
Universal Computing 

W F McColl 

Oxford University 

Abs t rac t .  The field of scalable computing is being redefined by the 
emergence of low cost parallel servers based on standard commodity mi- 
croprocessors and off-the-shelf networking technologies. Many high per- 
formance applications will, in future, be carried out on such Systems. 
Other applications, with very demanding communications requirements, 
will continue to be run on more specialised and expensive supercomputer 
systems. Over the next few years we will see the growth of a large and 
diverse global parallel software industry similar to that which currently 
exists for sequential computing. The main goal of that industry will be 
to produce scalable programs which, in addition to being fully portable, 
will offer high performance, in a predictable way, on any general purpose 
parallel arclfitecture. The BSP model provides a discipline for the design 
of universal programs of this kind. 

1 I n t r o d u c t i o n  

Over the last thir ty years or so we have seen the emergence and development 
of a huge global software industry. A large part of that  industry is concerned 
with the production of portable applications software for the wide variety of 
sequential computers which are currently in use, from personal computers to 
large mainframes. The roots of this success story can be traced back to the work 
of von Neumann in the 1940s and to the developments in the areas of high level 
languages and compilers which followed on from that  work in the 1950s and 
early 1960s. The model of a general purpose sequential computer  proposed by 
yon Neumann has served as the basic framework for almost all of the sequential 
computers which have been produced from the late 1940s to the present time. 
The stability which the model has provided has been crucial to the growth of 
the software industry over the years. 

Since the earliest days of computing it has been clear that,  sooner or later, 
sequential computing would be superseded by parallel computing. This has not 
yet happened, despite the availability of numerous parallel machines and the 
insatiable demand for increased computing power. For parallel computing to 
become the normal form of computing we require a model which can play a 
similar role to that  which the yon Neumann model has played in sequential 

* This work was supported in part by ESPRIT Basic Research Project 9072 - GEPP- 
COM (Foundations of General Purpose Parallel Computing). Address: Programming 
Research Group, Oxford University Computing Laboratory, Wolfson Building, Parks 
Road, Oxford OX1 3QD, England. Email: mccoll@comlab.ox, ac.uk 



26 

computing. The emergence of such a model would stimulate the development of 
a new parallel software industry, and provide a clear focus for future hardware 
developments. For a model to succeed in this role it must offer three fundamental 
properties: 

scalabi l i ty  - the performance of software and hardware must be scalable from 
a single processor to several hundreds or thousands of processors. 

po r t ab i l i t y  - software must be able to run unchanged, with high performance, 
on any general purpose parallel architecture. 

p red ic t ab i l i t y  - the performance of software on different architectures must be 
predictable in a straightforward way. 

It should also, ideally, permit the correctness of parallel programs to be deter- 
mined in a way which is not much more difficult than for sequential programs. 

During the last thirty years, a large number of parallel models have been 
proposed. They include: SIMD parallelism, synchronous message passing, logic 
programming, graph reduction, dataflow, and various forms of cache-based vir- 
tual shared memory. None of these approaches has, however, achieved all three 
main requirements. 

The BSP model, which we describe in this paper, is quite different from many 
of the approaches which have been proposed in the past. It decouples the two 
fundamental aspects of parallel computation - communication and synchronisa- 
tion. This decoupling is the key to achieving universal applicability across the 
whole range of parallel architectures. Recent research on BSP algorithms, archi- 
tectures and languages has demonstrated convincingly that the BSP model can 
achieve all three of the requirements mentioned above. 

2 P a r a l l e l  A r c h i t e c t u r e s  

In recent years, the pursuit of higher performance from computers has forced 
the introduction of parallel computing in many areas, particularly in scientific 
and engineering applications and in database systems and transaction process- 
ing. The transition from sequential to parallel has not, however, been without 
its problems. On most of the early commercial parallel machines produced in the 
1980s, scalable parallel performance could only be achieved by carefully exploit- 
ing the particular architectural details of the machine. Besides being extremely 
tedious and time consuming in many cases, this usually resulted in parallel ap- 
plications software which could not be easily adapted to run on other machines. 
In a world of rapidly changing and diverse parallel architectures, this architec- 
ture dependence of the parallel software was a major weakness and seriously 
inhibited the growth of the field. 

