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Abs t rac t .  The concept of strictness of morphological operators is dis- 
cussed, and it is shown that the ordinary morphological operators have 
extreme strictness which leads to sensitivity to noise and digital artifacts. 
Based on this observation new morphological operators that generalize 
the ordinary morphological operators, are defined. The generalized op- 
erators have controllable strictness and so excessive erosion and dilation 
may be prevented. Some properties of the generalized morphological op- 
erators are discussed, and it is shown that they may have a linear filter- 
ing interpretation. The paper concludes with some preliminary examples 
demonstrating the advantages of the generalized morphological opera- 
tors. 

1 I n t r o d u c t i o n  

Computerized representation of maps and line-drawings enables computer aided 
design and facilitates efficient updating for urban development, architecture, land 
use management,  and similar disciplines. The conversion of printed maps into 
computerized data bases is an enormous task since the process requires scan- 
ning and analysis of extremely large volumes of data. Therefore, automation of 
the conversion process is essential. Even though substantial research and devel- 
opment efforts have been devoted to map and line-drawings conversion [5, 3], 
the problem is still unresolved. The problem has become more important  with 
the development of advanced CAD and GIS tools, which lead to a situation in 
which the processing possibilities are much more progressed than the data input 
facilities. 

Since directional information has a very strong meaning in line-drawing im- 
ages, the processing of line-drawing images may be performed by decomposing 
the input image into directional edge-planes, and then using directional mor- 
phological operators for the processing of these planes [7, 6]. Directional mor- 
phological operators could be classified as a subset of the general morphological 
operators, in which the morphological kernel is non-isotropic. When a fine selec- 
tivity of the directional morphological operators is required, a large morpholog- 
ical kernel (or successive application of small kernels) may be required [1, 2]. In 
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such cases effects of digital artifacts and noise may damage the expected results 
due to extreme strictness of the ordinary morphological operators. 

In this work it is suggested to define new morphological operators that  gen- 
eralize the ordinary morphological operators, and so to achieve control over their 
strictness. By controlling the strictness of the morphological operators it is pos- 
sible to improve their resistivity to noise and digital artifacts, and so to prevent 
excessive erosion or dilation even when large morphological kernels are used. 

2 Generalized Morphological Operators 

2.1 T h e  S t r i c t n e s s  o f  M o r p h o l o g i c a l  O p e r a t o r s  

Given two sets A, B C Z N, the morphological dilation and morphological erosion 
of A by B are defined [4] respectively by: 

A @ B = - {  x I 3 a e A ,  b E B  : x = a + b } =  U ( B ) a  (1) 
aEA 

A O B = { x  [ V b E B  3 a E A  : x = a - b } =  N ( A ) _ b  (2) 
bEB 

where in these definitions(B)a = { x  [ 3 b e B  : x = a + b } .  
When comparing these definitions it is possible to observe that they differ by 

the sign in the condition, and by the strictness of the condition. While the sign 
difference in the condition only causes a reflection of the kernel set, the strict- 
ness difference is what determines their nature. The strictness in the dilation 
definition is very loose (3) and so elements are added to the dilated result. The 
strictness in the erosion definition is very strict (V) and so elements are removed 
from the eroded result. Based on this observation it is possible to generalize 
the morphological operators by controlling the strictness of the operators with 
higher flexibility. 

2.2 G e n e r a l i z e d  D i l a t i on  

In order to develop the generalized dilation definition, a different interpretation 
for dilation is considered. 

P r o p o s i t i o n l .  The dilation of A by B may be obtained as the union of all the 
possible shifts for which the reflected and shifted B intersects A : 

A |  I (Af7(/~) . ) r  (3) 

where b is the refection of B given by: [3 =_ {x I 3~ e B : x = - b }  . 

Prvof. By developing the right, side of the proposition we get: 

{x [ ( aN( /3 )~ : ) :~O}={x  I 3 a E A ,  b e B  : a = b + x }  
= { x  ] 3 a E A ,  b E B  : a = - b + x } = _ - A @ B  
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By using (3), the morphological dilation of A by B can be generalized by com- 
bining the size of the intersection into the dilation process. In that sense, a given 
shift is included in the dilation of A only if the intersection between A and the 
reflected and shifted B is big enough. The obtained advantage of the generalized 
dilation is the elimination of excessive dilation caused by small intersections. 
That is, the mass of an intersection should be big enough in order to cause a 
change. 

