
MPI-2: Extending the Message-Passing
Interface

A1 Geist 1 and Will iam Gropp 2 and Steve Huss-Lederman ~ and Andrew
Lumsdalne 4 and Ewing Lusk 2 and Will iam Saphir 5 and Tony Skjellum 6 and

Marc Snir 7

1 Oak Ridge National Laboratory
2 Argonne National Laboratory

z University of Wisconsin
4 University of Notre Dame

5 NASA Ames
Mississippi State University

7 IBM Research Yorktown

Abs t r ac t . This paper describes current activities of the MPI-2 Forum.
The MPI-2 Forum is a group of parallel computer vendors, library writ-
ers, and application specialists working together to define a set of exten-
sions to MPI (Message Passing Interface). MPI was defined by the same
process and now has many implementations, both vendor-proprietary
and publicly available, for a wide variety of parallel computing envi-
ronments. In this paper we present the salient aspects of the evolving
MPI-2 document as it now stands. We discuss proposed extensions and
enhancements to MPI in the areas of dynamic process management, one-
sided operations, collective operations, new language binding, real-time
computing, external interfaces, and miscellaneous topics.

1 I n t r o d u c t i o n

During 1993 and 1994, a group of parallel computer vendors, l ibrary writers, and
application scientists met regularly to define a s tandard interface for message-
passing libraries. The result of this effort was MPI (Message-Passing Inter-
face) [7]. Implementa t ions of MPI are now widely available, including portable
and freely available implementat ions [2, 3, 8] and specialized versions f rom ven-
dors. General information on MPI is available at [1]. For the purposes of this
paper, it will be useful to refer to the result of the initial MPI s tandardizat ion

effort as "MPI- I . "
MPI-1 defined an interface for a specific message-passing model of parallel

computat ion, in which a fixed number of processes with disjoint address spaces
communicate through a cooperative mechanism (when two processes communi-
cate, one sends and the other receives). MPI provides many types of point-to-
point communication, to incorporate requirements for robustness, expressivity,
and performance. Messages are strictly typed and scoped, allowing for commu-
nication in a heterogeneous environment. MPI also contains an extensive set of
collective operations, process topology functions, and a profiling interface. '

129

The most distinctive feature of the current MPI-2 proposals described in this
paper is that they go beyond the strict message-passing model defined above. In
MPI-2, processes may create other processes, so that the number of processes in
an MPI computat ion can change dynamically (Section 2). Processes can interact
directly with the memory of other processes (Section 3). Extensions, semantic
modifications, and subset definitions in support of real-time and embedded sys-
tems (Section 4) also represent changes to the computational model.

Other topics being discussed in MPI-2 include extending MPI-I ' s collective
operations to intercommunicators and nonblocking operations (Section 5), bind-
ings for C + + and Fortran 90 (Section 6), and interface definitions for some of
MPI's opaque objects so that they can be used more effectively in support of
profiling and other libraries (Section 7). Finally, a number of issues, such as in-
terlanguage communication, a portable startup mechanism, and minor repairs
to the MPI-1 specification (Section 8), are under consideration in MPI-2.

In the rest of this paper, we present an overview of each of these areas. We
assume familiarity with the current MPI Standard. In ,the Conclusion we describe
the current status of these proposals and prospects for their early appearance in
implementations.

2 D y n a m i c P r o c e s s M a n a g e m e n t

MPI-1 describes how a group of processes can communicate with one another. It
does not specify how those processes are created, nor does it allow processes to
enter or leave a parallel application after the application has started. This static
process model enables the specification of deterministic semantics and facilitates
efficient implementations of MPI.

Nevertheless, a number of important applications cannot use MPI-1 because
of the constraints imposed by its static process model. These include manager-
worker applications, where the number and type of workers are not known until
the manager has started, task farms, applications that can adapt to changing
resources, applications with varying resource requirements, and client/server ap-
plications. Much of the impetus for relaxing the static process model comes from
the PVM community, which is familiar with PVM's relatively rich support for
dynamism.

2.1 T h e I n t e r f a c e

A fundamental concept in MPI-1 is NPI_COMM_WORLD, which defines the com-
munication space containing all processes in an MPI application. With MPI-2's
ability to add more processes to an application, the definition is modified to be
the communication space containing all processes started together. Groups of
newly started processes each have their own unique MPI_COMM_WORLD, but they
also have an intercommunicator that allows them to merge with their parent
group, forming a single bigger communicator. MPI-2 also provides an attribute,

130

MPI_UNIVERSE_SIZE, that suggests how many new processes might usefully be
spawned in the environment.

