl > [V~[, and 
V~+ 1 is partitioned into IV~[ pairwise disjoint subsets of vertices with cardinalities 

r ~ ] .  and these [V~[ subsets are indexed by vertices in V~ as either [ J or / Iv~l /, 

{s~ I ~ e v;} ,  and 
2. E~ = E, for i = a, 2 . . . .  , k, and EL~ = u{{~} • S~ I ~ e V~}. 

That is, the network G' evolves from G with its last stage E~+I being the uniform 
"projection" of V~ into V~+ a. We call G' the projection of G onto V~+I, denoted by 
p~oj(C, y;+:). 

Let ~ be a set of pairwise vertex=disjoint synchronous networks with depth k. 
Denote by proj(~, Vk+a ) the synchronous network with depth k + 1 that is the graph- 
theoretic union of the projections proj(G, Vk+a) for G E ~. The projections created 
in this progressive manner are magnified as the depth increases, and this allows each 
vertex in the input rank to access a sufficiently large number of vertices in the projected 
ranks. The following theorem shows an evolution of a synchronous network with depth 
k + 1 from a set of pairwise vertex-disjoint synchronous networks with depth k and 
expanding capability via projection, which results in a network with stronger expansion 
by properly manipulating the cardinallties of inputs and outputs. 

The expansion capability of a network is measured by the quantity of accessible 
output vertices from an input vertex regardless of the existing interconnections. For- 
really, for a network G = (V, E, I,O) and a positive integer A, G is said to satisfy the 
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A-expanding property provided that  for every set S of pairwise vertex-disjoint routes 
of G and every input  vertex v that  is not saturated by S, there exist at least Zl output  
vertices that  are not saturated by S to which v can be directed, via routes tha t  are 
vertex-disjoint from each route in S. 

T h e o r e m  1. For integer constants k, ai and ill, i = 1, 2 , . . . ,  k, let 
i--1 

i o  ; i = 1, 2 . . . . ,  k ( n o t e  t h a t  E ' ( ' ,  ~ ~ = 0 i ] i  = 1). 
I f  At > 0 for i = 1 , 2 , . . . , k ,  then, for sufficiently large n (>_ Nk, a constant), 

there exists a synchronous (akn, flkn)-network Gk with depth k and size O(n ~+ ~ ) that 
satisfies the Akn-expanding property (the implied constants depend on k, al and fli for 
i =  1,2 . . . .  , k ) .  

Proof. We prove the theorem by induction on the depth k. For the basis of induction 
that  k = 1, suppose that  a l  and fll are positive integer constants  such that  A1 = fll -- 
a l  > 0. Let Ga be the digraph whose underlying graph is the complete bipart i te  graph 
Ko,~n,Zt,., with biparti t ion (V0,V~) where IV01 = a l n  and IVll = Bin,  and V(G1)  = 
V(K,,,,m,,e,,-,) and E(G.,) = V0 x V~, that  is, the rank and stage part i t ions of GI are 
respectively (V0, V1) and (V0 x V1). For every set S of pairwise vertex-disjoint directed 
edges from V0 into V~, and for every input vertex v 6 Vo - S(Vo), [.Fo,,t(v) - S(V1)I = 
[v~ - s(V~)l = [V~l - IS(V~)l _> & n  - ( ~ l n  - 1) since [S(V~)I _< ~an  - 1. Thus, the 
digraph G, satisfies the desired Aa n-expanding property. 

For the induction step, assume that  the s ta tement  in the theorem is true for all 
depths less than k where k > 1. Suppose that  ~i and fit, i = 1 , 2 , . . . , k ,  are pos- 
itive integer constants such that Ai > 0 for i = 1 , 2 , . . . , k .  The  positiveness of 
A1, A 2 , . . . ,  Ak_l enables us to apply the induction hypothesis in the case of depth 

1r 
k - 1. Let n be sufficiently large that [ n - F J  > Nk-1. Then there exists a synchronous 

k- -1  k - -1  / r  ] 
(~k_~ [ ~ - r -  j, Z~-I [ ~ - ~ -  J)-network V ~ - i  with depth  k -  1 and si~e O ( ( [ ~ - r -  J) § ~-~ ) 

k- -1  ~ 
that  satisfies the corresponding Ak_l [n- ' r - J -expanding property. For sufficiently large 
n, let r = [ ~ k-~ ] and ~ be a set of r pairwise vertex-disjoint copies of Gk-1,  

at_~ [n'-i '- J 
say G = tlG(a)k-1, G(2)k-1 . . . . .  e ( ~ l }  where G(ki_) a has rank part i t ion tvr i,=o and stage 

part i t ion ~ j  Ja=a, and consider the synchronous network G = p r o j ( ~ , V k ) w h e r e  
IV~l = Z~n. 