Over the last few years the situation has improved somewhat. For a variety 
of technological and economic reasons, tlffe various classes of parallel computer 
in use (distributed memory machines, shared memory multiprocessors, clusters 
of workstations) have been steadily becoming more and more alike. The eco- 
nomic advantages of using standard commodity components has been a major 



27 

factor in this convergence. Other influential factors have been the need to effi- 
ciently support a single address space on distributed memory machines for ease 
of programming, and the need to replace buses by networks to achieve scalability 
in shared memory multiprocessors. These various pressures have acted to pro- 
duce a rapid and significant evolutionary restructuring of the parallel computing 
industry. 

There is now a growing consensus that for a combination of technological, 
commercial, and software reasons, we will see a steady evolution over the next few 
years towards a "standard" architectural model for scalable parallel computing. 
It is likely to consist of a collection of (workstation-like) processor-memory pairs 
connected by a communications network which can be used to efficiently support 
a global address space. As with all such successful models, there will be plenty 
of scope for the use of different designs and technologies to realise such systems 
in different forms depending on the cost and performance requirements sought. 

The simplest, cheapest, and probably the most common architectures will be 
based on clusters of personal computers. The Intel Pentium Pro microproces- 
sor is an example of a high volume, commodity microprocessor for the personal 
computer market which provides hardware support for multiprocessing. Using 
such commodity microprocessor components, various companies are now produc- 
ing very low cost multiprocessor systems for use as parallel servers. Commodity 
networking technologies such as ArM and new scalable software systems for 
communications will allow these to be assembled into clusters which will provide 
a very low cost option for many high performance commercial, scientific and 
internet applications. 

At the other end of the spectrum, there will continue to be a small group of 
companies producing very large, very powerful and very expensive parallel su- 
percomputer systems for those with applications which require those computing 
resources. The CRAY T3D is a good example of such a system. It is a very pow- 
erful distributed memory architecture based on the DEC Alpha microprocessor. 
In addition to offering high bandwidth global communications, it has several 
specialised hardware mechanisms which enable it to efficiently support paral- 
lel programs which execute in a global address space. The mechanisms include 
hardware barrier synchronisation and direct remote memory access. The latter 
permits each processor to get a value directly from any remote memory location 
in the machine, and to put a value directly in any remote memory location. 
This is done in a way which avoids the performance penalties normally incurred 
in executing such operations on a distributed memory architecture, due to pro- 
cessor synchronisation and other unnecessary activities in the low level systems 
software. 

The process of architectural convergence which has been described brings 
with it the hope that we can, over the next few years, establish parallel computing 
as the standard method of computing, and begin to see the growth of a large and 
diverse global parallel software industry similar to that which currently exists for 
sequential computing. The main goal of that industry will be to produce scalable 
programs which, in addition to being fully portable, will offer high performance, 



28 

in a predictable way, on any general purpose parallel architecture. The BSP 
model provides a discipline for the design of universal programs of this kind. 

3 T h e  B S P  M o d e l  

3.1 S u p e r s t e p s  

In architectural terms, the BSP model is essentially the standard model described 
above. A bulk synchronous parallel (BSP) computer [9, 12] consists of a set of 
processor-memory pairs, a global communications network, and a mechanism for 
the efficient barrier synchronisation of the processors. A BSP computer  operates 
in the following way. A computat ion consists of a sequence of parallel supersteps, 
where each superstep consists of a sequence of steps, followed by a barrier syn- 
chronisation at which point all da ta  communications will be completed. During a 
superstep, each processor can perform a number of computat ion steps on values 
held locally at the start  of the superstep, send and receive a number of messages, 
and handle various remote read and write requests. 

