
Two Different Approaches for Cost-Efficient
Viterbi Parsing with Error Correction*

Juan C. Amengual 1 and Enrique Vidal 2

a Unidad Predepartamental de Informhtica
Universidad Jaume I, 12071 Castell6n, SPAIN

Depaxtamento de Sistemas Inform~ticos y Computaci6n
Universidad Polit6cnica de Valencia, 46071 Valencia, SPAIN

e-mail: j c a m e n ~ i n f . u j i . e s e v i d a l ~ i t i . u p v . e s

A b s t r a c t . The problem of Error-Correcting Parsing (ECP) using a
complete error model and a Finite State Machine (FSM) is examined.
This problem arises in many areas of Linguistic and Speech Process-
ing, and is of paramount importance in Syntactical Pattern Recognition,
where data is generally distorted or noisy. The Viterbi algorithm can
be easily extended to perform ECP using a trellis diagram that has the
same number of states as that of the FSM. However, the computational
complexity of the ECP process could be prohibitive for real-time pattern
recognition tasks. Two different approaches to perform an efficient imple-
mentation of such a parsing are suggested. The first one is an adaptation
of an extension of the Viterbi algorithm proposed in the fiterature. In the
second one, an algorithm based on a depth-first ("topological") sort of
the states of the FSM, which leads to an efficient processing of the dele-
tion transitions of the underlying error model, is proposed. Experiments
are described with results assessing the relative merits of the different
techniques.

1 Introduction

Error-Correcting Parsing (ECP) techniques have been widely used in the field
of Syntactic Pat tern Recognition [7] [9] [14] in tasks such as Automat ic Speech
Recognition [16] and O C R [12]. The success of these techniques lies on their
intrinsic capacity to overcome the errors frequently produced in the representa-
tions of real-world pat terns acquired through a noisy and/or distorted channel.

Under the scheme of ECP, we assume tha t we have a structural model,
typically a (stochastic) Finite State Machine (FSM) associated to a Regular
Grammar , and an (stochastic) error-correcting model, typically a functionally
complete one, which takes insertions, substi tutions and deletions of symbols be-
longing to some alphabet s into account. E stands for the set of primitives
or features which uniquely characterice the given pat tern we aim to recognize.
Therefore, a string of symbols belonging to ~ represents the acquisition of a
given object through some device. The FSM stands for the set of different strings

* Work part ial ly supported by the Spanish CICYT under contract TIC93-0633-CO2-01.

31

which corresponds to the several ways the given object was acquired through this
device. Finally, the error model accounts for the errors likely to be produced in
the acquisition and/or feature extraction phases.

If no error-correcting model is given, the problem of recognition can be seen
as a problem of simple parsing. Given an input string of symbols, we have to
determine if this string belongs to the language generated by the FSM. In case
it belongs, then we classify the object associated to this input string as an
object modeled by the FSM. If the model is deterministic, this parsing is trivial.
Otherwise, the Viterbi algorithm [6] is used to solve this problem. The same
framework can be adopted for ECP, if an error-correcting model is provided, at
the expense of a higher computational cost. Nevertheless, this higher cost could
become prohibitive for real-time pattern recognition tasks.

In the next section we identify the computational problem posed by deletion
lransir In Sects. 3 and 4 it is shown how can this problem be efficiently
solved through two different approaches. In Sect. 5 we adapt the well known
Beam Search technique [11] to further accelerate the parsing process. Sect. 6
details the experiments that have been carried out to test the performance of
both approaches. Finally, Sect. 7 establishes some conclusions from the observed
results.

2 T h e C o m p u t a t i o n a l P r o b l e m P o s e d b y D e l e t i o n E r r o r
T r a n s i t i o n s

The problem of parsing with no error correction can be formulated as a search
for the "minimum cost" path through a trellis diagram (see Fig. 1) associated
to the FSM model and the given input string, a. The trellis diagram produced
by the Viterbi algorithm is a directed acyclic multistage graph, where each node
q~ corresponds to an state qj in a given time interval (or stage) k. The stage
k is associated with a symbol, ak, in the string to be parsed and every arc,
tk = (q~,qJ ~, stands for a transition between the state qi in stage k and the k + l /
state qj (it can be the same state) in stage k § 1 (next time interval).

