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Abstract.  This paper describes the management of heterogeneity in 
Stardust, an environment for parallel programming above networks of 
heterogeneous machines, which can include distributed memory multi- 
computers and networks of workstations. Applications using Stardust 
can communicate both through message passing and distributed shared 
memory. Stardust is currently implemented on an heterogeneous system 
including an Intel Paragon running Mach/OSF1 and an ATM network 
of Pentiums running Chorus/classiX. 

1 Introduction 

The proliferation of inexpensive and powerful workstations has continued to in- 
crease at a rapid rate in the last few years. This increase of machine performance 
is likely to continue for several years, with faster processors and multiprocessor 
machines. Studies have shown that for a large percentage of their lifetime, the 
machines are used for small tasks, thus demonstrating an average idle percentage 
of at least 90% even during peak hours. One possible use of these idle cycles is 
to run parallel applications. A number of research activities have tried to ex- 
ploit the computing power of networks of workstations, like PVM [1] and MPI 
[2], based on the message-passing paradigm, and Mairmaid [3] based on the 
shared-memory (DSM) paradigm. To be fully usable, an environment for par- 
allel computing above networks of workstations should: (i) support hardware 
and software heterogeneity, (ii) provide multiple programming paradigms, (iii) 
include mechanisms for load balancing and application' reconfiguration, and (iv) 

tolerate machine failures. 
Stardust is an environment that provides such faciiities. Stardust allows the 

execution of parallel applications based both on the message-passing and page- 
based DSM paradigm. It executes on an heterogeneous computing environment 
composed of a parallel machine (the Intel Paragon) and an ATM network of 
workstations (PCs). Stardust includes a support for load balancing and check- 
pointing (see [4, 5] for more details). This paper focuses on Stardust support for 
heterogeneity. Section 2 gives an overview of the management of heterogeneity 
in Stardust. Section 3 then gives some performance data. Concluding remarks 

are given in section 4. 
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2 Dealing with Heterogeneity in Stardust 

Stardust includes transparent mechanisms for converting data between different 
types of hosts. These mechanisms are used for converting both the contents 
of buffers exchanged in messages and the contents of shared virtual memory 
regions; they are described in paragraph 2.1. Furthermore, in order to cope 
with the processors t different instruction formats, each program developed on 
tol 5 of Stardust is compiled for every type of architecture. Issues other than data 
conversion have to be dealt with, for processes to communicate through DSM (see 
[3, 4] for an overview of these issues). The main design decision for addressing 
these issues in Stardust consists in choosing a common unit for data conversion 
and data transfer between hosts, called heterogeneous page (see paragraph 2.2). 

2.1 Mechanisms for data conversion and data typing 

Stardust uses a standard architecture independent format for communications 
between different types of hosts. When sending a message, its contents is first 
converted into the standard data format; the receiver of the message then con- 
verts the message contents into its own physical format. The standard data 
format used for data transfer is the SUN eXternal Data Representation (XDR) 
format [6]; it was chosen because of its availability on a wide range of archi- 
tectures and operating systems. The XDR library, linked with the Stardust en- 
vironment, provides routines for converting basic data types to/from the XDR 
format. 

In order to apply the XDR conversion routines when a piece of data is trans- 
ferred between hosts of different types, it must be possible to have the type of 
each data structure. One approach consists in analyzing the source language (for 
instance by modifying the C compiler). Another approach, taken in [3] is to ex- 
ploit information generated by compilers in object files, and intended to be used 
by symbolic debuggers (Symbol TABle, or stab). In Stardust, we did not want to 
modify the compiler or make assumptions on the kind of run-time information it 
generates in object files. Consequently, the type of every data structure is given 
explicitly by the application programmer when the data structure is allocated 
(region creation, allocation of a communication buffer). This is done by using 
a simple language, taken from [7] which is analyzed when the data structure is 
transferred between different types of hosts. A type is of the form (TypeString, 
N1, N2, ... , N,,), where TypeString is the string identifying the data type (see 
syntax below), and Ni is the number of elements of the i th nested subtype of 
string TypeString. 

