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Abstract .  In this paper we extended the 3D skeletonization method 
based on Euler number count & cluster count to 4D. As the Euler sum in 
4D is always 0, we solved this by embedding 4D objects in a 5D space to 
calculate the 5D Euler number. The 5D Euler number changes due to 3 
events: 1D tunnels, 2D tunnels and 3D tunnels. As the latter does not  

occur in 4D objects, together with a foreground and a background cluster 
count, the number of equations is equal to the number of unknown 
variables, and a breakpoint change can be detected. However, this also 

indicates that making a skeleton in this way is limited to the 4 tb 
dimension. 

1 Introduction 

Our aim is to provide insight in topology preserving thinning or skeletonization in 4 
dimensional  binary images. The motivation for this research was found first of  all 
in the use of  skeletons from 3D images from confocal  microscopes,  CT, NMR or 
ul trasound sensor systems or robot  range sensors. The mot ivat ion for thinning in 
images  with a dimension of  4 can be found in problems like finding the trace of  a 
3D objec t  moving in time. General ly ,  thinning " images"  with d imensions  higher  
than 3 can be used for finding the shortest or safest non col l iding path of  an object  
in an N dimensional  space. These problems are frequently encountered in Printed 
Circuit  Board and VLSI  mask routing problems (a 3D problem: x, y, z), planning 
of  mutual ly  coll is ion free routes for mult iple autonomous vehicles (a 4-D problem: 
x, y, r t ), or the planning of  a simultaneously coll ision free path for a multi  robot  
system (e.g a 6 axis robot  combined with a 4 axis yields a 10-D search image). 

Robot  path finding itself, is a consequence of  the robot  vision problem: If  a robot 's  
mission to grasp an object  is guided by the objects  in its f ield of  view, it should 
avoid to col l ide with the objects it does not need. Usually,  path planning solutions 
are based on a (heurist ic) graph search procedure  (such as A*, or uniform cost) 
appl ied on an equidistantly sampled grid; i.e. an image. Uniform cost  search in an 
equ id i s t an t ly  sampled  space is then comple t e ly  c ompa ra b l e  to a cons t ra ined  
distance transform, fol lowed by a steepest descent from a start to a goal point.  As 
speed is a main issue in robotics,  in the sense that p lanning a path should take 
abou t  the same  t ime  as the robo t  move ,  h a r d w a r e  and fas t  s o f t w a r e  
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implementations have been investigated and developed by the authors [2, 3], 
however they are still not fast enough. By way of example, fig. 1 shows how a 
skeleton without endpixel conditions but anchored to a start and goal point can be 
used to find the safest shortest path from start to goal. If  the letter T is a top-view 
of a corridor, then the safest path in the sense of maximum distance to the walls is 
given by the anchor skeleton. See [4, 6] for the structuring elements of the anchor 
skeleton. 

Fig.1. Using the anchor skeleton for path finding 

Fig.2. 3D maze solved by an anchor skeleton operation 

Fig.3. Skeletonization in 3D applied to path finding 

To find a path through a 3D maze the same approach, using a 3D anchor skeleton 
can be used. See fig. 2. A solution to a 3D planning problem for an Automated 
Guided Vehicle (AGV) that should be planned in x, y and the vehicle's rotation 
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can be solved by first converting the problem into a binary image of  t h e  

appropriate dimension (the configuration space) and then taking the anchor 
skeleton. Fig. 3a shows the configuration space (x, y, r fig. 3b shows the 3D 
skeleton of the background anchored to start and goal point. I f  more than a single 
path is found, a constrained distance transform, over the path branches may be 
used to select the shortest skeleton branch as the shortest safest path. This collision 
free path is shown in world space (x, y) in fig. 3c. In this solution topology 
preserving thinning is used as a fast pre-processing phase to reduce the number of 
voxels. 