Although we have described the BSP computer  as an architectural model, 
one can also view bulk synchrony as a programming model or, indeed, as a 
kind of programming methodology. The essence of the BSP approach to parallel 
programming is the notion of the superstep, in which communication and syn- 
chronisation are completely decoupled. A "BSP program" is simply one which 
proceeds in phases, with the necessary global communications taking place be- 
tween the phases. This approach to parallel programming is applicable to all 
kinds of parallel architecture: distributed memory architectures, shared mem- 
ory multiprocessors, and networks of workstations. It provides a consistent, and 
very general, framework within which to develop portable parallel software for 

scalable parallel architectures. 
Since communication and synchronisation are decoupled in a BSP program, 

the programmer does not have to worry about problems such as deadlock, which 
can occur with synchronous message passing. Debugging a BSP program is also 
made much easier by this decoupling. The barrier at the end of a superstep 
provides an appropriate breakpoint at which the global state of the parallel 
computat ion is well defined and can be interrogated. Debugging and reasoning 
about  the correctness of a BSP program are, therefore, not much more difficult 

than for a sequential program. 

3.2 C o s t  M o d e l l i n g  

If we define a t ime step to be the time required for a single local operation, i.e. 
a basic operation (such as addition or multiplication) on locally held data  val- 
ues, then the performance of any BSP computer  can be characterised by three 
parameters: p = number of processors; l = number of t ime steps for barrier syn- 
chronisation; g = (total number of local operations performed by all processors 
in one second)/( total  number of words delivered by the communications net- 
work in one second, in a situation of continuous traffic). There is also, of course, 



29 

a fourth parameter  s, the number of time steps per second. However, since the 
other parameters are normalised with respect to that  one, it can be ignored in 
the design of algorithms and programs. The parameter  g corresponds to the fre- 
quency with which non-local memory accesses can be made; in a machine with 
a higher value of g one must make non-local memory accesses less frequently. 
Any parallel computing system can be regarded as a BSP computer,  and can be 
benchmarked accordingly to determine its BSP parameters l and g. The BSP 
model is therefore not prescriptive in terms of the physical architectures to which 
it applies. Every general purpose parallel architecture can be viewed by an algo- 
r i thm designer or programmer as simply a point (p, l, g) in the space of all BSP 
machines. 

The t ime for a superstep S is determined as follows. Let the work w be the 
maximum number of local computat ion steps executed by any processor during 
S. Let h8 be the maximum number of messages sent by any processor during S, 
and hr be the maximum number of messages received by any processor during 
S. The time for S is then at most w + g .  max{hs, hr} + l steps. The total t ime 
required for a BSP computation is easily obtained by adding the times for each 
superstep to obtain an expression of the form W + H �9 g + S �9 l, where W, H, S 
will typically be functions of n and p. Analysing and predicting the cost of a 
BSP program is, therefore, no more difficult than analysing and predicting the 
cost of a sequential program. 

4 N e t w o r k s  a n d  R o u t i n g  M e t h o d s  

The use of the parameters l and g to characterise the communications perfor- 
mance of the BSP computer contrasts sharply with the way in which communi- 
cations performance is described for most distributed memory architectures on 
the market today. A major feature of the BSP model is that  it lifts consider- 
ations of network performance from the local level to the global level. We are 
thus no longer particularly interested in whether the network is a 2D array, a 
butterfly or a hypercube, or whether it is ' implemented in VLSI or in some op- 
tical technology. Our interest is in global parameters of the network, such as l 
and g, which describe its ability to support da ta  communications in a uniformly 
efficient manner. 