Def in i t lon2.  The generalized dilation of A by B with strictness s is defined 
by: 

A ~ B - {x I # ( A n  (~)~) >__ s} ; s e [1, min(#A, #B)]  (4) 

where the symbol # denotes the cardinatity of a set. 

It should be noted that since Vx : # (A N (/3)~) < m i n ( # A , # B ) ,  the 
strictness s is bounded by min(#A, # B )  . 

P r o p o s l t i o n 3 .  The ordinary dilation is obtained as a special case of the gen- 
eralized dilation when s = 1 : 

1 
A ~ B = A @ B  (5) 

Proof. Results directly from the definition of the generalized dilation, since the 
cardinality of (A Q (/~)~) is greater or equal to one if and only if the intersection 
between A and (B)~ is not empty. 

P r o p o s i t i o n 4 .  The generalized dilation is decreasing with respect to the strict- 
h e s s  s : 

s l  s2  
A @ B C A ~ B  ~ s l > s 2  (6) 

Proof. According the definition of the generalized dilation, when sl >_ s2 it 
follows that: 

s l  
Vx e A @ B : # ( A n  (~).)  > sl > s2 

s2 s2 
and so x E A ~ B .  However, there may exist x G A ~ B such that sl  > 

s l  
#(A n (B)~) _> s2 and so x r A �9 B. 

Coro l la ry5 .  The generalized dilation results in a subset of the ordinary dila- 
tion: 

A ~ B C _ A @ B  (7) 

L e m m a 6 .  The cardinality of the intersection between a set and a reflected and 
shifted set remains the same when reflecting and shifting the first set instead of 
the second set: 

# ( A n  (B)~) = # ( B  n (~i),) (8) 
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Proof. By developing the left side of the lemma we get: 

# ( A C I ( [ ~ ) ~ ) = # I a E A  I 3 b E B  : a = - b + x }  
= # { b e B  I 3 a E A  : b = - a + x } = # ( B f 3 ( . ~ . ) x )  

P r o p o s i t i o n 7 .  The generalized dilation is commutative: 

A ~ B = B ~ A  (9) 

Proof. Results directly from the definition of the generalized dilation, by using 
(8). 

2.3 G e n e r a l i z e d  Eros ion  

In order to develop the generalized erosion definition, a different interpretation 
of erosion is considered. 

P r o p o s i t i o n 8 .  The erosion of A by B may be obtained as the union of all the 
possible shifts for which the shiftM B does not intersect A c : 

A O B : I x  ] (A c c l ( B ) ~ ) = 0 }  (10) 

Proof By developing the left side of the proposition based on (3) and the duality 
between erosion and dilation we get: 

A O B = ( A  c |  I ( A c M ( B ) ~ ) # 0 }  r 
= { x  I ( A C M ( B ) x ) = 0 }  

By using (10) tile morphological erosion of A by B can be generalized by includ- 
ing in the erosion of A only such shifts for which the intersection between A r 
and the shifted B is small enough. The obtained advantage of the generalized 
erosion is the elimination of excessive erosion caused by small intrusions. That  
is, the mass of an intersection should be big enough in order to cause a change. 

D e f i n i t i o n 9 .  The generalized erosion of A by B with strictness s is defined by: 

A ( ~ B _ = { x  I # (  A c M ( B ) x ) < s }  ; s E [ 1 , # B ]  (11) 

where it is assmned that: # A  < oo . 

It should be noted that since it is assumed that  # A  < oo then Vz : # ( A  c n 
(B),~) _< # B ,  and so the strictness s is bounded by # B .  

P r o p o s i t i o n  10. The ordinary erosion is obtained as a special case of the gen- 
eralized erosion when s = 1 : 

1 
A O B = A | B (12) 
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Proof. Results directly from the definition of the generalized erosion, since the 
cardinality of (A efl (B)x) is less than one if and only if the intersection between 
A e and (B)x is empty. 

P r o p o s i t i o n l l .  The generalized erosion is increasing with respect to the strict- 
h e s s  8 : 

s l  s2 
A G B C A ~ g B  r s l < s 2  (13) 

Proof. According the definition of the generalized erosion, when sl  < s2 it fol- 
lows that: 

s l  
V z 6 A @ B  : # ( A  c f l ( s ) ~ ) < s l < s 2  

s2 s2 
and so z E A @ B .  However, there may exist z E A e B such that sl  < 

s l  
#(A c fq(B)=) < s2 and so x • A @ B. 