Fig. 4 shows the result of a 4 dimensional anchor skeleton operation to find a 
mutually collision free path for two AGVs in a 2D world with a configuration space 
in 4D (x a, Ya, Xb, Yb)- Figs. 4a through 4c show the two AGVs as a small and a big 
circles traveling over a number of path points. The big circle's aim is to travel from 
upper left to lower left. The small circle's aim is to travel from lower right to upper 
left. Note that both circles avoid eachother, as it is a mutually collision free path. 

i , , ' ,% 
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a) b) c) d) 

Fig.4. Skeletonization in 4D applied to path finding for 2 AGVs 

As thinning is a implemented as a cellular logic operation or Hit-or-Miss aproach 
in terms of mathematica morphology [4, 5, 6], massively parallel implementation 
is within reach and hence, possibly, the required speed for real time robot path 
planning. That is: less than a second. Consequently, our focus is on the search for 
generic topology preserving conditions for thinning in high dimensional images, in 
a form that facilitates parallel implementation. Section 2 of this paper is a short 
introduction in skeletonization. Section 3 holds the functional comparison of three 
3D algorithms based on different principles, but with identical result. With this 
knowledge, in section 4, a 4D algorithm is developed based on change detection 
using the Euler sum and cluster counting. Conclusions can be found in section 5. 

2 Skeletonization in 2D and 3D 

In [4, 5, 6] it was shown that skeletonization can be written as a Hit-or-Miss 
transform using as a set of masks with size 3 N as structuring element, with N the 
dimension of the image. Skeletonization can also be seen as a reduction of the 
intrinsic dimensions of the object in the image. In 1D: Lines are eroded to points, 
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points are eroded to void. In 2D: Surfaces are eroded to curves, curves to points, 
points to void. In 3D: Volumes to surfaces, surfaces to curves, curves to points, 
points to void. And finally for 4D: Hypervolumes to volumes, to surfaces, to curves, 
to points, to void. At any intrinsic dimension one can stop the skeletonization 
procedure by using the correct end point criteria within the topology check 
procedure, e.g. surface-end or curve-end criteria. For path planning one is interested 
in reduction to a curve. The points on the curve are the path points. 

For 2D and 3D, storing the masks in an AND/OR array (PLD) makes hardware 
possible that allows a neighbourhood check in a single clockcycle. The feasibility 
of this approach for 4D is uncertain as the number of masks (being around 250 for 
3D) is likely to run out of hand in 4D and higher. This biased the search for 
solutions in 4D and higher towards a more algorithmic approach than the pure Hit- 
or-Miss approach. Note however, that the mask sets implement an algorithm. The 
method with which the masks had been generated can also be used as topology 
check during the image scan, however, at the penalty of a loss of speed. Extending 
this mask method to 4D appeared to have the problem that, apart from the large 
numbers of  masks it generated, the intersection of foreground and background 
masks in 4D was not trivial. And hence the need arouse for a second algorithm to 
verify the mask approach. Reason to focus first on skeletonization in 4D based on 
the Euler number and on cluster counting. I.e. the methods of Lobregt / Toriwaki [7, 
9] and Malandain [8]. The three 3D thinning algorithms had been compared and 
proven to be identical by exhaustive verification [5]. 

A way to verify the correct operation of a skeleton is to compare it with a second 
algorithm. However, this will not yield a "ground truth" as both algorithms can be 
wrong. A method we developed to verify 4D skeletons is to generate closed 
structures such as hollow balls and closed space curves, contaminate them with 
foreground noise, and check whether the skeletonization algorithm is able to find 
the structure again within the noise, without breaking the topology. See fig. 5. In 
which: a) e) originals, b) f) noise contaminated, c) g) skeletons found 
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Fig .5 .  Ver i fying algori thms by thinning noise contaminated images 

3 M e t h o d s  in 3D 

Before we start with Euler counting in 4D we will explain the procedure  in 3D. In 
the appl icat ion of  the Euler sum for topology checks of  objects,  one uses the fact 
that the Euler  number (N) can be calculated using the nodes (n), edges (e), and 
faces (f), that constitute a closed net surface around the object  With:  