The trellis diagram can be straightforwardly extended to parse errors pro-
duced by changing a symbol for another symbol and errors produced by inserting
a symbol before or after each symbol in the original string. In this way, an effi-
cient error-correcting parser, taking both, substitution and insertion errors, into
account can be implemented. This is due to the fact that such an extended trellis
diagram still has the shape of a directed acyclic multistage graph, and the prob-
lem of finding a minimum cost path through this kind of graphs is essentially
the problem solved by the Viterbi algorithm.

Now, we would like to extend this trellis diagram to parse also errors pro-
duced by deletion of one or more (consecutive) symbol(s) in the original string.
Unfortunately, the resulting trellis diagram will no longer have the shape of a
multistage graph since we have edges between the nodes belonging to the same
stage k. Nevertheless, if the FSM model has no cycles, then this problem could
be reduced to find a minimum cost path through a directed acyclic graph and,

32

<:> <:>

Fig. 1. Trellis with: a) Substitution error and proper FSM transitions b) Insertion
error transitions, c) Deletion error transitions in an acyclic FSM. d) Deletion error
transitions in a cyclic FSM

since the insertion and substitution transitions still fulfill the multistage graph
conditions, an efficient algorithm can be implemented as an extension of the
original Viterbi algorithm [2].

But if the model can be any FSM (associated to a general regular grammar)
possibly with cycles, then the problem reduces to that of finding a minimum cost
path through a general directed cyclic graph. In principle, finding a smallest cost
path through such a kind of graphs would be significantly more expensive than
the original Viterbi strategy.

3 S o l v i n g t h e P r o b l e m b y S c o r e O r d e r i n g

We present here an algorithm (EV2) based on a recurrence relation stated in [4].
In our notat ion this relation can be stated as follows:

C (q ~ + l) = r a i n
t

Vi fi 6 (qt) in s tage k

Vl in s tage k + 1

W i t ~ (q k + l , ~ + l) } (1) {C(q~) + (qk, qk+l) + I "

where:

1. C(qik) stands for the cost of the minimum cost path from any of the initial
states to state qi in stage k.

2. 6' stands for the inverse of the transition function, 5, of the FSM.
3. i z W(qk, qk+l) stands for the cost of the minimum cost transition that connects

state qi in stage k with state ql in stage k + 1.
4. ~(q~+l, q~k+t) stands for the cost of the minimum cost path that connects

state qt with state qj, both in stage k + 1.

This relation states that the minimum cost path to state j in stage k -4- 1,
C(~+1) , is the minimum cost of all the paths which involve a state qi (prede-
cessor of qz) in stage k and a state qt in stage k + 1. The properness of this
relation lies on the function (, since its computat ion yields, for all pair of states

33

OUTPUT

VAR

FSM ; (O , ;t : , 8 , I , F) , Q (l e t o f s t a t e s) , :s (i n p u t a l p h a b e t w i t h ~. t h e nu l l s ymbo l) ,

8 (t r a n l i t i o n f u n c t i o n) , I (s e t o f i n i t i a l i t a t e l) a n d F (l i t o f f i n a l e l a t e s) .

T ~ a r r ay~ [; ~ : F~ (c o l t o f I n m e r t i e n l , e u b l t i t u t i o n s e n d d~ le t i on l)

x = s t r i n g t o b e p a r s e d { h o l l y s t r i n g) .

f i n a l _ s c o r e :

C : a r r a y c ~ o f ~t; (m i n i m u m D O l t p a t h t o e a c h s t a t e in s t a g e k)

C ": a r r a y Q o f ~ ; { m i n i m u m D o l t p a t h t o e a c h s t a t e in = t a g s k+ l)

