
Optimizing Sisal Programs: A Formal Approach

I. Attali 1 and D. Caromel 1 and R. Guider 1 and A. L. Wendelborn 2

INRIA Sophia Antipolis, CNRS - I3S - Univ. Nice Sophia Antipolis,
BP 93, 06902 Sophia Antipolis Cedex - France

{ia, caromel} @sophia.inria.fr
Dept. Computer Science, University of Adelaide 5005 - Australia

andrew@cs.adelaide.edu.au

A b s t r a c t . We formally describe optimization techniques for the com-
pilation of the language Sisal 2.0. More precisely, we translate Sisal
programs into data-flow IF1 graphs and optimize these graphs. An in-
teractive visualization environment for IF1 graphs is also provided.

1 Introduction

Software engineering of parallel programming is becoming an important issue in
computer science; one focus has been to design compiler schemes that will pro-
vide efficient parallel code running on various parallel architectures. Sometimes
complementary, sometimes orthogonal, the increasing importance of tools and
environments dedicated to parallel computing is another significant aspect (see
[9, 1, 18] for recent developments).

The trade-off between the programmer's and compiler's part in designing
parallel programs has been debated at least for a decade. One solution to en-
sure portability and reusability is a well-specified language with a high-level of
abstraction; moreover, a compiler for such language must automatically exploit
the parallelism of programs, with a clean model of execution, independent, as
much as possible, of the architecture of the computer.

Our goal is to investigate this trade-off, namely on the Sisal programming
language [5], a strongly typed, applicative, single assignment language in use on
a variety of parallel processors (see [5] for a description of Sisal and associated
research). We intend to establish a base for the definition and implementation
of validated compilers for Sisal, using formal specifications and verifiable trans-
formations. We have observed indeed that the description of Sisal and its imple-
mentation call for a more formal approach. The semantics of Sisal is typically
given in English and although the various authors have attempted to be precise,
we have found ambiguities in the extant definitions of Sisal. We have already
given in [3] a formal definition of the dynamic semantics of a significant part of
the language Sisal 2.0 in Natural Semantics [111, using the Typol formalism [7],
within the Centaur system [6], a generic tool for designing languages. The Sisal
1.2 compiler 1, (OSC, Optimizing Sisal Compiler, OSC [10]), has proved remark-
ably successful through exploitation of a variety of sophisticated optimizations.

At the moment, there is no compiler for the version 2.0 of the language.

137

Unfortunately, the most precise definition of the optimizations currently resides
in the compiler itself, making it difficult to extend either the language or the
catalogue of optimizations. Two intermediate formats IF1 [141 and IF2 [17] are
used in Sisal 1.2 implementation. IF1 is a textual description of data-flow graphs
which allows traditional code optimizations and IF2 allows optimizations to be
applied in terms of abstract storage.

We give a syntactic definition of the IF1 format in Section 2 and describe an
interactive visualization environment for IF1 graphs in Section 3. Section 4 de-
scribes the translation scheme ~om Sisal to IF1 and points out some deficiencies
in the IF1 formalism, as it was originally defined for Sisal 1.2. In Section 5, we
give an example of transformation, the elimination of common subexpressions.
Finally, Section 6 concludes with some directions for future work.

2 T h e I F 1 i n t e r m e d i a t e f o r m a t

IF1 is a hierarchical, single assignment language defining data-flow graphs.
An IF1 program consists of one or more acyclic graphs made up of simple and
compound nodes, edges, and types. Nodes correspond to computations: simple
nodes represent arithmetic operations and structure manipulation. Compound
nodes represent structured expressions, using subgraphs for the components of
conditionals and loops. Edges show the transmission of data between nodes;
types are associated with the data transmitted on edges. An IF1 program ex-
presses data dependencies, with control left implicit; for example, an iteration
is represented as a compound node with subgraphs describing generation of in-
dex values, the body of the loop, and the packaging of results. However, the
control relationships between these components are left unspecified, and can be

file -> GRAPH_TYPE �9 ,..;
type -> INT iNT PARAMS PRAGMA;
global_graph -> GRAPH_ELT_S STR INT PRAGMA;
imported_graph -> STR l ~ T FRAGMA;

local_graph -> G~APN_ELT_S STR INT PRAGMA;
s u b g r a p h -> INT GRAPH_ELT_S PRAGHA;
graph_slt_s -> GHAPH_ELT * . . . ;