N = n-e+f ( 1 ) 

The Euler number  of  fig. 6a is: N = 8 - I2 + 6 = 2. For fig. 6b, in which top and 
bot tom face are squeezed inward: N = 16 - 28 + 14 = 2. In fig. 6c, when the 
squeezing resulted in a single face in the middle of  the object: N = 12 - 24 + 13 = 
1, and when the squeezing resulted in a break-through (a tunnel): N = 12 - 24 + 
12 = 0. Fig. 6c shows that combining objects does not change the Euler  number,  
but that each tunnel leaves two faces out. Consequently the Euler number  N = -2. 
For  fig. 6d, the Euler numbers are N = 0 for one tunnel and N = - 4 if the left and 
right faces on the cube are squeezed inwards to force a second tunnel through the 
centre. This squeezing breaks 4 faces. Objects  with intersect ing tunnels can be 
continuously transformed into objects with tunnels that do not intersect. See fig. 7, 
that makes  clear that the second tunnel that intersects the first are actual ly two 
extra tunnels from a topological  viewpoint.  

a) b) c) 
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d) 

Euler number for various net surfaces 

e) 

Fig.7. Continuous transformation of objects 

The Euler number can be used for a topology preservation check by taking a 3 N 
neighbourhood, assuming a net surface around the structure found in this 
neighbourhood and counting the Euler number before and after the removal of the 
central voxel. If the number changes the central voxel was a 6-connected skeleton 
point and should remain. Fig. 8a shows an example of  a structure in a 33 
neighbourhood with N = 2. After the removal of the central voxel (fig. 8b), N = 0. 

Note that only the edges, nodes and faces directly adjacent to the central voxel 
need to be inspected for the change detection. This was used by Lobregt [7] in 
1981 for his 3D skeleton, where the Euler number was calculated by adding the 8 
contributions, looked up in 8 LUTs using the 2 x 2 x 2 neighbourhoods around the 
central voxel as input. 

Fig.8. Effect of Euler count in a 3 x 3 x 3 neighbourhood 
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Figs. 8c and 8d show an object with and without central voxel present for which 
the Euler count remains N = 2 for both situations. In fact from the viewpoint of the 
net surface, there are now two touching objects (clusters) instead of one. This was 
already remarked by Toriwaki in 1982 [9]. He introduced a second rule: Apart from 
the Euler number, the number of clusters in an 18 connected environment should 
also not change. Verwer [10] used in 1991 the Lobregt LUTs and a LUT to store all 
possible clusters in the �92 environment for a fast implementation of the 
3D skeleton. 

Fig. 9 shows the effect of the two rules. In fig. 9a,b a 6 connected foreground 
surface is broken by a 26 connected background curve when the central voxel 
changes value. In fig.s 9c,d a 6 connected space curve is split by a 26 connected 
surface when the central voxel changes value. In fig. 9a and 9b the Euler number 
does not change, however the number of 6-connected foreground clusters change 
within the 18-connected environment. Beware that the voxel marked with a * does 
not belong to the 18-connected environment. Fig. 8c and 8d show that the cluster 
count rule preserves also 6 connected foreground space curves. 

Fig.9. The Lobregt / Toriwaki skeleton breakpoint rules 

The algorithm of Malandain [8] published in 1992 for a 26-connected skeleton is 
entirely based on cluster counting: 

A voxel may be removed if: 

�9 The number of 6 connected background clusters connected to the central voxel 
= l, before removal of the central voxel. 

and: 

�9 The number of 26-connected foreground clusters connected to the central voxel 
= 1, after the removal of the central voxel, checked in the full 18 connected 
neighbourhood. 