Type : '{' (BasicType I Type)+ '}' 
BasicType : ' C ' I ' I ' I ' L ' I ' F , I ,  D, 

For example, the type ("{ C{D}} ", IO, PO) corresponds to a data structure 
which is an array of 10 structures of type t_str, each structure being composed 
of a character and 20 double precision floating point values. 
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Let us call base element the first nested subtype of a data  structure (in the 
above example, the base element is the type t_str). Note that  due to the method 
used to associate a type to a da ta  structure, the conversion algorithm can only 
apply to a multiple number of base elements. 

2.2 M e c h a n i s m s  fo r  s h a r i n g  v i r t u a l  m e m o r y  r e g i o n s  

Mainly two issues have to be addressed when building an heterogeneous DSM. 

Firstly, the different hosts can have distinct page sizes. Secondly, depending on 
the architecture, the number of base elements in a page can vary, because of the 
differences in the physical representation of data.  Let us consider for example an 
application running on an Intel Paragon and on a Dec Alpha-based architecture. 
Assume that  t he  application is sharing a vector whose type is ('{LC} ",8192). 
Due to the architectures' characteristics and to the alignment constraints, the 
size of the base element on the Paragon is 6 bytes (4 for the long integer, 1 for 
the character and an extra-byte for the alignment constraints), while its size is 
10 bytes on the DEC alpha, where long integers take 8 bytes. Even if the page 
sizes on the two architectures are identical (8 Kbytes), they do not contain the 
same number of base elements. On this example, they do not even contain an 
integral number of base elements. To our knowledge, no heterogeneous DSM fully 
addresses all the issues coming from heterogeneity. In [3], it is assumed tha t  att 
basic da ta  types have the same size on all architectures; in addition, the problem 
of a base element crossing a page boundary is solved by add ing  an additional 
alignment constraint so that  this problem does not occur. 

In Stardust, the issues of different data  representations and page sizes are 
addressed by choosing a common unit for data  conversion and da ta  transfer 
between different types of hosts, called heterogeneous page. The size of an het- 
erogeneous page is a multiple o f  the size of a base element, so that  the same 
da ta  item is never on the memory of the two hosts. In addition, the size of an 
heterogeneous page is a multiple of the page size of every architecture, so that  
an action on an heterogeneous page can always be mapped off a set of actions 
on pages of every architecture. In the above example, an heterogeneous page 
contains 4096 base elements, and corresponds to 5 Paragon pages and 3 Dec 
pages. Note that  the decomposition of a shared region into heterogeneous pages 
not only depends on the page sizes of all the machines hosting the application. 
It  is also dependent on the type  of da ta  structure contained in the region. If the 
region taken as example above had contained characters instead of a more com- 
plex da ta  structure, the size of the heterogeneous page would have been different 
(a single virtual memory page for both architectures). 

Fragmentation into heterogeneous pages: A region is fragmented into heteroge- 
neous pages at region creation time. At this time, all the types of architectures 
on which the application is running are known, as well as the type of the data  
structure contained into the region. The  fragmentat ion algorithm finds out,  for 
every architecture, a page size for which no base element crosses a page bound- 
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ary, and then takes the least common multiple (LCM) of theses values, thus 
obtaining the size of the heterogeneous page for the region. 

Consistency protocol: Consistency of shared data is managed by a 2-level sys- 
tem. The intra-architecture level manages data consistency for a subset of homo- 
geneous hosts. It uses a homogeneous memory manager (HoMM) per node. HoMMs 

manage data consistency within the associated architecture. They use the archi- 
tecture virtual memory page as a unit of data transfer between machines. Pages 
are transferred using the most efficient communication protocol that exists on the 
architecture. In addition, pages are transferred in the architecture physical data 
representation, without conversion into an architecture-independent format. 

In the inter-architecture level, data consistency is managed by an hetero- 
geneous memory manager (HeMM) per group of nodes of the same type. The 
unit of data transfer between HeMMS for a given region is the heterogeneous 
page that corresponds to the region's type. Transfers are achieved via a common 
communication protocol (TCP) and data is transferred in the XDR architecture 
independent format. In the current implementation, both HOMMS and HeMMs im- 
plement sequential consistency through a write-invalidate consistency protocol, 
and use K Li's static distributed scheme for locating shared pages [8]. 

