
Dealing with Heterogeneity in Stardust:
An Environment for Parallel Programming on

Networks of Heterogeneous Workstations

Gilbert Cabillic and Isabelle Puaut

IRISA, Campus Universitaire de Beaulieu, 35042 Rennes C6dex, FRANCE
e-mail cabilfic/puaut ~irisa.fr

Abstract. This paper describes the management of heterogeneity in
Stardust, an environment for parallel programming above networks of
heterogeneous machines, which can include distributed memory multi-
computers and networks of workstations. Applications using Stardust
can communicate both through message passing and distributed shared
memory. Stardust is currently implemented on an heterogeneous system
including an Intel Paragon running Mach/OSF1 and an ATM network
of Pentiums running Chorus/classiX.

1 Introduction

The proliferation of inexpensive and powerful workstations has continued to in-
crease at a rapid rate in the last few years. This increase of machine performance
is likely to continue for several years, with faster processors and multiprocessor
machines. Studies have shown that for a large percentage of their lifetime, the
machines are used for small tasks, thus demonstrating an average idle percentage
of at least 90% even during peak hours. One possible use of these idle cycles is
to run parallel applications. A number of research activities have tried to ex-
ploit the computing power of networks of workstations, like PVM [1] and MPI
[2], based on the message-passing paradigm, and Mairmaid [3] based on the
shared-memory (DSM) paradigm. To be fully usable, an environment for par-
allel computing above networks of workstations should: (i) support hardware
and software heterogeneity, (ii) provide multiple programming paradigms, (iii)
include mechanisms for load balancing and application' reconfiguration, and (iv)

tolerate machine failures.
Stardust is an environment that provides such faciiities. Stardust allows the

execution of parallel applications based both on the message-passing and page-
based DSM paradigm. It executes on an heterogeneous computing environment
composed of a parallel machine (the Intel Paragon) and an ATM network of
workstations (PCs). Stardust includes a support for load balancing and check-
pointing (see [4, 5] for more details). This paper focuses on Stardust support for
heterogeneity. Section 2 gives an overview of the management of heterogeneity
in Stardust. Section 3 then gives some performance data. Concluding remarks

are given in section 4.

115

2 Dealing with Heterogeneity in Stardust

Stardust includes transparent mechanisms for converting data between different
types of hosts. These mechanisms are used for converting both the contents
of buffers exchanged in messages and the contents of shared virtual memory
regions; they are described in paragraph 2.1. Furthermore, in order to cope
with the processors t different instruction formats, each program developed on
tol 5 of Stardust is compiled for every type of architecture. Issues other than data
conversion have to be dealt with, for processes to communicate through DSM (see
[3, 4] for an overview of these issues). The main design decision for addressing
these issues in Stardust consists in choosing a common unit for data conversion
and data transfer between hosts, called heterogeneous page (see paragraph 2.2).

2.1 Mechanisms for data conversion and data typing

Stardust uses a standard architecture independent format for communications
between different types of hosts. When sending a message, its contents is first
converted into the standard data format; the receiver of the message then con-
verts the message contents into its own physical format. The standard data
format used for data transfer is the SUN eXternal Data Representation (XDR)
format [6]; it was chosen because of its availability on a wide range of archi-
tectures and operating systems. The XDR library, linked with the Stardust en-
vironment, provides routines for converting basic data types to/from the XDR
format.

In order to apply the XDR conversion routines when a piece of data is trans-
ferred between hosts of different types, it must be possible to have the type of
each data structure. One approach consists in analyzing the source language (for
instance by modifying the C compiler). Another approach, taken in [3] is to ex-
ploit information generated by compilers in object files, and intended to be used
by symbolic debuggers (Symbol TABle, or stab). In Stardust, we did not want to
modify the compiler or make assumptions on the kind of run-time information it
generates in object files. Consequently, the type of every data structure is given
explicitly by the application programmer when the data structure is allocated
(region creation, allocation of a communication buffer). This is done by using
a simple language, taken from [7] which is analyzed when the data structure is
transferred between different types of hosts. A type is of the form (TypeString,
N1, N2, ... , N,,), where TypeString is the string identifying the data type (see
syntax below), and Ni is the number of elements of the i th nested subtype of
string TypeString.

Type : '{' (BasicType I Type)+ '}'
BasicType : ' C ' I ' I ' I ' L ' I ' F , I , D,

For example, the type ("{ C{D}} ", IO, PO) corresponds to a data structure
which is an array of 10 structures of type t_str, each structure being composed
of a character and 20 double precision floating point values.

116

Let us call base element the first nested subtype of a data structure (in the
above example, the base element is the type t_str). Note that due to the method
used to associate a type to a da ta structure, the conversion algorithm can only
apply to a multiple number of base elements.