Transforming this rule with logic inversion gives: 

A voxel must stay if: 

�9 The number of 6 connected background clusters connected to the central voxel 
:x 1, before removal of the central voxel. 

or-- 
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�9 The number of 26-connected foreground clusters connected to the central voxel 
1, after the removal of the central voxel, checked in the full 18 connected 

neighbourhood. 

It can be easily seen in fig. 9 that the first rule preserves the 26-connected surfaces 
and the second rule preserves the 26-connected space curves. 

Jonker [4, 5, 6] described thinning as a hit-or-miss operation with a large set of 
masks. For 3D breakpoint detection this set of mask could be split in a subset that 
preserves the surfaces and a subset that preserves the space curves. The surface 
subset being generated by generating and intersecting all possible 26 connected 
foreground surfaces with all possible 6-connected background space curves. The 
space curve subset being generated by generating and intersecting all possible 26 
connected space curves and intersecting them with all possible 6 connected 
background surfaces. Fig. 9d can be seen as an example of a surface preserving 
mask. Fig. 9b can be seen as an example of a space curve preserving mask. By 
exhaustive comparison it was proven that the three methods described above are 
equal [5, 6]. Interpreting the rules and figs. above makes clear why this is so. 

4 Extending to 4D 

The most uncomplicated rules in 3D are the cluster count rules. Are they 
extendible? 

From the 3D procedure we know that skeletonization in 4D is: 

Thinning hypervolumes to (curved) volumes, to (curved) surfaces, to space curves, 
and finally to points. The skeletonization either stops at a closed object structure or 
due to some endpoint condition. 

From the mask sets approach in 3D we learn that we can make 4D sets by: 

�9 Intersecting 32 connected curved volumes with 8 connected space curves. 

�9 Intersecting 64 connected surfaces with 8 connected surfaces. 

�9 Intersecting 80 connected space curves with 8 connected volumes. 

It can be envisioned that cluster counting makes sense for the first and second 
situation. In both cases the central pixel prevents forming the junction of two 
clusters to one, i.e. perforate the volume with a curve. However, the second 
situation is not so obvious. Reason to look again at the Euler number for higher 
dimensions. 

The Euler number for simple separating contours (= net surface in 3D), is [1]: 

N = 1 - (-1) dimensi~ (2) 

The Euler number calculation per dimensions is: 

1D: N = n(odes) 
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2D: N = n - e + f(aces) 

4D: N = n - e + f - v(olumes) 

5D: N = n - e + f - v + h(ypervolumes)  (3)  

In the previous section it was shown that tunnels through objects in 3D decrease N 
by 2. (2 faces less) And each tunnel is assumed not to cross another tunnel. If  so, 
actually two extra  tunnels are made instead of  one and the contribution of  N = -4. 
In 1D and 2D there are no tunnels, in 3D only one type, in 4D there are two types 
of  tunnels: a tunnel with intrinsic dimension of  1, and a tunnel with an intrinsic 
dimension of  2. In 5D there are 3 types of  tunnels (1D, 2D and 3D). For  both type 
of  tunnels, dri l l ing in 4D removes two volumes and two simple net surfaces of  the 
third d imension are merged to one. This makes  the contribution N + 2 - 2 = N. So 
the Euler  number  of  a separating volume in 4D will  a lways be 0. No matter  what  
the ob jec t  looks  like. Dr i l l ing  a 1D or 3D tunnel in a 5D object ,  removes  2 
hypervolumes  and merges two 4D net surfaces, contributing: N - 2 + 0 = N - 2. 
Dril l ing a 2D tunnel in a 5D object  is done by taking a 5D object  with a 1D tunnel 
(N-2), and stretch it, bend it and then close two of  the sides. This destroys the 1D 
tunnel, contributing to the Euler sum: N - 2 + 4 = N + 2. Concluding, in 5D: 

N = 2 - 2 * t l D  + 2 * t 2 D - 2 * t 3 D  (4) 

