
Dynamic Redistribution on Heterogeneous
Parallel Computers

Dominique Sueur and Jean Luc-Dekeyser

Laboratoire d'Informatique Fondamentale de Lille
Universit~ des Sciences et Technologies de Lille

Abs t r ac t . New generations of scientific codes trend to mix different
types of parallelism. Algorithms are defined as a set of modules, with
data parallelism inside modules and task parallelism between them. With
high speed networks, tasks running on a heterogeneous computing en-
vironment can exchange data in a reasonable delay. Therefore data-
parallel tasks distributed on different parallel computers can interact
efficiently by reading or writing Data Parallel Objects. These objects are
distributed on the physical nodes according to the mapping directives.
Migrations of data parallel objects from one parallel computer to another
lead us to define efficient algorithms for runtime array redistribution.
In this work, we have specially cared about the ability to handle distinct
source and target processor sets while performing redistribution and the
ability to overlap communications and computations. Performance re-
sults on a farm of ALPHA processors are discussed.

1 Introduction

Thanks to da ta parallelism, we can take advantage of parallel machines keeping
an unique instruction s t ream to express parallelism. This programming model
takes advantage of fine grain parallelism which can be found in numerous al-
gori thms (matr ix computat ions, image processing, . . .). However, large applica-
tions often have an heterogeneous structure. A large grain parallelism insures
the cooperation between few tasks, each task refers the data parallelism model
to express the local parallel algorithm. With efficient networks like FDDI, HIPPI
or ATM, it becomes possible to structure heterogeneous applications as a set of
communicat ing da ta parallel tasks and to use the best architecture for each of
them[2; 3].

To insure da ta parallel object migrations, we developed a command language
called D p s h e l l [4]. Its goal is to build an heterogeneous application with da ta
parallel program libraries. Programs are da ta parallel tasks which communicate
by reading or writing Data Parallel Objects (DPO) by the way of D p s h e l l com-
mands. Dependencies between da ta parallel modules are explicitly expressed at
the command language level. The user can write his local data parallel algorithm
on any machine and then combines the running programs to perform his entire
application. Modules can then be reused to interactively create new applications.
One of the characteristics of the D p s h e l l is to move the DPO from one parallel
machine to another. From the processor point of view, this migration triggers a

174

parallel Input /Output . The input (resp output) subroutine only needs to know
the source (resp target) data distribution. It is the Dpshe l l responsibility to
provide the elementary data migration according to the required distributions.

Implementation of parallel Input /Output between data-parallel tasks re-
quired dynamic redistribution over heterogeneous sets of processors. In this
paper, we present a mathematical representation of Cyclic(K) to Cyclic(K')
redistributions from a set of P processors to a distinct set of P~ processors. Note
that Cylic(K) distributions include usual Block(K) distributions. Based on this
representation, we study special cases for which efficient algorithms can be iden-
tified. For each case we are able to overlap communications and computations.
Performance results show that specialized algorithms are up to ten times faster
than general algorithm.

2 M a t h e m a t i c a l r e p r e s e n t a t i o n

Let T be an array of size N distributed cyclic(K) over P processors. We visualize
the layout of array elements in processor memories as sequences of blocks. Three
values describe the location of an array element T(i) : p = (i/K) mod P is
the processor holding T(i), n = i /PK is the block index on processor p and
x = i mod K is the offset within the block. Therefore, we can write :

i = pK + nPK + x (1)

with x C [0, K[, n C [0, L(p)/K[and p e [0, P[.

An heterogeneous redistribution involves two distinct sets of processor. The
problem is to move an array T from one distribution D, Cyclic(K) over P

p '
processors towards an other distribution D', Cyclic(K') over processors. Let
ED (p) be the set of indices of array elements hold by processor p with the source
distribution D, and E~D , (p') the set of indices of array elements hold by processor
p' with the target distribution D'. A redistribution routine needs to figure out
exactly which data need to be sent between each processor pair. The processor
p have to send to the processor p' the set /(p,p') = ED(p) ~ E~D,(P'). By using

the equation (1) we can write :

i e I(p, #) r i e (v) n El), (p')

pK + nPK + x = pIKI + nIPIK I + xt m I

[0,P[
n C [0, L(p)/K[

x e [0,K[
p 'e [0, P'[

n' e [0, L' (#) /K' [
x' ~ [0, If ' [

(2)

Solutions of this diophantine equation can be enumerated by using the gen-
eral algorithm decribed in the next section.

175

3 G e n e r a l a l g o r i t h m

In this enumeration approach, each source processor computes using equation
(1) the index of each element it owns according to the source distribution. This
index is then used to compute the target processor. The corresponding data item
is packed into a buffer meant for that processor. When all address computations
have been made data are sent to the target machine. Target processors perform
the reverse job when they have received all their data. This algorithm is very
simple and can be used for every Cyclic(i() to Cyclic(I(') distributions, but
it is very expensive because data migrations only takes place when all address
computations have been achived. To take advantage of an heterogeneous en-
vironment and to overla p communications and computations, other algorithms
have to be considered.