Note that with such a structure of heterogeneous DSM there is no time over- 
head due to the management of heterogeneity when an application is running 
on hosts of the same type. 

3 I m p l e m e n t a t i o n  a n d  P e r f o r m a n c e  o f  S t a r d u s t  

Stardust is currently implemented on a 56 nodes Intel Paragon [9] running a 
Mach/OSF1 kernel and on an 155 ATM network of Pentium PC machines 1 run- 
ning the Chorus/classiX operation system [10]. Each Paragon node is equipped 
with 16 Mbytes of memory, of which nearly 8 Mbytes are consumed by the op- 
erating system. The size of pages on the paragon is 8 Kbytes. The measured 
transfer rate between nodes is 60 Mbytes/s. Each PC has 32 Mbytes of memory, 
of which only 8 Mbytes are left free for the paging activity. The size of pages 
on the Pentiums is 4 Kbytes. For all the performance measures given in this 
paragraph,'the size of heterogeneous pages is 8 Kbytes. 

Stardust is made up of a set of software modules, which have an OS lade- 
pendant interface in order to ease their portability. The consistency manager 
maintains data consistency using a write-invMidate protocol ; the same code is 
used by HOMMs and HeMMs. The network manager offers primitives for exchang- 
ing messages. It uses for intra-architecture communications are running the most 
efficient communication protocol of the architecture (NX communication library 
on the Intel Paragon, Chorus IPC on the Pentium PCs). If the message sender 
and receiver run on different types of hosts, TCP is used via sockets, and the 
message is converted into the XDR format before being sent. Finally, the OS 

1 The ATM driver being currently under debug, this version of the paper includes 
figures measured on a 10Mb/s Ethernet. 
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interaction manager is responsible of the communication with the underlying 
operating system concerning memory management and thread management. 

Figure 1 shows the performance of the MGS (Modified Gram-Schmidt) appli- 
cation, which produces from a set of vectors an orthonormal basis of the space 
generated by these vectors. The problem size 'for this application is 256x1024 
double precision floats. The application only uses DSM and does not exhibit false 
sharing. The figure shows the elapsed time for the application when it runs on 
(i) a set of Paragon nodes, (ii) a set of Pentium nodes, and (iii) an heterogeneous 
system with the same number of nodes of both architectures. Measurements were 
done in a system with 1 up to 8 nodes. 
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Fig. 1. Execution time of MGS application 

The curves show that the application launched on an homogeneous set of 
Pentium nodes always exhibits better performance compared to the same appli- 
cation running on Paragon nodes or on heterogeneous nodes. In addition, the 
applications still exhibits a good speedup when the number of nodes increases. 
Finally, only a small percentage of the total execution time is needed to deal 
with heterogeneity compared to the execution time for the Paragon machines. 

4 C o n c l u d i n g  R e m a r k s  

Many environments for parallel programming on networks of heterogeneous 
workstations have been designed and implemented in the last ten years. A 
key difference between Stardust and most of these environments is that Star- 
dust runs both on parallel machines and networks of workstations, and includes 
mechanisms for load balancing and checkpointing [4, 5]. In addition, unlike most 
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environments, Stardust supports both the shared-memory and message-passing 
paradigm. From an implementation point of view, we have tried in Stardust  
to use the most efficient communication protocol of a given architecture for 
communications between hosts of this architecture. In comparison, most imple- 
mentations of PVM use T C P  for all communications, which can be less efficient 
than architecture-specific communication protocols. Few DSM systems have been 
designed for heterogeneous systems. Marmaid [3] differs from Stardust  by the 
way types are associated to shared memory regions. Mairmaid requires less ef- 
fort from the programmer,  but  its implementation depends on the format  of the 
object files. Unlike Mairmaid, it is not assumed in the Stardust prototype that  
basic data  types have the same size on all architectures. 
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