~aode -> NODE_LAHEL INT PRAGMA;

edge -> INT INT INT INT INT PRAGMA;
cnode -> gRAPH_LIST INT INT INT

ASSOC_LIST PRAGNA;

literal -> INT INT INT VALUE PRAGMA;
params -> INT * ,..;

int -> implemented as INTEGER;
p r a ~ n a -> PRAGM * . , . ;
pragm -> STR VAL;
~tr -> implemented am STRING;

ao_val -> implemented as SINGLETON;
error value -> implemented as STRING;
~raph_list -> GRAPH * ..,;
~ssoc_list -> INT �9 ...;

FILE ::= file;

GRAPH_TYPE ::= GRAPH type;

GRAPH ::= global_graph imported_graph

l o c a l g r a p h a u b g r a p h ;

GRAPH_ELT_S ::= graph_eli_e;

GRAPH_ELT ::= snode caode literal edge;

PAHAMS : := parame ;
INT : : ~ inZ ;

PRAGMA : :- pragma;

PRAGM : :- pragm;
STR : : - eZr;

VAL ::- no_val id INT STR CHAR complex;
VALUE ::= error_value VAL;

GKAPN_LIST : :- graph_list;
ASSOC_LIST ::- aseec_list;

Figure 1. Abstract Syntax for IF1

138

interpreted as, for example, a data flow machine graph, or a loop structure for
a conventional multiprocessor.

We specify syntactic aspects - - concrete and abstract syntax of the IF1
language. From this specification, one can derive a parser that transforms the
textual form of a program into a structural representation, an abstract syntax
tree (AST), well-typed with respect to an abstract syntax 2 (see Figure 1). From
syntactic specifications, we derive a structure editor in order to parse IF1 graphs
(coming from OSC or our own translation from Sisal), edit and visualize them
in a textual representation, as shown in Figure 2.

Figure 2. Textual Presentation of IF1 Graphs

3 G r a p h i c a l V i s u a l i z a t i o n o f I F 1 G r a p h s

This textual representation of an IF1 program describing a graph is not appro-
priate for understanding of the complete graph structure. Using the Centaur
system and a specific paclcuge for graph display [12], we provide an automatic
graphical representation of IF1 graphs (see Figure 3).

An IF1 graph is a hierarchical graph made up with subgraphs, each compo-
nent with its own inputs and outputs denoted by ports. Two types of relations
are represented: (1) a graph hierarchy representing the program structure, and
(2) data dependencies (between nodes of the graphs).
Instead of visualizing the whole IF1 graph in a single window, since the number
of nodes can be huge, we separate the relations as follows:

- the graph itself appears in a main window which is a synthesized view of the
hierarchy of the program (a loop in a selection, etc);

- data dependencies appear in separate windows.

2 Lower-case (resp. upper-case) identifiers define operators (resp. sorts).

139

Figure 3. Graphical Visualization of IF1 graphs

We use different colors, fonts, and shapes to distinguish nodes and edges (com-
pound nodes have a rectangular shape and graphs are denoted with oval shapes).
The graph server takes care of the layout of the graph according to some spe-
cific heuristic (planarity for instance). This visualization is interactive since the
graph server reacts to selection or move of a node.

We provide a zoom mechanism which expands on demaaad graph nodes with
dependencies. Then, we have (in a main window named Hie ra rchy) a synthe-
sized view of the graph, and we can also visualize data dependencies on a given
graph in a new window, when zooming. In Figure 3, the r o o t graph in the
H i e r a r c h y window is zoomed in the 0 window.

Because the whole graph (hierarchy and dependencies) is comp]ex, we main-
tain the coordination of multiple views of graph objects, with a selection mecha-
nism: clicking in windows displaying data dependencies shows the corresponding
node in the hierarchical graph amd highlights the textual fragment in the IF1
source, as illustrated in Figure 3 with a dark selection in the textual presentation
as well as on the Branch2 node. We think that this type of representation is
mandatory in the context of a large number of nodes in the data-flow graph.