In the design and implementation of a BSP computer,  the values of ! and 
g which can be achieved will depend on the capabilities of the available tech- 
nology and the amount of money that  one is willing to spend on the commu- 
nications network. In asymptotic terms, the values of I and g one might ex- 
pect for various p processor networks are: ring [l = O(p ) ,g  = O(p)], 2D array 
[l = O(p l /2 ) ,g  = 0 ( p l / 2 ) ] ,  butterfly [l = O ( l o g p ) , g  = O(logp)], hypercube 
[l = O ( l o g p ) , 9  = 0(1)].  These asymptotic estimates are based entirely on the 
degree and diameter properties of the corresponding graph. In a practical set- 
ting, the channel capacities, routing methods used, VLSI implementation etc. 
would also have a significant impact on the actual values of I and g which could 
be achieved on a given machine. New optical technologies may offer the prospect 



30 

of further reductions in the values of I and g which can be achieved, by providing 
a more efficient means of non-local communication than is possible with VLSI. 

If we are interested in the problem of designing improved networks and rout- 
ing methods which reduce g then perhaps the most obvious approach is to con- 
centrate instead on the alternative problem of reducing l. This strategy is sug- 
gested by the following simple reasoning: If messages are in the network for a 
shorter period of time then, given that the network capacity is fixed, it will be 
possible to insert messages into the network more frequently. In studying BSP 
algorithms we see that, in many cases, the performance of a BSP computation is 
limited much more by g than by I. This suggests that in future, when designing 
networks and routing methods it may be advantageous to accept a significant 
increase in I in order to secure even a modest decrease in g. This raises a number 
of interesting architectural questions which have not yet been fully explored. It is 
also interesting to note that the characteristics of many modern communication 
systems (slow switching, very high bandwidth) may be very compatible with this 
alternative approach. 

5 BSP Algorithms 

In designing an efficient BSP algorithm or program for a problem which can 
be solved sequentially in time T(n) our goal will, in general, be to produce an 
algorithm requiring total time W + H .g + S. l where W(n, p} = T(n)/p, H(n, p} 
and S(n, p) are as small as possible, and the range of values for p is as large as 
possible. In many cases, this will require that we carefully arrange the data dis- 
tribution so as to minimise the frequency of remote memory references. Another 
property of interest in BSP algorithm design is the space (or memory) efficiency 
of the computation. We will use M(n, p) to denote the maximum number of val- 
ues which any one processor has to store at any point during the computation. 
In this section we describe some BSP algorithms for matrix multiplication and 
discuss their time and space complexity. 

Many static computations can be conveniently modelled by directed acyclic 
graphs, where each node corresponds to some simple operation, and the arcs 
correspond to inputs and outputs. Let Ca denote the directed acyclic graph 
which has n 3 nodes vi,j,k, 0 < i,j,  k < n, and arcs from vi,j,k to vi+l,j,k, vi,j+l,k 
and vid.~,+l where those nodes exist. The graph Cn can be scheduled for a p 
processor BSP computer by partitioning Cr, into pZl~ subgraphs, each of which 
is isomorphic to C,~/pl/~. Let s = n/p 1t2 and C ~dJi, 0 <__ i,j,/r < p112, denote the 

subset of s 3 nodes vid,k in Cn where i div s = i, j div s = j and k div s = k. The 
following simple schedule for C.  requires 3p 112 - 2 supersteps: During superstep 
s(t), each C i'j'/~ for which i + j + k = t is computed by one of the p processors, 
with no two of them computed by the same processor./,From the structure of C,, 
it is clear that during a superstep, each processor will receive n2/p values, send 
n2/p values, and perform nZ/p 312 computation steps. The total time required 
for the BSP implementation of any computation which can be modelled by C,, 



31 

is therefore at most nZ/p + (n2/pl/2).g +pl /2 .  l. [Throughout this paper we will 
omit  the various small constant factors in such formulae.] 