4 S p e c i a l i z e d a l g o r i t h m s

To solve the diophantine equation (2) and to build efficient algorithms, we con-
sider specific redistributions in which one or more variables can be fixed to zero.
For these cases, we show that we can enumerate the solutions of the diophan-
tine equation by using a set of regular sections (f i rs t : last : stride). By using
regular sections, a given processor p can create the I(p,p') set meant for target
processor p' without having to compute adresses of his whole local data. At each
redistribution step, p creates one message and send it to the target machine.
Computat ions in source and target processor sets can then be done in parallel
and communications are overlapped with computations. All these specialized
algorithms have the following properties :

T h e n u m b e r o f m e s s a g e sen t is m i n i m a l : there is at most one message for
each processor pair ;

O n l y r e q u i r e d d a t a a r e sen t : only array items are sent (to be fully asyn-
chrone we also send the source processor index) ;

C o m p u t a t i o n s a r e d y n a m i c s : it is sufficient to know distribution parame-
ters only at runtime ;

C o n s t a n t t i m e a d r e s s c o m p u t a t i o n s : the preprocessing time required to
compute the regular sections only depends of distribution parameters ;

C o m p u t a t i o n s a r e o v e r l a p p e d w i t h c o m m u n i c a t i o n s ;

T w o levels o f p a r a l l e l i s m a re u s e d : two data parallel tasks are runing con-
curently on the source and target computers.

Figure (1) presents a global view of every studied case. In the next section
performance results obtained with these specialized algorithms will be discussed.

176

Variables Redi s tr ibut ion Step of the
set to zero a lgor i thms regulars sec t ions

n, n' Block(I f) to Block(K') Ax = Ax' = Ap = 1

n Block(I f) to Cyclic(K') Ax ' = An' = Ap' = 1
Ax = P ' I ('

n' Cyclic(i() to Block(I(') Ax = An' = Ap' = 1
Ax' = P K

x' Cycl ic(TK') to Cyclic(K')] An = P ' / G C O (P T , P')
An' = P T / G C O (P T , P')

Ap' = GCD(PT , P')
x Cyclic(If) to Cycl ic(TK) An = T P ' . GCD(P, P 'T)

An' = P / G C D (P , P 'T)
Ap' = GCD(P, P ' T) / G C D (T , D)

Fig. 1. Specialize algorithms

2

(a) Enumerative Algorithm (b) Block(K) to Block(K')

s

m

(c) Block(i () to Cyclic(K ') (d) Cyclic(TI(') to Cyclic(I(')

177

5 Exper imenta l results

All experiments reported on this section have been done on a ALPHA farm
of 16 processors interconnected by a cross-bar supporting FDDI bandwidth.
We used an array of 4 Millions of integers. Algorithms were implemented over
PVM3 library. In each case, we record the time necessary to redistribute the
array T from a first set, S of P processors, to another set, T, of P/ processors.
We always keep S N T = 0. Specialized algorithms always perform better than
the enumeration algorithm because the redistribution is done in an overlapped
fashion. In the Block(K) to Block(K') redistribution the difference is more
accused as there is only one loop and all accesses are contiguous.

6 Conclus ion

In this article, we proposed a mathematicM representation of Cyclic(K) to
Cyclic(K I) redistributions. By using this representation, we resolved the cor-
responding diophantine equation and obtained algorithms which overlap com-
munications and computations. These algorithms can be used in most usual
cases. In heterogeneous environments, parallel I /O generaly required multiple
redistributions. First da ta are moved from source compute nodes to source I /O
nodes, then between source and target I /O nodes, and at last from target I /O
nodes to target compute nodes. Strategies have to be developed to chose the
inner distributions in order to minimized redistribution cost.

Complex scientific applications provide opportunities for exploiting multiple
levels of parallelism_ Thanks to our efficient algorithms, data-parallel tasks could
exchange data in a reasonable delay. Note that these algorithms can also be
used to implement HPF distribution and redistribution directives when there
are several processor directives.

References

1. B. Avalani, A. Choudhary, I. Foster, R. Krihnaiyer, and M. Xu. A data transfer li-
brary for communicating data-parallel tasks. Technical report, Syracuse University,
Argone Natinal Laboratory, NY 13244, 1994.

2. D. A. Carlson. Ultrahigh-performance FFTs for the CRAY-2 and CRAY-YMP
supercomputers. The journal of supercomputing, 6(2):107-116, june 1992.

3. G. Edjlali, N. Emad, and S. Petiton. Hybrid methods on network of heterogeneous
parallel computers. Proceedings o] the l~th Imacs world congress Atlanta, USA,
july 1994.

4. D. Sueur. Shell h~firog~ne s parall~lisme de donn~es. In Renpar'7, Actes des 7
Rencontres Franeophones du paralldlisme, pages 58-61, PIP-FPMs Mons, Belgique,
June 1995.