Ir k - - I  
Clearly, G is a synchronous ( r a k - ,  [n -T-J ,  flk n)-network (note that  rc~_a [n-X:-J = 

k- -1  

[ ~ '~_~ ] a ~ - i  [n-'i---J > a~n)  with depth k. We can obtedn the size of G by not- 
o~-x In "7-J 

ing that  the projection of G(i)_ a onto V~, proj(G(~O ~, V~), has size (0 _ [E(G~_I)  I + flkn = 
IE(a~-~)I + ~ ,  and therefore IZ(a)l = ~ := i ( IE(6"_) l ) l  + ~ ,~ )  = ~ ( IE(a~- l ) i  + 

k - - I  ~ k - -1  k flkn). Observe that IE(G~_,) is O( ( [nL~J)a+  -x~'T), and ([_n-'~J) +~-~ _< (n---~-) ~.---=T = 
n, therefore [E(G)[ is O( rn) .  We note that r n  [ ~ a  = ~-x In ,  and thus [E(G)[ is 

O(n ~+ ~). ~ - ~  t .--~- j 

We now show that  the synchronous network G satisfies the ~ n - e x p a n d i n g  prop- 
erty. Let S be a set of pairwise vertex-disjoint routes of G, and v be an input  vertex of 
G that  is not saturated by ..q (i.e., v ~ (U~=iVo (~)) - S(U~=IVo(n))). Observe that,  

(o~=, Vo ~')) - s ( ~ = ~  Vo(,)) = ~;=l(Vo~,) _ (u~=lS(Vo(~)))) = u~=l (Vo ~') - S(Vo( ' ) ) )  
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by the pairwise disjointedness of V0 (i), i = 1, 2 . . . . .  r.  Therefore, v E V0 (i) - S(V0(i) ) for 
some i e {1, 2 . . . .  , r}. Note that, by the pairwise vertex-disjointedness in ~ = {G(i'_) 1 I 
i = 1, 2 , . . . ,  r} and the definition ofproj(G, Vk), the set S -  = { P - { t e r m ( P ) }  [ P e S} 
can be partit ioned into S 0),  S(2),. . . ,  S (r) where S (i) is a set of pairwise vertex-disjoint 
directed paths in G(i) 1 that are directed from V ( ' )  into V(i_) 1 for i = 1, 2 , . . . ,  r.  

Since v e V0 ( ' ) -  S(Vo(i)) (= V0(0 -s(i)(Vo(i))), then by the Ak_l Ln~-~ J-expanding 
�9 k - - 1  �9 �9 

property of G(i)_a, there exist at least Ak--I[Tt-X'- j vertices in V(/..) a -S(i)(V(i)_l ) to 
which v can be directed via directed paths that are vertex-disjoint from each directed 
path in S (i), and therefore from each directed path in S - .  Thus, by the definition of 

projection in proj(9, Vk), there exist at least Ak_l L n ~ J  [ ~ J  vertices in Vk to 
k - - 1  

which v can be directed via directed paths that are vertex-disjoint from each directed 

path in S - ,  that  is, there exist at least Ak_l [n  J l ~ J  - I S -  - s(i)l vertices in 

Vk to which v can be directed via routes of G that are vertex-disjoint from each route 
in S. Consider that 

, IY~l , 

_ - 1) - (~-o~_~ L ~ r - J  - 1) > ~"-~L~N:-~"I(I ~_~1 

> (z~._~ _ , ~ ) n _ ( ~ _ ~ + ~ _ ~ ) [ n - r - j + ~ .  

The coefficient of n in ~k is 

zak-1 ~ - a k  = (~k-1  - ~ k - 1  - 

k - - 2  

a ,  2 ) ~ k - i )  Zk _ 
r / = l  

k - 1  

r/----1 

(note that  E ~ : ~  a ,  k-1 _ = 0 ~ ~ < 2). T h u s ,  ~ > (A~ + ~ ) n  -- (Za~_~ + ~ ) l n - r -  ] + 1 > 
Akn for sufficiently large n. 