=: s y m b o l : (s y m b o l b e l o n g i n g t o t h e o o n l i d e r e d t r a n s i t i o n)

a : ~ ; c~ P M I N : ~ ; (B E A M S E A R C H)

BEGIN E V 2

C:= [~] ; C ' : = [~1 ;

q f I do Cq := O ; i ndV

f O r e a c h s y m b o l x i in t h e s t r i n g x do

PM|N := ~ ;

~qE Qdo

a : ~ Cq + T~ . , ;

I f (a r m ln (C 'q , PMIN + ~) t hen C 'q : = a ; PMIN : . r n | n (I . PMIN) ; end l f

~Z' Cl" E 8 (q) do (SUBST ITUT IONS)

(INSERT IONS)

a : = Cq § W(q , q ') § T , . ~ ; I f (a < r n l n (C 'q . , PMIN + cr t hen C 'q ' : x a ; PMIN :m ra l r l (l l , pa IN) ; e n d l f

end~ '

q : = F i n d _ r n i n i m u m (C ') ; (Apply O i j k s t r a)

~E q" ~ 5(q) do (DELET IONS)

a : = C ' q + W(q , q ') + T . x ;

I f (a < r n l n (C 'q , , Pa i n + =) t hen C 'q . : = a ; Pa IN :m m ln (a , PA IN) ; e n d l f

e n d V

e n d V

C := C "; C - := [~ } ;

i nd fo r

f i n a l s c o r e = i n i n (Cq) - - v . .

E N D E V 2

Fig. 2. The Algorithm EV2 developed from the recurrence relation in [4]

in the FSM, the cost of the minimum cost path that connects both of them. A
solution for computing the function ~ consists in directly applying the Dijkstra
algorithm [1]. Given that there is no deletion transition with a negative cost,
we can discard all transitions from a state to itself. Similarly, we can discard
transitions which reach an state that is actually part of the minimum cost path.
This is due to the fact that the minimum cost path between two states cannot
pass through another state twice. So, proceeding like Dijkstra we have to choose
as the next state in the minimum cost path, a state having the minimum accu-
mulated cost (score). Therefore, the states in the arrays (see Fig. 2) have to be
ordered by this score.

Fig. 2 shows the algorithmic strategy we developed from the recurrence rela-
tion in [4]. The computational cost of] Find_minimum]is IQI, in the worst ease.
But if the arrays are implemented as priority queues [1], then a log IQI average
cost can be expected. It is necessary to dynamically change the score (therefore
the position) of the states in the heap to carry out this implementation. This is
not really a problem if we take care of storing the pointer to each state in the
heap, so we are able to heapify the arrays from the position of the state whose
score has changed. So, the worst-case temporal complexity of this algorithm is
(~)(]Q]2.ix]) [3], expected (2)([Q]. max(log]Q], B).]x]) in the average case, if the

34

implementation of the arrays C and C' as priority queues is performed (]QI is
the number of states in the FSM, B is the maximum branching factor and I x] is
the number of symbols in the input string). Since this algorithm is intended for
classification purposes it is only needed the final score for the input string. As a
consequence, the spatial complexity is O(IQI).

4 S o l v i n g t h e P r o b l e m b y D e p t h - F i r s t O r d e r i n g

In this section, we propose an algorithm (EV1) based on a recurrence relation
which is inspired in previous ideas of [15] and [13] for ECP with acyclic FSM's.
This relation can be stated as follows:

�9 z j C(q~+l) = m i n {C(q~) + W(qik,q~+l) + Ww(qk+~,qk+l)}
u E 6t(ql) in s tage k

s

Vl E 6T(qi) in s tage k + 1

(2)

where:

1. C(q~), W(q~, q~+l) and 6' are as in (1).

2. 6 T stands for a generalization of function 6' which returns, for a given state
q, the whole set of states that are his "topological predecessors" in the FSM.