A powerful new functionality being added to MPI-2 is the ability to establish
contact between two groups of processes that initially do not share a commu-
nicator and may have been started independently. This functionality would be
useful, for example, in enabling a visualization tool to start up and attach to
a running simulation, or in enabling two parts of a large application, started
separately at two different sites to communicate with each other. The collec-
tive functions MPI_CONNECT and MPI_IACCEPT create an intercommunicator that
allows the two groups to communicate.

3 R e m o t e M e m o r y A c c e s s

The message-passing communication paradigm requires explicit involvement of
two processes (sender and receiver), in order to transfer data from the memory
of one to the memory of another. Remote Memory Access (RMA) extends the
communication mechanisms of MPI by allowing the transfer to occur with the
explicit involvement of only one of the two processes.

3.1 M o t i v a t i o n

Remote memory access facilitates the coding of some applications with irregu-
lar communication patterns. One situation occurs when a distributed-memory
application needs some randomly accessed read-only shared memory (for large
shared tables). Some of the processes can be used as "memory servers", while
the other processes access the data by using get calls. Another situation occurs
with a distributed-memory code where the data distribution is fixed or slowly
changing, but where the pattern of use changes dynamically. Each process can
compute what data it needs from remote processes and generate the required
receives. To generate the matching sends, one needs to compute the inverse of
the receive mapping, a time-consuming process that requires all processes to
coordinate the data exchange. The use of get calls avoids the need for sends.
A generic example is the execution of an assignment of the form A = B(map),
where map is a permutation vector, and A, B, and map are distributed in the same

manner.
RMA can be supported on distributed memory systems by an "RMA agent"

at the target node that accepts RMA requests and performs the required read or
write accesses in the memory of the target process. A portable implementation
might use an asynchronous receive handler to implement this I~MA agent. Sys-
tems with dedicated put/get hardware (for example, the Cray T3D) could take
advantage of that hardware, at least for simple transfers. Systems with com-
munication coprocessors can take advantage of that coprocessor in order to run
the RMA agent without interfering with the application processor at the target
node. On shared-memory systems, if the caller can directly access the memory of
the target process, RMA can be implemented without an RMA agent: the caller
process can directly copy data to or from the memory of the target process.

131

3.2 In te r face S u m m a r y

The current MPI-2 draft proposes the following RMA operations:

Pu t : transfer data from caller memory to target memory
Get: transfer data from target memory to caller memory
Accumula te : update variables in target memory by values from the caller mem-

ory. The update operation is an associative operation such as addition or
minimum.

Read-Modi fy -Wr i t e : update variables in target memory by values from the
caller memory, and return the initial value of the target memory variables.
With a suitable choice of the update operation, one obtains synchronization
operations such as test-and-set, fetch-and-add, or compare-and-swap.

In addition, a generic asynchronous handler mechanism is provided. This
mechanism can be used for a software implementation of remote memory access,
as well as for implementing many other communication paradigms. However, the
very generality of this mechanism prevents many implementation optimizations
that are possible for the more specific I~MA operations.

4 R e a l - T i m e E x t e n s i o n s t o M P I

MPI has helped to promote performance-portable programming of traditional
high-performance computing and cluster systems. It has also proven desirable to
leverage the success of MPI on parallel applications in the real-time community.

Taking advantage of this opportunity, a number of new organizations and the
existing MPI Forum participants initiated an effort to explore what "real-time
MPI" might look like. It is not expected that real-time MPI will be a required
part of the MPI-2 Standard or that all HPC and cluster MPI implementations
will support the real-time profiles.

Time-Based Profile For the time-based profile, it has been tacitly accepted that
an outside calendar must be provided, in addition to the MPI services, in order to
schedule the computations associated with this profile of MPI/RT. The calendar
will specify when to start MPI communication. The anticipated strategy is to
extend the MPI interface by using persistent communications that support this
timed startup of communication. Timeout-based communication also will be
supported in this way.