We observe that  the Akn-expanding property of G is preserved if any set of input 
vertices together with the edges incident with them are deleted. Therefore, the digraph 
Gk, obtained by deleting a set of input vertices from G such that  the input rank has 
caxdinality ~kn, satisfies the statement in the theorem. This completes the induction 
step, and the proof of the  theorem. [3 

3 S i z e  O p t i m a l  B o u n d  v e r s u s  C o n s t a n t  D e p t h  

Our scheme for constructing synchronous strictly non-blocklng fixed ratio concentra- 
tors with non-full capacity and constant depth k is to employ the above-mentioned 
expanding networks as principal components. The construction is composed of two 
facets of interconnection, in which the first k - 1 stages yield a set of palrwise vertex- 
disjoint synchronous expanding networks and the last stage unites the projections of 
moderate expansion from the components onto the output rank. Hence the concern 
is the actual accessibility of any input of a given component to the outputs, which is 
limited by the existing concentration effect created by the other components. 
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T h e o r e m  2. For positive integer constants ~, ~, 7, and k with a > 13 > 7, and for 
sufficiently large n, there exists a synchronous strictly non-blocking'/n-limited ( an ,  f in)-  

concentrator with non-full capacity 7n and depth k, and size O(n~+~ ) (the implied 
constants depend on a, 13, 7, and k). 

Proof. Since/3 > 3' > 0, we can see that  there exists a sufficiently large constant  t such 
that  t > 2 k - 3  and I -  ~ > 2k-2 _ _ ~ .  Let ai  and fli be positive integer constants  such 
that  fla----2 t and ~ =  ~ f o r i = l , 2 , . . . , k - 1 .  

We show that  the positive integer parameters a l  and fli, i ---- 1, 2 , . . . ,  k - 1 satisfy 
the hypothesis of Theorem 1. For i ---- 1, 2, . . . ,  k - 1, 

i--1 i - - 1  

r / = l  7/----1 

= (2 t - 2 i  + 1 ) a i  > (2  t - 2 ( k  - 1) + 1 ) a i  > (t  - (~k  - 3 ) ) a ~  > 0. 

k- -1  
Thus, for sufficiently large n such that  Ln--xr-J > Nk-1 (a constant) ,  there exists 

k - - I  k - - 1  
a synchronous (ak-a  [ n - T - J ,  f~k-1 [ n T J ) - n e t w o r k  Gk-a with depth k - 1 and size 

k- -1  1 k - - 1  
O ( ( [ n - r - J )  + r~-r-x ) that  satisfies the Ak_a Ln- ' r-J-expanding property stated in Theo- 
rem 1. 

For sufficiently large n, let 7- = [ ~nk_ 1 ]. Define ~ as in the proof of Theorem 
ak-1  [n'-W- J 

1, and G = proj({L Vk) where ]Vkl = fin. 
The derivation in the proof of Theorem 1 can also show that  G is a synchronous 

k- -1  k - - 1  k - - 1  
( r ak_a [n ' - r - J , /~n ) -ne twork  (note that  r ak_~[n - - r - J  = [ ~nk_l ] ak_1[n - - r - J  > 

~,k-x L,~-'~'- J 
a n )  with depth k and size O(nl+~). It  must be shown that  the network G is a syn- 

k- -1  
chronous strictly non-blocking 7n-llmited ( r ak -1  [n-- r -J ,  f ln)-concentrator with depth 
k, that  is, for a state S of G and a 7n-limited concentration request v in S, there 
exists a state $1 of G that  contains S and an additional route satisfying the con- 
centration request v. We proceed as in showing the Akn-expanding property of G 
in Theorem 1, and we can see that  the desired state $1 exists provided that  6 -- 

i n ~ J  Ak-1 L ~ J  - (IS-I  - ISU)l) > 0 where IS-I  = ISl < ~n - L Noting tha t  

A ~ _ ~  = (2 '  - ( 2 k  - 3 ) ) a ~ _ ~ ,  w e  h a v e  

~ > A k _ ~ [ n ~ - ! j ( ~ _ D _ l S -  I > ~k_~tn~Z~j( Zn --1) -- (~n--1)  
IV~i~l - ~k-~ [nE'Z "~'] 

= ( # - ~ ) n  - ~ _ ~  L n ' r - J  + 1 = ((2': - (2k  - -  3 ) )  ,8 --  ",')n --  z ~ _ ~  L n T J  + 1 

- (1  fl  fin - A ~ _ ~  LnTJ + 1 > fin - a ~ _ ~  Ln--~-J + 1 > 0 

for sufficiently large n. 