3. WT(q~+l, ~ + l) stands for the minimum cost path that connects state qz with
state qj, both in stage k + 1, and only involves states that are topological
predecessors of state qj in the FSM.
Observe that a "topological order" of the states in a FSM can only be prop-
erly defined for acyclic FSM's (as those considered in [15], [13], using ECGI
grammars). Therefore, the concept of "topological sort" has to be somewhat
adapted to cyclic FSM's as we subsequently see in this section.

W, l " It can be observed that the value for T(qk+l,qJk+l) will be 0, if qt and
qj are the same and there is no self-loop (a transition from a state to itself)
for state qj. In this case, this value will be greater than 0 when considering
self-loops but, then, the minimum cost for C (~ + l) will be given for the cost of

C(qD + ' qk+l)" Similarly, we can discard, as the minimum cost path, the
set of all the complete paths (which begin in state qi in stage k and end in state
qj in stage k + 1) which pass through some state twice. Note that this relation is
similar to the one proposed in [4]. Nevertheless, there are significant differences
among them.

The relation (2) states that the minimum cost path to state j in stage k + 1,
C (~ + l) , is the minimum cost of all the paths involving a state qi in stage k, a
transition from this state to some state qz in stage k + 1 (with qt belonging to
6 i (qk), so qi is a direct predecessor of qz) and one or more (consecutive) deletion
transitions (between states in stage k + 1) from each state qz which is a topological
predecessor of qj to this state (qj). Observe that, proceeding like this, one or more
consecutive deletion errors can be parsed for every time interval or stage k.

35

I N P U T s a m e s | E V 2 a l g o r i t h m .
O U T P U T l i m e a s E V 2 a l g o r i t h m .

V A N T o p o l o g i ~ l o : ~ o f 8 t a t s ;

C : a r r a Y O o f 9 I ; C ' : a r r a y Q o f 91; s : s y m b o l ;

a : r b a c k : b o o l e a n ; b s : s t a t e

B E G I N E V 1

T o p o l o g i c a l O : = P r e p r o c e s s (O) ; C : = [~ } : C ' : = | ~] ;

~ ' q ~ I d o C q : = O; e n d Y

f o r e a c h s y m b o l Xi i n t h e s t r i n g X d o

3 z : q G O d e

a ; = C q + Tx . . , ; I f (8 < C ' q) t h e n C ' q : = a e n d l f

_~ q " ~ 8 { q) d o (S U B S T I T U T I O N S)

a : = C q + W (q , q ') + T=,~; I f (a < C ' q ') t h e n C ' q " : = a e n d l f

~ d V

q : = F i r e t (T o p o l o g i C a l Q) ;

w h i l e q = L a s t (T o p o l o g J C a l Q) d o

b a c k : = F A L S E ; b s : = L a s t (T o p o I o g i c a l Q) ;

~Z q " • 8 (q) d o (D E L E T I O N S)

a : = C ' q § W (q . q ') § T = x ;

I f (a < C ' q -) t h e n C ' q " : = a ;

I f (q " < q) t h e n (a c y c l e h a s b e e n f o u n d)

b a c k : = T R U E :
I f (q " < b s) t h e n b e : = q ' ; e n d l f

s n d l f

e n d l f

e n d V
: = s | f (b a c k) t h e n q b e l s e q : = N e x t (T o p o l o g i c a l Q) ; e n d l f

e n d w h l l s

C : = C ' ; C ' : = [~] ;

e n d f o r
f i n a l s c o r e = n l i n (C)"

E N D E V 1

(l i s t o f s t a t e s t o p o l o g i c a l l y s o r t e d)

(s a m e a s E V 2 a l g o r i t h m)

r (t o p a s e c y c l e s i n t h e F S M)

(I N S E R T I O N S)

Fig. 3. The Algorithm EV1 developed from the ideas of [15], [13]

Therefore, the same results achieved by proceeding like Dijkstra can be achieved
by following a topological order of the states in the FSM to compute the values
for WT.