4 Translating Sisal to IF1

In this section, we outline the methods used in translating Sisal 2.0 to IF1,
especiMly ordinary expressions and loops; we also consider possible extensions
to IF1 in order to reflect the powerful array operations of Sisal 2.0.
To translate expressions and function calls, we write Typol inference rules which
take as input Sisal expressions and construct an IF1 AST. IF1 expressions, and
associated subgraph edges and ports, can be produced from the operands and
operators of the expression. Each Sisal construction can be thought of as an

140

operator Oper(N1,... ,N,~); the corresponding IF1 graph is obtained by trans-
lating each Ni and connecting every resulting graph to a node that denotes Oper.
This scheme, applied over a Sisal abstract syntax tree, results in a complete IF1
graph. Figure 4 shows the Typol rule that realizes the translation of Sisal binary
expressions:

expression(labell, porZl]- Exprl -> graph_eltsl, label2, v~ll, p~rt2, type_vall)
expression(label2, pert2 I- Expr2 -> graph_elts2, labelS, val2, portS, type_val2) &
operator(label3 I- Oper -> graph_elk, label4)
create_edge(labeIS, int I, int O, vail, type_vall -> edgel)
creaZe_edge(labelS, inZ 2, int O, val2, Zype_val2 -> edge2)
appendtree(graph_el~sl, graph elZs2 -> graph_el~e3)
appendtree(graphelts3, graph elZ_s[graph_elZ,edgel,edge2]-> graph_elts4)

labell, portl I- biaary(Exprl, Oper, Expr2) -> graph_elts4, labelS, label4, porTS;

Figure 4. Translating Sisal expressions into IF1

The IF1 graph produced for a Sisal binary expression given as the subject
b ina ry(Expr l , Oper, Expr2), is the composition (predicate appendtree) of
the subgraphs respectively produced from Exprl and Expr2 with recursive calls
to the predicate expression. From the operator 0per, the predicate operator
produces a node and the calls to the predicate create_edge build two edges,
which will augment the IF1 graph, it is also necessary to maintain specific
information such as the current node label (labe l i) , or the current available
port number (port l) , in a left-to-right manner.

4.1 Trans la t ing loops

In translating loops, one problem that must be addressed is the classification of
loops in two categories: parallel or sequential. Sisal 2.0's loop syntax is quite
powerful, allowing expression of a variety of loop structures over index ranges and
array structures. Unlike Sisal 1.2, it is not apparent from the loop syntax in Sisal
2.0 whether or not it is a parallel loop. This must be determined from analysis
of variable usage within the loop--if the value at one iteration is dependent in
any way upon the value at a previous iteration, then the loop is sequential, and
iterations must be executed sequentially, otherwise all the executions of the loop
body are notionally independent, and can be executed in parallel. This choice
affects the IF1 produced from a loop, as IF1 provides three compound nodes
with which loops can be expressed: for sequential loops with post-test (LoopA)
and pre-test termination conditions (LoopB), and the ForAll node for parallel
loops. Let us focus on distribution control loops (iteration control loops are
easily translated into LoopA or LoopB nodes, depending on the presence of a
pre- or post-test). The syntax for such loops is the following:

for in-exp-list ~ top part
[deel-def-part l

do [decl-def-part] % body part
returns return-clause % returns part

141

A loop expression has three parts: the top part establishes indices (i n - e x p - l i s t)
and initialization of the loop (d e c l - d e f - p a r t is evaluated only once, so it does
not affect the dependency analysis); the body part defines the actions to be
carried out in a distributed manner (d e c l - d e f - p a r t) ; the returns part packages
the produced values_ In the body part, carried values are transmitted from one
iteration to the following. We study dependencies between variable definition
and usage to detect if this loop can be evaluated in a sequential or in a parallel
manner, if the body part contains references of one variable which is defined
in the previous iteration of the body part, then the loop must be executed in
a sequential manner and will be translated into a LoopB node. Otherwise, the
loop is a parallel one and can be translated into a ForAll node. Such an analysis
of dependencies is facilitated by the functional nature of Sisal: side-effects and
aliasing problems are banished by definition.

4.2 D i scus s ion

IF1 is a powerful intermediate form capable of expressing data dependencies
in expressions, iterative control flow, and recursive and higher-order functions,
as well as standard data structures; there are, however, some aspects in which
it lack expressiveness and this leads to somewhat clumsy translations of Sisal
2.0. This is principally a consequence of a much more sophisticated model of
array structures employed in Sisal 2.0, whereby arrays are multidimensional
values, can be constructed monolithically, and sophisticated sub-array selection
operations can be expressed. We firstly examined how translation could be
achieved with existing nodes. However, we discovered that this option leads to
a loss of efficiency and abstraction in terms of evaluation policy for those parts
of the language. This allowed us to identify those aspects of IF1 which needed
modification and provided insight into how to do it. A forthcoming document
will describe in detail our proposed extensions to IF1, especially concerning
arrays.

