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Abs t r ac t .  New generations of scientific codes trend to mix different 
types of parallelism. Algorithms are defined as a set of modules, with 
data parallelism inside modules and task parallelism between them. With 
high speed networks, tasks running on a heterogeneous computing en- 
vironment can exchange data in a reasonable delay. Therefore data- 
parallel tasks distributed on different parallel computers can interact 
efficiently by reading or writing Data Parallel Objects. These objects are 
distributed on the physical nodes according to the mapping directives. 
Migrations of data parallel objects from one parallel computer to another 
lead us to define efficient algorithms for runtime array redistribution. 
In this work, we have specially cared about the ability to handle distinct 
source and target processor sets while performing redistribution and the 
ability to overlap communications and computations. Performance re- 
sults on a farm of ALPHA processors are discussed. 

1 Introduction 

Thanks  to da ta  parallelism, we can take advantage of parallel machines keeping 
an unique instruction s t ream to express parallelism. This programming model 
takes advantage of fine grain parallelism which can be found in numerous al- 
gori thms (matr ix  computat ions,  image processing, . . .  ). However, large applica- 
tions often have an heterogeneous structure. A large grain parallelism insures 
the cooperation between few tasks, each task refers the data  parallelism model 
to express the local parallel algorithm. With efficient networks like FDDI, HIPPI  
or ATM, it becomes possible to structure heterogeneous applications as a set of 
communicat ing da ta  parallel tasks and to use the best architecture for each of 
them[2; 3]. 

To insure da ta  parallel object migrations, we developed a command  language 
called D p s h e l l  [4]. Its goal is to build an heterogeneous application with da ta  
parallel program libraries. Programs are da ta  parallel tasks which communicate  
by reading or writing Data  Parallel Objects (DPO) by the way of D p s h e l l  com- 
mands.  Dependencies between da ta  parallel modules are explicitly expressed at 
the command  language level. The user can write his local data  parallel algorithm 
on any machine and then combines the running programs to perform his entire 
application. Modules can then be reused to interactively create new applications. 
One of the characteristics of the D p s h e l l  is to move the DPO from one parallel 
machine to another. From the processor point of view, this migration triggers a 
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parallel Input /Output .  The input (resp output) subroutine only needs to know 
the source (resp target) data  distribution. It is the Dpshe l l  responsibility to 
provide the elementary data migration according to the required distributions. 

Implementation of parallel Input /Output  between data-parallel tasks re- 
quired dynamic redistribution over heterogeneous sets of processors. In this 
paper, we present a mathematical  representation of Cyclic(K) to Cyclic(K') 
redistributions from a set of P processors to a distinct set of P~ processors. Note 
that  Cylic(K) distributions include usual Block(K) distributions. Based on this 
representation, we study special cases for which efficient algorithms can be iden- 
tified. For each case we are able to overlap communications and computations. 
Performance results show that  specialized algorithms are up to ten times faster 
than general algorithm. 

2 M a t h e m a t i c a l  r e p r e s e n t a t i o n  

Let T be an array of size N distributed cyclic(K) over P processors. We visualize 
the layout of array elements in processor memories as sequences of blocks. Three 
values describe the location of an array element T(i) : p = (i/K) mod P is 
the processor holding T(i), n = i /PK is the block index on processor p and 
x = i mod K is the offset within the block. Therefore, we can write : 

i = pK + nPK + x (1) 

with x C [0, K[, n C [0, L(p)/K[ and p e [0, P[. 

An heterogeneous redistribution involves two distinct sets of processor. The 
problem is to move an array T from one distribution D, Cyclic(K) over P 

p '  
processors towards an other distribution D', Cyclic(K') over processors. Let 
ED (p) be the set of indices of array elements hold by processor p with the source 
distribution D, and E~D , (p') the set of indices of array elements hold by processor 
p' with the target distribution D'. A redistribution routine needs to figure out 
exactly which data  need to be sent between each processor pair. The processor 
p have to send to the processor p' the set /(p,p') = ED(p) ~ E~D,(P'). By using 

the equation (1) we can write : 

i e I(p, # )  r  i e (v) n El), (p') 

pK + nPK + x = pIKI + nIPIK I + xt m I 

[0,P[ 
n C [0, L(p)/K[ 

x e [0,K[ 
p 'e  [0, P'[ 

n' e [0, L' (#) /K' [  
x' ~ [0, If ' [  

(2) 

Solutions of this diophantine equation can be enumerated by using the gen- 
eral algorithm decribed in the next section. 
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3 G e n e r a l  a l g o r i t h m  

In this enumeration approach, each source processor computes using equation 
(1) the index of each element it owns according to the source distribution. This 
index is then used to compute the target processor. The corresponding data item 
is packed into a buffer meant for that  processor. When all address computations 
have been made data  are sent to the target machine. Target processors perform 
the reverse job when they have received all their data. This algorithm is very 
simple and can be used for every Cyclic(i()  to Cyclic(I( ' )  distributions, but 
it is very expensive because data  migrations only takes place when all address 
computations have been achived. To take advantage of an heterogeneous en- 
vironment and to overla p communications and computations, other algorithms 
have to be considered. 