Coro l la ry  12. The generalized erosion results in a superset of the ordinary ero- 
sion: 

A e B D _ A @ B  (14) 

Ordinary erosion and dilation are dual in a sense that the morphological 
erosion of A by B can be obtained by dilating the complement of A with the 
reflected B, and then taking the complement of the result. This property remains 
valid for the generalized operators. 

P ropos i t i on13 .  The generalized dilation and erosion are dual in the same 
sense that e~ists for the ordinary dilation and erosion: 

A 6 B = (A e ~/3)~ (15) 

Proof. By developing the right side of the proposition according to the general- 
ized dilation definition we get: 

(A c ~ /3 ) *  = Ix I # (A*  13 (B)=) _> s} c 

= (= I # (A  n (B) . )  < s} = A ~3 B 

2.4 Linear  Fi l ter ing I n t e r p r e t a t i o n  

Given two images A__ = {A(k, i)}~t=_ M and/3 - {B__(k, l)}~,t=_ e where P < M ,  
the linear filtering of A_ by 13 is given by the linear convolution between them: 
{A(k, l) * B_(k, l)}~l=_ M . The linear convolution between A_(k, 1) and B(k, !) is 
defined by: 

P P 

A ( k , l ) , B ( k , l ) - -  E E B ( m , n ) A ( k - m , l - n )  (16) 
m = - P  n = - P  

where it is assumed that A(k, 1) is zero-padded so that A(k, i) = 0 for each k, l 
that is not in the range [ -M,  M] . 
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D e f i n i t i o n l 4 .  The respective set A of the binary image A -- {A(k,  l)}kM, l = _ M  

is defined by: 
A - - { ( k , l )  [ k, l e [ - M , M ] ,  A ( k , i ) = l }  (17) 

The binary image A is called the respective image of the set A . 

L e m m a  15. Given two sets A, B C Z 2 , the cardinality of the intersection be- 
tween A and the reflected B shifted by (k, l)  may be obtained as the value at 
location (k, l) of the linear convolution between the respective images A and B : 

# ( A  Cl (/3)(k,0) = A(k, l) * B(k,  1) (18) 

Proof. By developing the right side of the lemma according to the linear convo- 
lution definition we get: 

A(k, l) �9 l) e = Y'~m=-P Y~.=-P B..B_(m, n)A_(k - m, 1 - n) 
__ ~ ' ~ P + k  P+I  - B__(-m + k , - n  + l )A(m,  n) 
= ~(- ,~+k,- ,+Z)eB A(m, n) = ~(-~,-)~(B)(k,, A(m, n) 

= # ( A  Cl (/~)(k,t)) 

P r o p o s i t i o n  16. Given two sets A, B C Z 2 , the generalized morphological di- 
lation (erosion) of A by B may be obtained by thresholding the linear convolution 
between the respective binary images A_ and B__ : 

A ~ B = { ( k , l )  I A ( k , l ) . B _ ( k , l ) > s }  (19) 

A O B = { ( k , I )  I A~( k , l ) * ~ ( k , l ) <  s} (20) 

Proof. Results directly from the definition of the generalized dilation (erosion), 
by using (18). 

Following the last proposition, it is possible to observe that the non-linear 
nature of morphological operators is derived by a threshold operation, where for 
the ordinary morphological operators the threshold is one, and for the generalized 
morphological operators the threshold is higher. It should be noted that the 
properties in this subsection are discussed for sets in Z 2 in order to simplify the 
transcription of indexes. These properties can be easily extended to sets in Z N. 

2.5 E x t e n d e d  D u a l i t y  P r o p o s i t i o n  

The generalized dilation of A by B may be interpreted as the union of all the 
possible shifts for which the intersection between A and the reflected and shifted 
B is big enough. The following proposition states that  the same interpretation 
may be applied to the generalized erosion when using the reflection of the set B 
and the complement of the strictness s. 