It should be argued that it is not possible to define any topological order for
the states in a cyclic FSM. But, even for cyclic FSM's it is possible for us to define
a kind of topological order which can serve to our purposes: the so-called Depth-
firs~ iopological sort [1]. Following this ordering we are able to detect the so-called
back-arcs [1]. These are the transitions which produce cycles in the FSM. This
kind of topological order is compatible with the parsing of deletion errors such
as it is established in (2). Once the states of the FSM have been sorted, the
only thing to worry about is to determine when a back-arc is parsed. But, with
a proper management of the list of states topologically sorted (implemented as
a hash table, for instance) the backtracks produced by these specific transitions
can be efficiently and adequately parsed, leading to an expecled average case
temporal complexity O(IQI.B.Ixl)[3] (see Fig. 3).

Assuming that the states in the FSM have been (depth-first) topologically
sorted in a preprocessing stage, full ECP can thus be implemented as a direct
generalization of the original Viterbi algorithm, as detailed in Fig. 3. The tem-
poral complexity of such a preprocessing stage is O([Q[.B) [1] [2], which could

36

be clearly negligible in many cases. Note that the worst-case time complexity is
still (D(IQI2.1xl) and the spatial complexity is O(IQI), as in EV2.

5 A S u b o p t i m a l S e a r c h S t r a t e g y

Despite the adequate temporal and spatial complexity of the original Viterbi
algorithm (both linear with IQ]), the size of the FSM models could be an im-
portant bottleneck for some real-time Pattern Recognition tasks. To this end,
a search technique - Beam Search [11] - could be easily integrated with the
parsing strategy of the Viterbi algorithm at the risk of obtaining suboptimal so-
lutions. Nevertheless some empirical results has shown the goodness of such an
approach [15] [16], in the sense of obtaining approximately optimal or the opti-
mal solutions with a drastical decrease in the temporal complexity of the original
algorithm. The temporal complexity becomes sublinear with IQI depending upon
a given parameter which measures the tradeoff between the efficiency and the
accuracy of the final maximum likelihood classification result: the beam width
(this parameter is named c~ in Fig. 2). The more this parameter decreases, the
less the accuracy of the search and the more the temporal complexity decreases
and vice versa.

Although the extension of the algorithm developed in Sect. 3 to perform
Beam Search is straightforward (see bold font in Fig. 2 - observe that, for the
sake of conciseness, the management of the set of states Q as a lisl of visited
stales is omitted in this figure -), this is not the case for the algorithm detailed
in Sect. 4. This is due to the fact that, using Beam Search, the list of states
topologically sorted is not fixed beforehand (it could change for each stage of the
parsing process). Therefore, we would have to dynamically (topologically) sort
the visited states before each deletion transitions parsing stage, thus leading to a
temporal complexity similar to that of the algorithm EV2 in the worst case. It is
worth exploring possible solutions for this problem, given the good performance
achieved by the algorithm EV1 (see next section for result details).

Although neither mentioned in [4] nor in Sect. 3, a preprocessing stage (using
the original Dijkstra algorithm) can be used in EV2 to compute and store the
values of ~, for all pair of states in the FSM. The temporal and spatial complexity
of such a stage is O(IQI2). Although this spatial complexity may be prohibitive
in many applications, this preprocessing stage would lead to a time-efficient
algorithm for ECP, with a worst-time complexity linear with IQI, which might be
very useful in some cases. There are basically two reasons for not implementing
this preprocessing in EV2. The first one is related with the fact that a quadratic
spatial complexity could be very inadequate for real.time tasks. The second one
is that this preprocessing is clearly incompatible with the Beam Search strategy.
Think about the fact that the minimum cost path which connects state qt with
state qj, both in stage k + 1, could pass through another state, namely qr, which
could have not been visited in this stage, so forcing to compute this preprocessing
before each deletion transitions parsing stage. Obviously this method is clearly
unapproachable for most of the tasks.

37

l e.o -

l 2 o -

4o -

2 o -

1 0 % d is t .