Priority-Based Profile Priority-based messaging and threading are commonly
occurring strategies in real-time and non-real-time systems. Priority levels are
supported by various operating systems and by certain message-passing net-
works, though not widely. Furthermore, some network systems support virtual
channels, which themselves may provide a mechanism of reservation, if not pri-
ority, for given "flows" of data.

132

5 Collect ive Communicat ion Extensions

MPI-1 has a rich set of collective operations, but they are subject to a number
of restrictions. MPI-2 is considering generalizing them is a number of directions.

Asynchronous Operations In the current draft, each collective operation speci-
fied by MPI-2 has an asynchronous analog. A wide variety of MPI-2 features use
asynchronous collective operations on both intracommunicators and intercom-
municators.

Intercommunicator Collective Operations The purpose ofintercommunicator col-
lective operations is to support broadcast, reductions, and other operations, ex-
tended to include the two-group model of parallel processing offered in MPI-1
by intercommunicators.

Original proposals for extending intercommunicators to support collective
operations, in addition to their MPI-1 point-to-point facilities, were first based
on [10], which included model implementations.

The additional functionality came in three forms: more collective construc-
tors and manipulators, what is now called "half-duplex" intercommunicator
operations that extend intracommmunicator collective operations, and virtual
topology-oriented versions of both the constructors and the communication pro-
cedures.

6 Language Bindings

6.1 C + + Bindings

The design of MPI itself is very much object-based, and the C++ bindings are
based on the underlying object-based design principles. The bindings define a
small set of classes corresponding to the fundamental object types in MPI with
the functionality of MPI provided as member functions of these objects. This
interface is fairly lightweight and seeks to meet the requirements of a language
binding while still using advanced features of the target language. For instance,
MPI error codes are still returned by function calls, no new types of objects are
introduced, and the type arguments to function calls must be explicitly provided.
Thus, only minimal use of advanced features of C++ such as polymorphism
would be available to MPI programmers. This is an approach similar to that
taken in [6]. A full-fledged class library that uses such advanced features has
been developed in conjunction with the bindings and can be found at [9].

6 . 2 F o r t r a n 9 0 In te r face

Fortran 90 adds a wide range of features to Fortran 77. These include the module
facility, derived types, array syntax, dynamic memory allocation, "pointers",
the ability to do strict type checking, and function overloading. At first glance,

133

it seems that MPI-2 should be able to make wide use of these new features.
Unfortunately, most of them are too "high level" for MPI to use, and many in
fact cause more problems than they solve. The MPI-2 approach to Fortran 90
bindings therefore focuses more on trying to avoid introducing new problems
than on trying to solve old ones.

7 E x t e r n a l I n t e r f a c e s

MPI-1 has a number of features that a/low users to layer various capabilities on
top of MPI. For example, user-defined reduction operations allow the program-
mer to use MPI for all communication requirements but still perform specialized
reduction operations.

Generalized Requests MPI-1 had nonblocking operations for basic point-to-point
send and receive calls. MPI-2 is proposing nonblocking calls for all collective
operations, many one-sided operations, and dynamic spawning. Although these
significantly expand the areas covered by nonblocking operations, users still may
want additional nonblocking operations. For example, in the current MPI-IO
effort [4, 5], nonblocking read and write operations are proposed. It would be
advantageous to offer a standard MPI mechanism to perform these additional
nonblocking operations. This would allow the use of other MPI features such as
MPI_WAIT, reducing the effort in creating such requests and allowing one to
control both types of nonblocking operations together.

Access to Opaque Objects One area that has caused difficulties in writing portable
tools is the information stored with opaque objects. MPI-1 was deliberately de-
signed with opaque objects. These allow flexibility in implementations and allow
for future enhancements without changing the user's view of objects already
present in MPI. To allow users to gain access to needed information in opaque
objects, MPI has a number of accessor functions. For example, MPI_GET_COUNT
will return the number of entries received as stored in the opaque part of the
status object. One drawback to this approach is that only information with ex-
plicit accessor functions can be obtained in an easy and portable way from an
MPI implementation. In MPI-1, the MPI Forum included all the accessor func-
tions that seemed to be needed by users. However, tool writers have noted that
they need access to information not typically needed by users. For example, a
profiling library often needs the length of a message begun by MPI_START for a
persistent request. To enable these tools to be truly portable, MPI-2 includes a
number of functions to expose information stored in opaque objects.