It is poss ible  to convert  a 4D object  to a 5D space by extending the object  over  
one dimension.  E.g. extending from 2D to 3D; a unit square can be extended to a 
unit cube. Pract ical ly this can be done by placing the 34 neighbourhood into a 35 
neighbourhood and filling in the extra fifth dimension with zeros. Just as in the 3D 
case the Euler  number can be calculated by adding the contributions of  16, 24 sub 
neigbbourhoods of the 34 neighbourhood,  by way of  a Look-Up-Table  (with 65536 
entries).  The Euler  number can change due to three different  causes,  see (4): 1D 
tunnels,  2D tunnels or 3D tunnels. However ,  due to the fact that 4D objects  are 
used in a 5D world 3D tunnels do not exist and (4) degenerates to: 

N = 2 - 2 * t l D  + 2 * t 2 D  (5) 

A 4D skeleton can now be made by obeying the fol lowing rules. A point  may be 
deleted if: 

�9 The number  of  foreground clusters does not change (in the 32 connec ted  
environment) .  

and 

�9 The number  of  background  clusters does not change (in the 80 connec ted  
environment) .  

and 

�9 The Euler number does not change. 

The first condi t ion preserves the space curves (intrinsic d imension 1). The second 
condi t ion  prese rves  the curved volumes  ( intr insic  d imens ion  o f  3). The last  
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condition preserves the curved surfaces (intrinsic dimension of 2), together with 
the first two conditions. The proper operation of the 4D skeleton has been made 
evident by testing it with the 4D equivalent of the 3D noise contaminated test 
images as introduced in section 2 and shown in fig. 5. The change of the 5D Euler 
number applied to 4D space is a mixture of three events, 1D tunnels, 2D tunnels or 
a change of clusters. If  the number of background clusters do not change, the 
number of 2D tunnels does not change. Consequently, if the number of clusters 
from foreground and background do not change, the Euler number change indicates 
a change in 1D tunnels within the 4D object. The Euler sum truly applied to 5D 
objects in a 5D world counts also the possible 3D tunnels. Foreground cluster 
counting and background cluster counting is not enough now, to detect the cause of 
change in the Euler sum. Consequently, as foreground cluster counting and 
background cluster counting is all we can do in any dimension, the Euler/cluster 
count approach is only applicable in dimension 3 and (with a trick) in dimension 4. 
The 4 tn dimension is the limit. 

Table 1 gives speed figures of the Euler/cluster count method in 3D and 4D. In C 
with LUTs on a Sparc 1+ on 32 N noise contaminated testimages for the first 
iteration only. 

Tabel  1. Speed indication in seconds of Euler/cluster count method for 3D and 4D. 

solid sphere 

hollow sphere 

space curve 

path finding 

3D 4D 

0.128 377.23 

0.148 330.00 

0.020 

0.137 

1.30 

858.47 

5 Conclusions 

The aim of this paper was to provide insight in skeletonization of 4 dimensional 
binary images. We illustrated its need and pointed on the fact that the Hit-or-Miss 
approach gives a handle to hardware implementation and hence fast skeletons. We 
treated the approache of three different 3D skeletons that yield identical results, 
and showed their similarities in the rules for the connectivity check. As proving the 
correctness of  a skeleton is quite cumbersome especially in 4D space, we 
generated 4D test images based on circular objects of various intrinsic dimension, 
such as 4D hollow hyper balls, circles, etc. and contaminated them with foreground 
noise. We extended the 3D Euler count & cluster count method to 4D. As the Euler 
sum in 4D is always 0, we solved this by embedding 4D objects in a 5D space to 
calculate the 5D Euler number. The 5D Euler number changes due to 3 events: 1D 
tunnels, 2D tunnels and 3D tunnels. As the latter does not occur in 4D objects, 
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together  with a foreground and a background cluster count, the number of  equations 
is equal to the number of  unknowns, and a breakpoint  change can be detected. This 
ind ica tes ,  however ,  that  making  ske le tons  in this  way is l imi ted  to the  4 ~a 
dimension.  
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