Consider the problem of multiplying two n x n dense matrices A, B to produce 
C. In [8] it is shown that  the product C can be computed using the following 
set of definitions: For all 0 < i, j ,  k < n, 

ai,j,k "- ai,j- l,k 
bi,j,k = bi-l,j,k 
ci,j,k -= ci,j,k-1 -}- ( ai,j,k �9 bi,j,k ) 

where al,0,k = ai,k, b0,j,~ = bk,j and cl,j,o = 0. These definitions can be directly 
translated into a labelled version of the directed acyclic graph Ca. The BSP time 
complexity of matr ix  multiplication is therefore at most n3/p + (n2/p 112) �9 g + 
pl/2. I. For the standard n 3 sequential matr ix  multiplication algorithm, this BSP 
schedule is optimal in terms of its computat ion cost W(n, p) = n3/p. It is also 
optimal in terms of its space complexity. The matrices A and B can be uniformly 
distributed across the p processors, with each one holding an n/p 1/2 • n /p  1/2 
block of the matrix. Given this uniform input distribution, we can schedule the 
reuse of memory locations in a straightforward way to ensure that  no processor 
will be required to store more than n~/p values in any superstep. Therefore we 
have M(n,p)  = n2/p. 

In [9] a more efficient BSP realisation of the standard n 3 algorithm, due to 
McColl and Valiant, was described. Its BSP time complexity is nZ/p+ (n2/p2/3). 
g -t- I. As in the previous schedule we begin with A, B distributed uniformly 
but  arbitrarily across the p processors. At the end of the computation,  the n 2 
elements of C should also be distributed uniformly across the p processors. Let 
s = n/p  1/3 and A[~, j] denote the s • s submatr ix of A consisting of the elements 
ai,j where i d i v  s = ~ and j div s = j. Define B[~, j] and C[{, j] similarly. Then 

we have C[i,j] = )"~0_<~<p,/3 A[~, ]r B[]e,j]. Let PROC(~, j, ]r 0 < ~,j, k < 
pl/3, denote the p processors. In the first superstep each processor PROC(i ,  j, ]r 
gets the set of elements in A[~, k] and those in B[k,j] .  The cost of this step is 

(n2/p2/Z).g + I. In the second superstep PROC(~, j, ]r computes A[~, k]. BIle, j] 
and sends each one of the n2/p 2/3 resulting values to the unique processor which 
is responsible for computing the corresponding value in C. The cost of this step 
is n3/p + (n2/p2/3) �9 g + l. In the final superstep, each processor computes each 
of its n2/p elements of C by adding the pl/3 values received for that  element. 
The cost of this step is n2/p2/3 .Jr I. 

An input-output  complexity argument can be used to show that  for any BSP 
implementation of the standard n 3 sequential algorithm, if W(n, p) = nZ/p then 
H(n, p) >_ n2/p2/3. This second BSP schedule for matr ix  multiplication therefore 
provides a realisation of the standard n 3 method which simultaneously achieves 
the optimal values for computat ion cost W(n,p),  communication cost H(n,p)  
and synchronisation cost S(n,p).  The memory requirement of this algorithm 
is, however, inferior to the first algorithm. Its memory complexity M(n,p)  is 
n2/p2/3. 



32 

6 BSP Programming 

In this section we briefly describe the main characteristics of BSP program- 
ming. We also compare the BSP approach with two other approaches to parallel 
programming- data parallelism and message passing. 

As was noted earlier, the essence of the BSP approach to parallel program- 
ming is the notion of the superstep, in which communication and synchronisa- 
tion are completely decoupled. A "BSP program" is simply one which proceeds 
in phases, with the necessary global communications taking place between the 
phases. One simple way of specifying the data communications in a BSP program 
is to use remote memory access primitives. The operation put deposits locally 
held data into a remote memory area on another process. The get operation 
reaches into the local memory of another process to copy values held there into 
a data structure in its own local memory. The put and get operations are both 
one-sided communication primitives. They do not require the active participa- 
tion of the other process. In accordance with BSP superstep semantics, they are 
also both non-blocking. All put and get operations initiated during a superstep 
will be completed before the start of the next superstep. 