5 Optimizing IF1 graphs

Optimizations on the IF1 graph constitute an early phase of the OSC com-
piler [10] (inline expansion, common subexpression elimination, loop invariant
removal, dead code elimination, see [15] for an overview). To demonstrate our
approach using 1F1, we formally describe common subexpression elimination.
The principle of this optimization is to eliminate redundant computations. Re-
dundant computation occurs in an IFI graph when the same sub-expression is
computed more than once. To perform this transformation, for each node (i.e.
sub-expression), we search for a sub-graph which matches the one whose root is
the node currently visited (although the structure is a DAG, it is similar to a
tree when traversed from nodes to their predecessors). When such a sub-graph
is detected, all its "clients" (nodes using its results) are connected to the visited
node in the same way they were to the removed node.

142

\~sualization of IF1 ~raphs uses a representation with an unordered list of nodes
and edges but this is inadequate for the transformation. We define an alter-
native representation which uncovers actual data dependencies between graph
nodes and ettcodes nodes predecessors. This representation permits to identify
any two equal subgraphs and to restructure the whole graph. This alternative
structure (named PGI~APH) comprises a list of nodes, and for each of them a list
of predecessors (see definition Figure 5); the graph is then traversed from output
t,o input: u subexpressioa can be ideutiFted with & node and ~1t its predevessors,
with the transitive closure of the relation "is predecessor of".

p~ra~h-> GBAPS_KLI_S NUDS_S ~GKAPH ::= pKr~ph ;
- - GRAFH_ELT_S are only cnodes ~d snodes

node_S -> NODE * ...; NODE ::= n~de;
node -> INT PKED_S; - - <node, list of predecessors>

pred_S -> P R E D = ...; PRED_S ::= pred_s;
pred -> INT GRKPM_ELT; PKED ::= prod GRAPH_ELT;

- - ~ ~redeces~or cam be & li%~r~l or ~n ~u~u~. p~rt number * a ~r~d~r n~d~.

Figure 5. Representation of IF1 graphs by predecessors

The common subexpression elimination can be expressed in three phases: change
the representation, detect and eliminate common subexpressions, and convert
back to the primary representation (for visualization purpose).
Modularity makes it possible to reuse various sets [especially graph traversals)
for the specification of other transformations,

The first step of the transformation is made of two traversals of the list of
aodes and edges composing the primary graph representation (G~/~PH) to build
the PGRAPH structure. Information contained in the node description (label for
the laode's operation, name~ etc) is needed during the detection of redundant
computations, and when returning to the primary format. A first traversal
constructs ~he list o[predecessors from the edge descriptio~ ~or each node, At
this step, information on nodes themselves has not been retained. So a second
traversal is needed to construct from a list describing predecessors with a pair
of integers (node number, input port), a new predecessor list containing full

informations on nodes.
Equality on graphs is expressed in the two following rules: equality is first

checked on nodes (predicate node equal) and then recursively on their prede-
cessors (p~edicate p~ed_equal). A termhxation rule applies when nodes with nc

predecessors have been reached.

~ _equal&p~r~ph }- literal(_i _, -, p4, _), li%~ral(...... p4, _) -> bool ~rue ;

l~red(nodel I- psraP h -> prcdl) & -predecessors of model

I pred(node2 I- p~rraph -> pred2) ~ - pred f nt, de~
l~ode eqll,l(,- zlodel, node2 -> bool ~r~e) ~ - eq%tali~y of nodes
I prod equ~l(pgr~ph I- predl, pred2 -> ba~l ~rue) - equzllty oI preaecessors

I gzsph_equal[pBzaph I- nods1, node2 -> bo~1%rue) ;
I - ~rovided diff (nodel, literal) ;

143

After identification of redundant computation, the next step in the trans-
formation consists in their elimination. Given a redundant subgraph (w.r.t. an
original subgraph), identified by its root node, its elimination comprises a search
for all nodes whose predecessors contain this root. When detected, such a node is
replaced by the original subgraph's root properly connected (input ports are con-
nected to the appropriate output ports). Returning to the primary IF1 format
is done in a straightforward manner with a traversal on the PGRAPH structure.
Due to lack of space, we do not detail the whole specification of graph manip-
ulation in either form. They are composed of 150 rules or axioms and make
extensive use of pattern-matching and unification.