2.2 M e c h a n i s m s fo r s h a r i n g v i r t u a l m e m o r y r e g i o n s

Mainly two issues have to be addressed when building an heterogeneous DSM.

Firstly, the different hosts can have distinct page sizes. Secondly, depending on
the architecture, the number of base elements in a page can vary, because of the
differences in the physical representation of data. Let us consider for example an
application running on an Intel Paragon and on a Dec Alpha-based architecture.
Assume that t he application is sharing a vector whose type is ('{LC} ",8192).
Due to the architectures' characteristics and to the alignment constraints, the
size of the base element on the Paragon is 6 bytes (4 for the long integer, 1 for
the character and an extra-byte for the alignment constraints), while its size is
10 bytes on the DEC alpha, where long integers take 8 bytes. Even if the page
sizes on the two architectures are identical (8 Kbytes), they do not contain the
same number of base elements. On this example, they do not even contain an
integral number of base elements. To our knowledge, no heterogeneous DSM fully
addresses all the issues coming from heterogeneity. In [3], it is assumed tha t att
basic da ta types have the same size on all architectures; in addition, the problem
of a base element crossing a page boundary is solved by add ing an additional
alignment constraint so that this problem does not occur.

In Stardust, the issues of different data representations and page sizes are
addressed by choosing a common unit for data conversion and da ta transfer
between different types of hosts, called heterogeneous page. The size of an het-
erogeneous page is a multiple o f the size of a base element, so that the same
da ta item is never on the memory of the two hosts. In addition, the size of an
heterogeneous page is a multiple of the page size of every architecture, so that
an action on an heterogeneous page can always be mapped off a set of actions
on pages of every architecture. In the above example, an heterogeneous page
contains 4096 base elements, and corresponds to 5 Paragon pages and 3 Dec
pages. Note that the decomposition of a shared region into heterogeneous pages
not only depends on the page sizes of all the machines hosting the application.
It is also dependent on the type of da ta structure contained in the region. If the
region taken as example above had contained characters instead of a more com-
plex da ta structure, the size of the heterogeneous page would have been different
(a single virtual memory page for both architectures).

Fragmentation into heterogeneous pages: A region is fragmented into heteroge-
neous pages at region creation time. At this time, all the types of architectures
on which the application is running are known, as well as the type of the data
structure contained into the region. The fragmentat ion algorithm finds out, for
every architecture, a page size for which no base element crosses a page bound-

117

ary, and then takes the least common multiple (LCM) of theses values, thus
obtaining the size of the heterogeneous page for the region.

Consistency protocol: Consistency of shared data is managed by a 2-level sys-
tem. The intra-architecture level manages data consistency for a subset of homo-
geneous hosts. It uses a homogeneous memory manager (HoMM) per node. HoMMs

manage data consistency within the associated architecture. They use the archi-
tecture virtual memory page as a unit of data transfer between machines. Pages
are transferred using the most efficient communication protocol that exists on the
architecture. In addition, pages are transferred in the architecture physical data
representation, without conversion into an architecture-independent format.

In the inter-architecture level, data consistency is managed by an hetero-
geneous memory manager (HeMM) per group of nodes of the same type. The
unit of data transfer between HeMMS for a given region is the heterogeneous
page that corresponds to the region's type. Transfers are achieved via a common
communication protocol (TCP) and data is transferred in the XDR architecture
independent format. In the current implementation, both HOMMS and HeMMs im-
plement sequential consistency through a write-invalidate consistency protocol,
and use K Li's static distributed scheme for locating shared pages [8].

Note that with such a structure of heterogeneous DSM there is no time over-
head due to the management of heterogeneity when an application is running
on hosts of the same type.

3 I m p l e m e n t a t i o n a n d P e r f o r m a n c e o f S t a r d u s t

Stardust is currently implemented on a 56 nodes Intel Paragon [9] running a
Mach/OSF1 kernel and on an 155 ATM network of Pentium PC machines 1 run-
ning the Chorus/classiX operation system [10]. Each Paragon node is equipped
with 16 Mbytes of memory, of which nearly 8 Mbytes are consumed by the op-
erating system. The size of pages on the paragon is 8 Kbytes. The measured
transfer rate between nodes is 60 Mbytes/s. Each PC has 32 Mbytes of memory,
of which only 8 Mbytes are left free for the paging activity. The size of pages
on the Pentiums is 4 Kbytes. For all the performance measures given in this
paragraph,'the size of heterogeneous pages is 8 Kbytes.