Bulk synchronous remote memory access is a very convenient style of pro- 
gramming for BSP computations which can be statically analysed in a straight- 
forward way. It is less convenient for computations where the volumes of data 
being communicated between supersteps is irregular and data dependent, and 
where the computation to be performed in a superstep depends on the quantity 
and form of data received at the start of that superstep. A more appropriate 
style of programming in such cases is bulk synchronous message passing. In bulk 
synchronous message passing, a non-blocking send operation is used to transfer 
values held locally into a buffer on the destination process. The values are guar- 
anteed to be in the remote buffer before the start of the next superstep, and can 
be safely inspected and manipulated by the receiving process at that time. 

6 .1  D a t a  Para l le l i sm 

Data parallelism is an important niche within the field of scalable parallel com- 
puting. A number of interesting programming languages and elegant theories 
have been developed in support of the data parallel style of programming. The 
BSP approach, as outlined in this paper, aims to offer a more flexible and general 
style of programming than is provided by data parallelism. The two approaches 
are not, however, incompatible in any fundamental way. For some applications, 
the increased flexibility provided by the BSP approach may not be required and 
the more limited data parallel style may offer a more attractive and productive 
setting for parallel software development, since it frees the programmer from 
having to provide an explicit specification of the various processor scheduling, 
communication and memory management aspects of the parallel computation. 
In such a situation, the BSP cost model can still play an extremely important 
role in terms of providing an analytic framework for performance prediction of 
the data parallel program. 



33 

6.2 Message  Pass ing  

Since the early 1980s, message passing has been the dominant programming ap- 
proach in the area of parallel computing. In recent years, the PVM message pass- 
ing library [3] has been widely implemented and widely used. In that respect, the 
goal of source code portability in parallel computing has already been achieved 
by PVM. What then, are the advantages of BSP programming, if any, over a 
message passing framework such as PVM? On shared memory architectures and 
on modern distributed memory architectures with powerful global communica- 
tions, message passing models such as PVM are likely to be less efficient than 
the BSP model, where communication and synchronisation are decoupled. This 
will be especially true on those modern distributed memory architectures which 
have hardware support for direct remote memory access (or one-sided communi- 
cations). PVM and all other message passing systems based on pairwise, rather 
than barrier, synchronisation also suffer from having no simple analytic cost 
model for performance prediction, and no simple means of examining the global 
state of a computation for debugging. 

MPI [6] has been proposed as a new standard for those who want to write 
portable message passing programs in Fortran and C. At the level of point- 
to-point communications (send, receive etc.), MPI is similar to PVM, and the 
same comparisons apply. [The MPI standard is very general and appears to be 
very complex relative to the BSP model. However, one could use some carefully 
chosen combination of the various non-blocking communication primitives avail- 
able in MPI, together with its barrier synchronisation primitive, to produce an 
MPI based BSP programming model.] At the higher level of collective commu- 
nications, MPI provides support for various specialised communication patterns 
which arise frequently in message passing programs. These include broadcast, 
scatter, gather, total exchange, reduction, scan etc. These standard communica- 
tion patterns also arise frequently in the design of BSP algorithms. It is impor- 
tant that such structured patterns can be conveniently expressed and efficiently 
implemented in any BSP programming language, in addition to the more prim- 
itive operations such as put and get which generate arbitrary and unstructured 
communication patterns. 

Comparing it to PVM and MPI, it might be argued that the BSP approach 
offers (a) a simple programming discipline (based on supersteps) which makes it 
easier to determine the correctness of programs, (b) a cost model for performance 
aualysis and prediction which is simpler and compositional, and (c) more efficieat 
implementations on many machines. 

7 B S P  P r o g r a m m i n g  L i b r a r i e s  

The Cray T3D SHMEM library provides primitives for direct remote memory 
access which can be used for BSP programming. The Oxford BSP Library [10] 
and the Oxford BSP Toolset [7] both provide a similar set of programming 
primitives for bulk synchronous remote memory access. The Green BSP Library 



34 

[4] provides a set of bulk synchronous message passing primitives based on fixed 
sized packets. Considerable experience of BSP programming has been gained 
through the use of these libraries. A number of major projects in universities 
and in industry are now using them to develop parallel applications, see e.g. 
[7, 11]. The experience gained in these practical projects would appear to confirm 
the various claims made above, regarding BSP and its advantages over message 
passing. 