6 C o n c l u s i o n a n d F u t u r e W o r k

From the specifications, using the Centaur system, we have derived a program
development environment for Sisal, illustrated in Figure 6. This environment pro-
vides a sequential execution of Sisal programs, the translation of Sisal programs
into IF1 graphs, their textual and graphical presentations, and transformations
on IF1 format. We first intend to complete the formal specification of the suite of
transformations as used in the OSC compiler, contributing not only to a formal
definition of transformation techniques for parallelization of Sisal programs, but
also to a wide availability. Moreover, thanks to formal specifications, we intend
to prove the correctness of the transformations, using proof assistant systems.
Experiments have been done in this sense to specify semantic definitions and
program transformations, and to study and prove their properties [4].

Figure 6. A Graphical Interactive Environment for Sisal and IF1.

144

Finally, our environment could be used for other high-level languages (logic,
data-flow, object-oriented [16, 2]), or imperat ive languages where array opera-
tions are critical (e.g. Fortran, where parallelization is an active research area
[13, 8]). Once a comprehensive set of transformation have been formally speci-
fied in a modular manner, it should be possible to take advantage of it for other
paradigms, possibly through common intermediate formats.

References

1. "Parallel and Distributed Technology - Systems and Applications", Agha G. editor,
3 (4), 1995.

2. Attali I., Caromel D., Ehmety S. O., Lippi S. Semantic-based visualization for par-
allel object-oriented programming, To appear in OOPSLA'96, ACM Press, Sigplan
Notices, San Jose, CA, I~

3. Attali I , Caromel D. and Wendelborn A. '% Formal Semantics and an Interactive
Environment for Sisal", pp 231-258, in [18].

4. Bertot Y. and Fraer R. "Reasoning with Executable Specifications", Proc. of TAP-
SOFT, LNCS 915, Aarhus, Denmark, 1995.

5. B6hm A. P. W., Cann D.C., Feo J.T., Oldehoeft R.R., "Sisal Reference Manual
(language version 2.0)" Draft Report, 1992.

6. Borras P. et al , "CENTAUR: the system ~', Third Annual Symposium on Software
Development Environments, Boston, 1988.

7. Despeyroux T. "Typol: a formalism to implement Na,turM Semantics" INRIA re-
search report 94, 1988.

8. Detert U. and Gerndt M., " T O P 2 - Tool Suite for the Development and Testing of
Parallel Applications", CONPAR'94, Linz, Austria, LNCS 854, 1994.

9. Proceedings of the Second Workshop on Environments and Tools for Parallel Scien-
tific Computing, Dongarra a.a. & Tourancheau B. eds, SIAM, Townsend, 1994.

10. Feo J.T., Cann D.C., Oldehoeft R.R., "A Report on the Sisal Language Project"
Journal of Parallel and Distributed Computing, 1990.

11. Kahn O. "Natural Semaa~tics", FroG. of STAGS, Fassau, Germany, LNCS 247, 1987.
12. Le Hors A., ':Graph: A Directed Graph Displaying Server', in G I P E 2 E S P R I T

project , 4 th Rev iew Report, Workpackage 4, 1992.
13. Maslov V., "Lazy Array Data-Flow Dependence Analysis" Proc. 21st ACM SIG-

PLAN-SIGACT POPL, Portland, Oregon, 1994.
14. Skedzielewski S. and Glauert J. "IF1 - An intermediate form for applicative lan-

guages" Manual M- 170, Lawrence Livermore National Laboratory, Livermore, 1985.
15. Skedzidewski S. and Welcome M. "Data-flow graph optimization in IFI" Proc. of

FPCA'85, LNCS 2f31, lg~5.
16. "Programming Languages for Parallel Processing a', Skillieorn D. B. & Talia D. eds,

IEEE Computer Society Press, 1995.
17. Welcome M.L., Szymanski B.K., Yates R.K., Ranelletti J. 1~. "An applicative lan-

guage intermediate form explicit memory management" Manual M-195, Lawrence
Livermore National Laboratory, Livermore, 1986.

18. "Tools and Environments for Parallel and Distributed Systems", Zaky A. & Lewis
T. eds, Kluwer Academic Publishers, [996.