D e f i n i t i o n l T .  The complement of the strictness s relative to the set B is de- 
fined by: 

s--ff = # B  - s -t- 1 (21) 
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Lemma 18. The generalized erosion of A by B with strictness s may be obtained 
by: 

a O B = { x  I #(an(B)~)_>~-~} ; s E [ 1 , # B ]  (22) 

Proof. By developing the left side of the lemma according to the generalized 
erosion definition, we get: 

A O B = { x  [ #(A ~ N ( s ) ~ ) < s } = { x  I # ( A N ( B ) ~ ) > # B - s + I }  
= { ~  I # (A N (B),) >_ g~} 

Propos i t ion  19. The extended dilation and erosion may be obtained from each 
other by reflecting the kernel set and complementing the strictness relative to the 
kernel set: 

A ~ B = a ~ / 3  (23) 

A O B = a ~ / 3  (24) 

where s E [1, #B] . 

Proof. Results directly from (22) when using the fact that the complement of 
the strictness ~'~ relative to B is s. 

Corol lary20.  When B is symmetric to reflection (that is B = [~), the dilation 
and erosion of A by B give identical results when using the strictness: s = 
(#B  + 1)/2.  

Following the last proposition, and the fact that the generalized dilation (ero- 
sion) is decreasing (increasing) with respect to the strictness s, it is possible to 
observe that the generalized dilation (erosion) is turned into erosion (dilation) 
when increasing the strictness s (assuming that the kernel is symmetric to re- 
flection). That is, a generalized dilation (erosion) which is too strict is turned 
into erosion (dilation). 

An example to generalized dilation is presented in Figure 1, where the original 
image is presented at the top left, and following it towards the bottom right 
are the resulting images when performing generalized dilation with strictness of 
1-9 respectively. The light gray background in tile resulting images represents 
the original image. The morphological kernel that is used in this example is a 
3 x 3 square with the origin at its center. Since the kernel in that example is 
symmetric to reflection, the presented results are also the results obtained for 
generalized erosion with strictness of 9-1 respectively. As could be observed, 
while in ordinary morphology it is possible to get only the edges of the sequence 
in Figure 1, in generalized morphology it is possible to get any element of the 
sequence by selecting the required strictness. It is also possible to observe that 
the generalized dilation and erosion are essentially the same, and differ only by 
the degree of strictness and by a reflection of the kernel. 

Based on the extended duality proposition, and the fact that the generalized 
dilation is commutative, it is possible to construct a proposition concerning the 
exchange between the arguments of a generalized erosion operation. 
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Fig. 1. Demonstration of generalized morphological operations. 

P ropos i t ion21 .  It is possible to exchange the arguments of a generalized ero- 
sion operation provided that the arguments are reflected, and that the strictness 
is updated respectively: 

# A - # B + s  
A b B =  B e A (25) 

where s G [1,#B] . 

Proof. By developing the left side of the proposition according to the extended 
duality proposition, and using the tact that the generalized dilation is commu- 
tative, we get: 

s"~ # B - s + l  
A6B=Ae =[  A 

# A - ( # B - s + I ) + I  ~ ~ # A - # B + .  

= B  0 A = B  0 A 

3 C o n c l u s i o n  

This section presents some preliminary results obtained by using the generalized 
morphological operators. Using the generalized operations in existing algorithms 
with strictness greater than one, may increase the the resistivity of the algorithms 
to noise and small intrusions. The example in Figure 2 demonstrates a simple 
skeletonization algorithm [9] where Figure 2-a presents the original image, Figure 
2-b presents results obtained by tile algorithm when using ordinary morphologi- 
cal operators, and Figure 2-c presents the results obtained when using the same 
algorithm with the generalized morphological operators and strictness greater 
than one. As can be observed, the results obtained when using the generalized 
operators are less influenced by the noise on the shape. 

Figure 3 presents the results of an ordinary close and a generalized close [8] 
that is based on the generalized morphological operators, where a directional 
kernel (in direction of 450 is used). The original 'image is presented in Figure 
3-a, the result of an ordinary close is presented in Figure 3-b, and the result of 
a generalized close with strictness greater than one is presented in Figure 3-c. 
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Fig. 2. Demonstration of skeletonization based on generalized operators. 

As could be observed the generalized close operation managed to connect the 
dashed lines in direction of 45 o without influencing the horizontal dashed lines. 

J i .  
I t l l  "i 

I I I / 1  I ,  
I__.lIZ. ~ f l  

_ 

I I I , / I I  

1 

[a} tbl IC| 

Fig. 3. Demonstration of generalized close with extreme and relaxed strictness. 
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