4 S p e c i a l i z e d  a l g o r i t h m s  

To solve the diophantine equation (2) and to build efficient algorithms, we con- 
sider specific redistributions in which one or more variables can be fixed to zero. 
For these cases, we show that  we can enumerate the solutions of the diophan- 
tine equation by using a set of regular sections ( f i rs t  : last : stride). By using 
regular sections, a given processor p can create the I(p,p')  set meant for target 
processor p' without having to compute adresses of his whole local data. At each 
redistribution step, p creates one message and send it to the target machine. 
Computat ions in source and target processor sets can then be done in parallel 
and communications are overlapped with computations. All these specialized 
algorithms have the following properties : 

T h e  n u m b e r  o f  m e s s a g e  sen t  is m i n i m a l :  there is at most one message for 
each processor pair ; 

O n l y  r e q u i r e d  d a t a  a r e  sen t  : only array items are sent (to be fully asyn- 
chrone we also send the source processor index) ; 

C o m p u t a t i o n s  a r e  d y n a m i c s  : it is sufficient to know distribution parame- 
ters only at runtime ; 

C o n s t a n t  t i m e  a d r e s s  c o m p u t a t i o n s  : the preprocessing time required to 
compute the regular sections only depends of distribution parameters ; 

C o m p u t a t i o n s  a r e  o v e r l a p p e d  w i t h  c o m m u n i c a t i o n s  ; 

T w o  levels  o f  p a r a l l e l i s m  a re  u s e d  : two data parallel tasks are runing con- 
curently on the source and target computers. 

Figure (1) presents a global view of every studied case. In the next section 
performance results obtained with these specialized algorithms will be discussed. 
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Variables Redi s tr ibut ion  Step  of  the 
set  to zero  a lgor i thms  regulars sec t ions  

n, n' Block(I f )  to Block(K')  Ax  = Ax'  = Ap = 1 

n Block(I f )  to Cyclic(K')  Ax '  = An' = Ap'  = 1 
Ax = P ' I ( '  

n' Cyclic(i()  to Block(I( ' )  Ax = An'  = Ap' = 1 
Ax'  = P K  

x' Cycl ic(TK')  to Cyclic(K')] An = P ' / G C O ( P T ,  P') 
An'  = P T / G C O ( P T ,  P') 

Ap' = GCD(PT ,  P') 
x Cyclic(If)  to Cycl ic(TK)  An = T P ' .  GCD(P,  P 'T)  

An'  = P / G C D ( P ,  P 'T)  
Ap' = GCD(P,  P ' T ) / G C D ( T ,  D) 

Fig.  1. Specialize algorithms 

2 

(a) Enumerative Algorithm (b) Block(K) to Block(K')  

s 

m 

(c) Block( i ( )  to Cyclic( K ' )  (d) Cyclic(TI( ')  to Cyclic(I( ')  
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5 Exper imenta l  results  

All experiments reported on this section have been done on a ALPHA farm 
of 16 processors interconnected by a cross-bar supporting FDDI bandwidth. 
We used an array of 4 Millions of integers. Algorithms were implemented over 
PVM3 library. In each case, we record the time necessary to redistribute the 
array T from a first set, S of P processors, to another set, T, of P/ processors. 
We always keep S N T = 0. Specialized algorithms always perform better than 
the enumeration algorithm because the redistribution is done in an overlapped 
fashion. In the Block(K) to Block(K') redistribution the difference is more 
accused as there is only one loop and all accesses are contiguous. 

6 Conclus ion  

In this article, we proposed a mathematicM representation of Cyclic(K) to 
Cyclic(K I) redistributions. By using this representation, we resolved the cor- 
responding diophantine equation and obtained algorithms which overlap com- 
munications and computations. These algorithms can be used in most usual 
cases. In heterogeneous environments, parallel I /O generaly required multiple 
redistributions. First da ta  are moved from source compute nodes to source I /O 
nodes, then between source and target I /O nodes, and at last from target I /O 
nodes to target compute nodes. Strategies have to be developed to chose the 
inner distributions in order to minimized redistribution cost. 

Complex scientific applications provide opportunities for exploiting multiple 
levels of parallelism_ Thanks to our efficient algorithms, data-parallel tasks could 
exchange data  in a reasonable delay. Note that  these algorithms can also be 
used to implement HPF distribution and redistribution directives when there 
are several processor directives. 
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