In December 1995, the inaugural meeting of BSP Worldwide was held in 
Oxford. BSP Worldwide is a new global organisation to coordinate research and 
development activities in the area of BSP computing, and to work on the stan- 
dardisation of programming tools for the growing number of software developers 
who are now adopting this approach. It has recently launched an initiative to 
produce a standard low level BSP programming library for use with sequential 
languages such as Fortran and C. An initial proposal for this library is given in 
[5]. Its main characteristics are as follows: 

- Single Program Multiple Data (SPMD) parallelism. 
- Primitives for buffered and unbuffered bulk synchronous remote memory 

access. 

- Primitives for buffered bulk synchronous message passing with tagged mes- 

sages. 
- Primitives for address registration to (a) support data communications into 

static, stack and heap allocated data structures, and (b) support BSP pro- 
gramming in heterogeneous environments. 

A number of features which are semantically well defined, such as nested 
parallelism and subset synchronisation, have been excluded from the initial ver- 
sion of the library since they can have an adverse effect on the predictability of 

performance. 

8 B S P  a n d  o t h e r  m o d e l s  

In the 1980s we had a large number of different types of parallel architecture. 
With hindsight we now see that this variety was both unnecessary and unhelp- 
ful. It stifled the commercial development of parallel applications software by 
requiring that, to achieve acceptable performance, any such software had to be 
tailored to the specific architectural properties of the machine. 

The BSP model provides software developers with an attractive escape route 
from the world of architecture dependent parallel software. The emergence of the 
model has also, as we have seen, coincided with the convergence of commercial 
parallel machine designs to a standard architectural form which is very compat- 
ible with the model. These developments have been enthusiastically welcomed 
by a rapidly growing community of software engineers charged with the task of 
producing scalable and portable parallel applications. However, while the paral- 
lel applications community has welcomed the approach, there is still a surprising 
degree of skepticism amongst parts of the computer science research community. 



35 

Many people seem to regard some of the claims made in support of the BSP 
approach as "too good to be true". This has led to a new proliferation, this time 
of models, in the 1990s. 

Over the last few years a large number of variants of the BSP model, and al- 
ternatives to the BSP model, have been proposed for consideration. The number 
of such models probably greatly exceeds the number of different architectures 
that  the parallel programmer had to contend with ten years ago! Most of the 
variants and alternatives have been developed in response to one or both of the 
following perceptions: 

- Barrier synchronisation is an inflexible mechanism for structuring parallel 
programs. 

- Some network characteristics other than I and g have to be taken into account 
in designing an efficient parallel program. 

The only one of these alternative models which has generated any serious interest 
is the LogP model [2]. LogP differs from BSP in two ways: 

- It uses a form of message passing based on pairwise synchronisation. 
- It adds a third parameter representing the overhead involved in sending a 

message. 

Over the last few years: 

- Experience in developing software using the LogP model has shown that  to 
analyse the correctness and efficiency of LogP programs it is often necessary, 
or at least convenient, to use barriers. 

- Major improvements in network hardware and in communications software 
have greatly reduced the overhead associated with sending messages. 

Given that  LogP + barriers - overhead = BSP, the above points would sug- 
gest that  the LogP model does not improve upon BSP in any significant way. 
However, it is natural to ask whether or not the more "flexible" LogP model 
can enable a designer to produce a more efficient algorithm or program for some 
particular problem, at the expense of a more complex style of programming. 
Recent results show that  this is not the case. In [1] it is shown that  the BSP and 
LogP models can efficiently simulate one another, and that  there is therefore no 
loss of performance in using the more structured BSP programming style. 