Finally, the external interface definition in MPI-2 allows a generalization of
the MPI-1 caching mechanism to allow caching on additional handles. The same
calls are used but in MPI-2 apply to MPI_COMM, MPI_DATATYPE, and MPI_GROUP.

134

8 M i s c e l l a n e o u s

A number of topics are being considered by the MPI-2 Forum that do not fall
into the categories above.

In MPI-1, although both C and Fortran-77 bindings were defined, nothing
was specified regarding the interoperability of these two languages. Interoper-
ability comprises at least three subareas: initialization, passing of MPI opaque
objects from one language to another, and sending a message from one language
and having it received in the other.

Only one form of MPT_INTT need be called. After the call, the MPI library
will be completely initialized for all supported languages.

In order to deal with the portability of MPI opaque objects, such as datatypes,
communicators, and requests, conversion functions will be provided that convert
the language-dependent "handles" to 32-bit integers and back again. These in-
tegers will be portable (among languages) versions of the objects they reference.

Sending a message from a Fortran program to a C program or vice versa
will be explicitly allowed, as long as the signatures of the datatypes match.
Here we are aided by the fact that the elementary datatypes defined in MPI-1
are distinct in the two languages, and no equivalence (such as one that might
exist between the C datatype in t and the Fortran datatype INTEGER on some
machines) is assumed. Thus, in sending messages between programs written
in different languages, one sends data of a given MPI datatype; no automatic
conversion takes place.

9 C o n c l u s i o n

We have described the current state (February, 1996) of MPI-2 discussions. The
precise content of MPI-2 remains to be decided in the coming months. Although a
few implementors are beginning to experiment with some of the notions described
here, most are waiting to see what the final specification will look like. The MPI-
2 features will be more difficult to implement than those of MPI-1. Nonetheless,
enough discussion has taken place that it is possible to discern the likely scope of
the functionality that MPI-2 will add to MPI-1. In thiw paper we have described

that functionality.

R e f e r e n c e s

1. World Wide Web MPI home p~ge.
ht tp ://www. mcs. anl. gov/mpi/standard, html.

2. R. Al~sdair, A. Bruce, James G. Mills, and A. Gordon Smith. CHIMP/MPI user
guide. Technical Report EPCC-KTP-CttIMP-V2-USER 1.2, Edinburgh Parallel
Computing Centre, June 1994.

3. Greg Burns, Raja Daoud, and James Vaigl. LAM: An open cluster environment
for MPI. In John W. Ross, editor, Proceedings of Supercomputing Symposium '94,
pages 379-386. University of Toronto, 1994.

135

4. Peter Corbett, Dror Feitelson, Yarsun Hsu, Jean-Pierre Prost, Marc Snir, Sam
Fineberg, Bill Nitzberg, Bernard Traversat, and Parkson Wong. MPI-IO: A par-
allel file I/O interface for MPI, version 0.3. Technical Report NAS-95-002, NAS,
January 1995.

5. Peter Corbett, Yarsun Hsu, Jean-Pierre Prost, Marc Snir, Sam Fineberg, Bill
Nitzberg, Bernard Traversat~ Parkson Wong, and Dror Feitelson. MPI-IO: A par-
allel file I/O interface for MPI, version 0.4.
h t t p : / / l o v e l a c e . n a s .nasa.gov/NPI-I0, December 1995.

6. Nathan E. Doss, Purushotam V. Bangalore, and Anthony Skjellum. MPI+-t- :
Issues and Features. In Proceedings o] OONSKI '9~, January 1994.

7. The MPI Forum. The MPI message-passing interface standard.
h t tp ://www.mcs. anl. gov/mpi/standard.html, May 1995.

8. William Gropp and Ewing Lusk. User's Guide]or mpich, a Portable Implementa-
tion of MPI. Argonne National Laboratory, 1994.

9. Andrew Lumsd~ine, Brian M. McCandless, and Jeffrey M. Squyres. Object-
oriented MPI, 1996. h t tp ://www. cse. rid. edu/ lsc / research/oompi/ .

10. Anthony Skjellum, N~thanE. Doss, and Kishore Viswanathan. Inter-
communicator extensions to MPI in the MPIX (MPI extension) Library. Techni-
cal report, Mississippi State University - - Dept. of Computer Science, April 1994.
Draft version.