Since the strictly non-blocking concentration property and its capacity in a network 
are preserved if any set of input  vertices together with the edges incident with them 
are deleted, the digraph obtained by deleting a set of input  vertices from G such tha t  
the input  rank has cardinality a n  is the desired synchronous strictly non-blocking 7n-  
limited (an, /3n)-concentra tor  with depth k and size O(n ~+ ~). This completes the proof 
of the theorem. 



240 

The following theorem, which gives lower bound size-depth tradeoffs for synchronous 
strictly non-blocking concentrators and generalized-concentrators with arbitrary depth, 
together with the size upper bound in Theorem 2, provide the size optimal bound for 
synchronous strictly non-blocking fixed ratio concentrators with non-fall capacity and 
constant depth. 

T h e o r e m  3. 

1. [Dai93] For positive integers n, m,  and c with n > m > e, the optimal size of strictly 
non-blocking c-limited (n, m)-eoneentrators with depth i is (n - m + c)c + (m - c). 
For posit ive integers n, m,  c, and k such that n > m >_. c, a synchronous strictly 
non-blocking c-limited (n, m)-concentrator with depth k has size at least k ( n -  m + 

~-~re)c~ - (k - 1)(n - c). 
2. [Dai94] For positive integers n, m,  c, and r with n > m > e > r, the optimal size 

o] strict ly non-blocking (e, r)-l imited (n, m)-generalized-concentrators with depth 1 
is ne - [~f-~J(c - r). 

For posit ive integers n, m,  c, r, and k such that n > m > c > r, a synchronous 
strict ly non-blocking (c, r )-limited (n, m )-generalized-concentrator with depth k >_ 2 

~ - - c ~ e ~  - (k - 1 ) ( n  - r i f  r < k - 1, and  ~ ( n  - has size at least k (n  - m + k+l , 

m k (> �89 and 7 q- t~Rk k-'h-c-~r'~czuk+l r ,  -- 2L(n-  -~)r otherwise, where ak = � 8 9  

~). / ~  = 1 -  ~-~+~ ( >  

T h e o r e m  4. For positive integer constants ~,  [3, 7, and k with c~ > fl > 7, the optimal 
bound on the size of  synchronous strictly non-blocking 7n-limited (an,  f ln)-concentrator 

with non-full  capacity 7n and depth k is @(n 1+}) (the implied constants depend on c~, 

[3, 7, and k) .  

4 Size Upper Bound for Full Capacity 

Dai [Dal91] showed a folklore result how the capacity parameter of networks promotes 
the interconnection property possessed by the networks from concentration to connec- 
tion in both wide-sense and strictly non-blocking contexts, and thus increases the size 
complexity of the networks. 

T h e o r e m  5. For positive integers n and m with n > m,  if  G is a strictly (wide-sense) 
non-blocking (n, m)-eoncentrator with .full capacity, then G is a strictly (respectively, 
wide.sense)  non-blocking (n, m)-conneetor  with ]ull capacity. 

The best known upper bound on the size of synchronous strictly non-blocking (n, n)- 

connectors with full capacity and depth k is O ( n l + X ' ~ ) ,  via an explicit recursive 
construction due to Clos [Clo53]. We show below the same size upper bound for these 
concentrators versus constant depth, but it employs the explicit construction of ex- 
panding networks detailed in Theorem I. 

T h e o r e m 6 .  For positive integer constants a,  /3, and k with a >_ 3, there exists a 
synchronous strictly non.blocking fin-limited (an,[3n)-eoncentrator with full  capacity 

and depth k ( that  is, connector in the same context), and size O(n  1+ T - ~ )  (the implied 

constants depend on a,  f3, and k).  
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Proof. It suffices to prove the theorem for the case of k = 2j - 1. Let t be a sufficiently 
large integer constant such that  2 t-~ > 2 j - 3 .  Consider the sequences of positive integer 
constants al and fli such that  fla = 2 t and ~ = ~ for i = 1,2 . . . .  , j - l ,  as in the proof 

of Theorem 2, which satisfy the hypothesis of Theorem 1, i.e., Ai = (2 t - 2i + 1)hi > 
0 for i = 1 , 2 , . . . , j  - 1. Thus, for sufficiently large n, there exists a .synchr~176 

(aj_a [n , J,fl.i-~[n " ])-network Go with depth j - 1 and size O(([nZ~'J)a+~---2-r), 

which satisfies the A j_ l  In J ]-expanding property stated in Theorem 1. We also note 
that in this case, Aj_~ > $flj_~ since 

~j_~  (2' (2j  - 3) )aj_~ = '-~ (2 '-~ = - 2 a i - ~ +  - ( 2 j - 3 ) ) a j _ ~  

1 
= ~-Z~_~ + (2 ~-~ - (2j  - 3))a~_~ > ~Z~_~. 