Stardust is made up of a set of software modules, which have an OS lade-
pendant interface in order to ease their portability. The consistency manager
maintains data consistency using a write-invMidate protocol ; the same code is
used by HOMMs and HeMMs. The network manager offers primitives for exchang-
ing messages. It uses for intra-architecture communications are running the most
efficient communication protocol of the architecture (NX communication library
on the Intel Paragon, Chorus IPC on the Pentium PCs). If the message sender
and receiver run on different types of hosts, TCP is used via sockets, and the
message is converted into the XDR format before being sent. Finally, the OS

1 The ATM driver being currently under debug, this version of the paper includes
figures measured on a 10Mb/s Ethernet.

118

interaction manager is responsible of the communication with the underlying
operating system concerning memory management and thread management.

Figure 1 shows the performance of the MGS (Modified Gram-Schmidt) appli-
cation, which produces from a set of vectors an orthonormal basis of the space
generated by these vectors. The problem size 'for this application is 256x1024
double precision floats. The application only uses DSM and does not exhibit false
sharing. The figure shows the elapsed time for the application when it runs on
(i) a set of Paragon nodes, (ii) a set of Pentium nodes, and (iii) an heterogeneous
system with the same number of nodes of both architectures. Measurements were
done in a system with 1 up to 8 nodes.

30 �9 ,

25

2 0

8
~ 1 5

I,,--

10

~ ~ ~ Paragon
E 3 - - - O P e n t i u m
~ - ---X7 Stardust

~ 2 4 6
N u m b e r of nodes

Fig. 1. Execution time of MGS application

The curves show that the application launched on an homogeneous set of
Pentium nodes always exhibits better performance compared to the same appli-
cation running on Paragon nodes or on heterogeneous nodes. In addition, the
applications still exhibits a good speedup when the number of nodes increases.
Finally, only a small percentage of the total execution time is needed to deal
with heterogeneity compared to the execution time for the Paragon machines.

4 C o n c l u d i n g R e m a r k s

Many environments for parallel programming on networks of heterogeneous
workstations have been designed and implemented in the last ten years. A
key difference between Stardust and most of these environments is that Star-
dust runs both on parallel machines and networks of workstations, and includes
mechanisms for load balancing and checkpointing [4, 5]. In addition, unlike most

119

environments, Stardust supports both the shared-memory and message-passing
paradigm. From an implementation point of view, we have tried in Stardust
to use the most efficient communication protocol of a given architecture for
communications between hosts of this architecture. In comparison, most imple-
mentations of PVM use T C P for all communications, which can be less efficient
than architecture-specific communication protocols. Few DSM systems have been
designed for heterogeneous systems. Marmaid [3] differs from Stardust by the
way types are associated to shared memory regions. Mairmaid requires less ef-
fort from the programmer, but its implementation depends on the format of the
object files. Unlike Mairmaid, it is not assumed in the Stardust prototype that
basic data types have the same size on all architectures.

R e f e r e n c e s

1. A. Geist, A. Beguelin, J. Dongarra, W. Jiang, R. Manchek, and V. Sunderam.
P VM: Parallel Virtual Machine - A Users ~ Guide and Tutorial for Networked Par-
allel Computing. MIT Press, 1994.

2. W. Grop, E. Lusk, and A. Skjellum. Using MPI: Portable Parallel Programming
with the Message-Passing Interface. MIT Press, 1994.

3. S. Zhou, M. Stumm, K. Li, and D. Wortman. Heterogeneous distributed shared
memory. IEEE Transactions on Parallel and Distributed Systems, 3(5):540-554,
September 1992.

4. G. Cabillic and I. Puaut. Stardust: an environment for parallel programming on
networks of heterogeneous workstations. Technical Report 1006, IRISA, April
1996. Available by anonymous ftp at ftp.irisa.fr.

5. G. Cabillie, G. Muller, and I. Puaut. The performance of consistent checkpointing
in distributed shared memory systems. In Proc. of the 14th Symposium on Reliable
Distributed Systems, pages 96-105, Bad Neuenahr, Germany, September 1995.

6. Sun Micrdsystems Inc. Network Programming Guide - External Data Representa-
tion Standard: Protocol Specification, 1990.

7. C. Pinkerton. A heterogeneous distributed file system. In Proc. of lOth Interna-
tional Conference on Distributed Computing Systems, May 1990.

8. K. Li and P. Hudak. Memory coherence in shared virtual memory systems. A CM
Transactions on Computer Systems, 7(4):321-357, November 1989.

9. Intel. Paragon User's Guide, 1993.
10. M. Rozier, V. Abrossimov, F. Armand, I. Boule, M. Glen, M. GuiUemont,

F. Herrmann, P. L~onard, S. Langlois, and W. Neuhauser. The Chorus distributed
operating system. Computing Systems, 1(4):305-370, 1988.