/
/

. /
: /

/ / /

Number o 1 r s t a t e s in I~'SM

~VI 1 ~ v 2 P o

........ ~ V 2

Fig .4 . Average computing times (in centiseconds) measured without Beam Search
(EV2PQ is the implementation of EV2 with priority queues)

6 E x p e r i m e n t s a n d R e s u l t s

Some experiments have been carried out in order to test the performance of
the previously presented algorithms. A set of six stochastic FSM's were used in
these experiments. These FSM's were automatically learned from 50,000 sen-
tences of a Language Learning and Understanding task recently proposed by
Feldman et al [5] called "Miniature Language Acquisition" (MLA). The learning
was performed by the k-TSI Grammatical Inference algorithm proposed in [8],
for increasing values of k from 2 to 7. This algorithm infers a (stochastic) FSM
that accepts the smallest k-Testable Language in the strict sense (k-TS lan-
guage) that contains the training set of sentences. Stochastic k-TS languages are
equivalent to the languages modeled by the well known N-GRAMS, with N = k.

The size of the inferred FSM's ranges from 26 to 8,133 states. The test set
consists of 1,000 sentences not previously used in the training phase. All of
these sentences do belong to each language respectively generated by each FSM.
However the test set was distorted using a distortion model proposed in [10] in
order to simulate the noise produced in the acquisition and/or feature extraction
phases, generally resulting in sentences no longer belonging to the different FSM
languages. Two different percentages of global distor/ioT, - evenly distributed
between each parameter of the distortion model - were used: 5% and 10%.
The error correction model was specified according to the distortion parameters
previously used.

Results, in terms of the observed average parsing time for each input string,
are shown in Figs. 4 and 5. Fig. 4 shows performance results without Beam
Search for EV1, EV2 and the implementation of EV2 with priority queues. The
results are shown only for a 10% of distortion; the results were exactly the same
for a 5% of distortion. Fig. 5 shows the observed results for the experiments
performed with Beam Search (for beam widths of 10, 20 and 40). It should be
reminded that only the two different implementations of EV2 algorithm incor-
porate the Beam Search strategy (see Sect. 5). Fig. 6 shows the percentage of
states visited with this suboptimal search strategy (the percentage achieved for

38

7-

I~V2

$'X, d i l l .

/ /Aiph |
/ .=

g

._~
g

A l p h a ~ ~ ~

==--::: --Z,~. ~ o
'. , , ' " ' . , , , , ,

N U l l l b e r o t ~1+1~ i l l ~ M

l o% d i l l .

I

A l p h a - - 4 0

.,.....-"

/ / A l pha * 2 0

.

A l p h a -- 1o

i~.+ ~ c . . , ~ m 4 + . . , ~ . . i ~ . m ~ . ~ ~ N m ~ . . ,

Num~r of + , . , + +n ~M

Fig. 5. Average computing times (in centiseconds) measured for Beam widths of 10,
20 and 40 (for the two different implementations of EV2 only)

r , t -

L ^iplmJ ~
- - - ^ I r + ~ + ~ ' I m , -

5 % d i s t . Ahpl,+4tl

:'... 7,,-

-- e 1 *,-
�9 . . ~ +0

Numb~ of +m~-~ +n l~Id

1 0 % d l a l .

" - ,

" o

\

N u m ~ ' r of +ta~e+ in FSM

Fig. 6. Rate of visited states for Beam widths of 10, 20 and 40

the two different implementations of EV2 was exactly the same, as it could be
expected).

The final results of maximum likelihood scoring for each sentence and for each
experiment were exactly the same for each algorithm. The 100% of the distorted
test sentences were recognized as belonging to the language generated by each
FSM (even using the lowest Beam width). The observed computing times for
the preprocessing stage in the algorithm EV1 were negligible with regard to the
parsing process (they ranged from less than a centisecond to 3 centiseconds). All
the experiments were carried out in an HP9000 Unix Workstation (Model 735)
performing 121 MIPS.