It is an interesting and important activity to look for alternative models of 
parallel computation which improve upon what we already have. In encouraging 
researchers to contribute to our understanding in this area, I would however 
make the following point. The only sensible way to evaluate an architecture 
independent model Of parallel computation such as BSP, LogP, or the PRAM 
model, is to consider it in terms of all of its properties, i.e. (a) its usefulness as 
a basis for the design and analysis of algqr~ithms, (b) its universal applicability 
across the whole range of general purpose architectures and its ability to provide 
efficient scalable performance on them, and (c) its support for the design of fully 
portable programs with analytically predictable performance. If we focus on 



36 

only one of these at a time, then we will s imply be replacing the zoo of parallel 
architectures which we had in the 1980s by a new zoo of parallel models in 
the 1990s. I t  seems likely that  this viewpoint on the nature and role of models 
will gain more and more support  as we move from the straightforward world of 
parallel algori thms to the much more complex world of parallel software systems. 

References  

1. G Bilardi, K T Herley, A Pietracaprina, G Pucci, and P Spirakis. BSP vs LogP. 
In Proc. 8th Annual ACM Symposium on Parallel Algorithms and Architectures, 
1996. (to appear). 

2. D Culler, R M Karp, D A Patterson, A Sahay, K E Schauser, E Santos, 
R Subramonian, and T yon Eicken. LogP: Towards a realistic model of parallel 
computation. In Proc. 4th ACM SIGPLAN Symposium on Principles and Practice 
of Parallel Programming, pages 1-12, May 1993. 

3. A Geist, A Beguelin, J Dongarra, W Jiang, R Manchek, and V Sunderam. PVM: 
Parallel Virtual Machine - A Users' Guide and Tutorial for Networked Parallel 
Computing. MIT Press, Cambridge, MA, 1994. 

4. M Goudreau, K Lang, S Rao, T Suel, and T Thanasis. Towards efficiency and 
portability: Programming with the BSP model. In Proc. 8th Annual ACM Sym- 
posium on Parallel Algorithms and Architectures, 1996. (to appear). 

5. M W Goudreau, J M D Hill, K Lang, W F McColl, S B Rao, D C Stefanescu, 
T Suel, and T Thanasis. A proposal for the BSP Worldwide Standard Library 
(preliminary version). Tedmical report, available via BSP Worldwide home page 
http ://www .bsp-worldwide. org/, April 1996. 

6. W Gropp, E Lusk, and A Skjellum. Using MPI." Portable Parallel Programming 
with the Message-Passing Interface. MIT Press, Cambridge, MA, 1994. 

7. J M D Hill, P I Crumpton, and D A Burgess. The theory, practice, and a tool 
for BSP performance prediction applied to a CFD application. Technical Report 
PRG-TR-4-1996, Oxford University Computing Laboratory, 1996. To appear in 
Proc. Euro-Par '96. 

8. W F McColl. Special purpose parallel computing. In A M Gibbons and P Spirakis, 
editors, Lectures on Parallel Computation. Proc. 1991 ALCOM Spring School on 
Parallel Computation, volume 4 of Gambrid9 e International Series on Parallel 
Computation, pages 261-336. Cambridge University Press, Cambridge, UK, 1993. 

9. W F McColl. Scalable computing. In J van Leeuwen, editor, Computer Science To- 
day: Recent Trends and Developments. LNCS Volume 1000, pages 46-61. Springer- 

Verlag, 1995. 
10. R Miller. A fibrary for bulk-synchronous parallel programming. In Proc. British 

Computer Society Parallel Processing Specialist Group workshop on General Pur- 
pose Parallel Computing, December 1993. 

11. M Nibhanupudi, C Norton, and B Szymanski. Plasma simulation on networks of 
workstations using the bulk synchronous parallel model. In Proceedings of the 
International Conference on Parallel and Distributed Processing Techniques and 
Applications, Athens, CA, November 1995. 

12. L G Valiant. A bridging model for parallel computation. Communications of the 

ACM, 33(8):103-111, 1990. 