For a digraph H = (V, E),  its mirror image denoted by H r is defined to be the 
digraph (V, E r) where E r = {(u, v) [ (v, u) E E}. For sufficiently large n, let a = 

[ anz=A. ] and b = [ #nz~ ]. Let G be a synchronous (ha j-1 [n , ], baj-1 [n , J)- 
c~i-IL n J J a j _ l t n  J J 

network with depth k, together with rank partition ~ k (Vi)i=o and stage partition (Ei)i=l, 
defined as follows (note that  aa j -1  [n~-~J = [ ~ ]a~-a In , ] > an,  and sim- 

~j_~[n ~ J 

ilarly, ha j_ l  In ~ J _> fin). The subdigraph Gi,~ of G induced by its first j ranks 
V0, V1, . . . ,  Vj-1 is the graph-theoretic union of G1, G~ , . . . ,  Ga, which is a sequence of 
a pairwise vertex-disjoint copies of above-mentioned synchronous network Go, while 
the subdigraph Go~,t of G induced by its last j ranks V), ~ + 1 , . . . ,  Vk is the graph- 
theoretic union of G~', G~ , . . . ,  G~,, which is a sequence of b pairwise vertex-disjoint 
copies of G~; and the center stage Ej is composed of all the edges directed from the 
output rank of Gp into the input rank of G~ in any one-to-one correspondence manner 
f o r p = l , 2 , . . . , a ,  and q = l , 2 , . . . , b .  

Computation can show that  ]E(G~.)I and IE(Go~,t)I are O(na+~), and ]Ej] = 

a b f l j _ l [ n ~ ]  that  is O(n]+~). Thus IE(G)I is O(n~+~,). To show that  the network 

G is a synchronous strictly non-blocking (aaj_a In ~ ], baj_a [n "7--J )-connector with 

depth k = 2j - 1, let S be a state of G and (u, v) be a baj_~ In ~ ]-limited connection 
request in S. Therefore there exist p E {1, 2 . . . .  , a} and q E {1, 2 . . . . .  b} such that  u is 

r 3 L : . L  . an input of Gp and v is an output of Gq. Since Gp satisfies the A j_ l  In 3 J-expanding 

property stated in Theorem 1, there exist at least Aj_~ [ n ~ ]  (>  ~ ~ j _ ~  [ ~ ] )  ver- 
tices in the output rank of Gp to which u can be directed via directed paths that  are 
vertex-disjoint from each route in S. By symmetry, a similar argument gives that  there 

exist A j_ l  In vertices in the input rank of Gq from which v can be directed via 
directed paths that  are vertex-disjoint from each route in S. Then, since the directed 
edges in Ej provide an one-to-one correspondence between the outputs of Gp and the 
inputs of G~, and 2Aj_I > flj-1, there exists a route that satisfies the connection 
request (u, v) and is vertex-disjoint from ench route in S. This shows the strictly non- 
blocking connection property of G. A desired synchronous strictly non-blocking fixed 
ratio (an, fln)-connector can be obtained by deleting all but a n  inputs and all but fin 
outputs of G; and the theorem is proved. D 
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5 Concluding Remarks 

The equivalences between the full-capacity generalized-concentration (concentration) 
and the full-capacity generalized-connection (respectively, connection) in the strictly 
and wide-sense non-blocking contexts allow us to apply the known results on size lower 

bound and upper bound versus depth (12(n a+xr~-r-~ ) and O(n l+'ff~f), respectively) for 
synchronous strictly non-blocking (n, n)-connectors with full capacity and depth k > 2 
to synchronous strictly non-blocking concentrators with full capacity. These two size 
bounds show an optimality result for depth k < 3, but there is a considerable gap 
between them for depth k :> 4. An improvement in narrowing this gap is desirable. 
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