7 D i s c u s s i o n a n d C o n c l u s i o n s

Several techniques have been proposed to accelerate the process of Finite-State
Error-Correcting Parsing. This constitutes a core process in many applications
using Syntactic Pattern Recognition techniques. A significant improvement in
parsing speed is achieved by the proposed EV1 algorithm with regard to pre-
viously proposed techniques (see Fig. 4). Furthermore, a dramatic acceleration
is achieved by applying suboptimal techniques based on Beam-Search strategies

39

to the proposed algorithms (see Figs. 5 and 6). Next step is to study adequate
ways to apply Beam-Search to the new algori thm EV1.

Acknowledgement

The authors wish to thank to the anonymous referees their careful reading
and valuable comments.

References

1. Aho, A.V., Hopcroft, J.E., Ullman, J.D.: Data Structures and Algorithms. Addison-
Wesley Publishing Company (1983)

2. Amengual, J.C., Vidal, E.: Una extensi6n del Algoritmo de Viterbi para el Ans
Sints Corrector de Errores (ASCE) sobre Grams ECGI mediante Bds-
queda en Haz. Technical Report, DSIC-II/3/94. Depto. de Sistemas Informs
y Computaci6n. Universidad Polit@cnica de Valencia Spain (1994)

3. Amengual, J.C.,Vidal, E.: Fast Viterbi Decoding with Error Correction. Preprints
of the VI Spanish Symposium on Pattern Recognition and Image Analysis. Edited
by A. Calvo and R. Medina. Cordoba, Spain ~3-7 April 1995) 218-226

4. Bouloutas, A., Hart, G.W., Schwartz, M.: Two Extensions of the Viterbi Algorithm.
IEEE Trans. on Information Theory, Vol. 37 no. 2 (March 1991) 430-436

5. Feldman, J.A., Lakoff, G., Stolcke, A., Weber, S.H.: Miniature Language Acquisiti-
on: A touchstone for cognitive science. Technical Report, TR-90-009. International
Computer Science Institute. Berkeley California (April 1990)

6. Forney, G.D.:The Viterbi algorithm. Proc. IEEE, vol. 61 ~973) 268-278
7. Fu, K.S.: Syntactic Pattern Recognition and Applications. Prentice Hall (1982)
8. Garcla ,P.,Vidal, E.: Inference of k-testable languages in the strict sense and ap-

plication to Syntactic Pattern Recognition. IEEE Trans. Pattern Analysis and
Machine Intelligence, Vol. PAMI-12 no. 9 (September 1990) 920-925

9. Gonzalez, R.C.,Thomason, M.G.: Syntactic Pattern Recognition. An Introduction.
Addison-Wesley Pub. Co., Advanced Book Program Reading Massachusetts (1978)

10. Hunt, M.J.: Evaluating the performance of connected-word speech recognition sys-
tems. Proceedings of the ICASSP (1988) 457-460

11. Lowerre, B.T.: The Harpy Speech Recognition System. Internal Report. Carnegie-
Mellon University (1976)

12. Lucas, S., Vidal, E., Amiri, A., Hanlon, S., Amengual, J.C.: A Comparison of Syntac-
tic and Statistical Techniques for Off-Line OCR. In Grammatical Inference and Ap-
plications. R.C. Carrasco and J. Oncina (eds.). LNCS 862. Springer-Verlag (1994)
168-179

13. H. Rulot, H.: ECGI. Un algoritmo de Inferencia Gramatical mediante Correcci6n
de Errores. Phd Dissertation. Universidad de Valencia (1992)

14. Thomason, M.G.: Errors in regular languages. IEEE Trans. Comput., vol. C-23 no.
6 (June 1974) 597-602

15. Tort6, F.: Estudio de alternativas en la reducci6n de la complejidad del Algoritmo
de Reconocimiento basado en el m@todo ECGI. Proyecto Fin de Carrera. Facultad
de Informs UPV. Valencia (1989)

16. Tort6, F., Vidal, E., Rulot, H.: Fast and .~ccurate Speaker Independent Speech Re-
cognition using structural models learnt by the ECGI Algorithm. Signal Processing
V Theories and Applications. Elsevier Science Publishers (1990)

