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Abstract. Structural analysis and description depend on the topolog-
ical structure of the shape, and therefore, they are sensitive to discon-
tinuous transformations which change the topology of the shape. In this
paper, we give a complete analysis of the a priori effects of some com-
monly occurring discontinuous transformations. Some systematic trans-
formation laws have been obtained based on the shape description in
terms of quasi-convexity/concavity and guantized directional features.
We mention some applications of the analysis.

1 Introduction

Shape description has been an important research subject in image analysis,
computer graphics, and pattern recognition. The criteria and feature selection
for shape description depend on the particular applications. In particular, hand-
writing recognition has been a main theme in both theory and practice of pattern
recognition. A prime difficulty of handwriting recognition is the variety of shape
deformations and it leads to some unique requirements for the shape description
as follows:

— The shape deformations of handwritten characters are elastic, highly nonlin-
ear, and therefore, difficult to analyze. For describing such complex objects,
some global, qualitative, structural features are appropriate rather than lo-
cal, quantitative descriptions based on some analytical or statistical shape
models.

— Such discontinuous deformations as caused by stroke connections are unique
to handwritten characters. The shape description must be robust against
and accommodate such deformations so that various deformed patterns can
be represented by a small number of classes.

Throughout more than a quarter of a century of researches, it has been found
that such features as quasi-topological features (convexity, concavity, and loop),
quantized directional features, and singularities (branch points and crossings)
are effective and powerful for the shape description of handwritten characters.
Based on this observation, Nishida and Mori [5], Nishida [1], [2] presented a
clear, rigorous method for structural description and feature extraction of thin-
line pictures in terms of global, qualitative features. Shapes can be described
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by a few components along with rich features and relations among components,
and the description is robust against certain types of continuous deformation.

Exploring methods for shape description and recognition robust against such
deformations as caused by stroke connections has been a challenging problem.
In order to overcome the difficulties in handwriting recognition, there have been
some works conducted for analyzing and modeling the shape deformation of
unconstrained handwritten characters. The deformations can be generalized into
the two types of transformations as follows:

T1: concatenating two end points of curve components by moving them slightly
so that the two points coincide (Fig. 2).

T2: connecting two end points of curve components with an additional curve
(Fig. 3).

These deformations are discontinuous and change the topological structure of
the shape completely. Structural shape descriptions are, in general, based on
the topological structure of the shape, and we need to address these types of
shape transformations in order to explore methods for shape description and
recognition robust against such deformations as caused by stroke connections.
A first step for overcoming the difficulties is to carry out a systematic, com-
plete analysis of the a priori effects of these commonly occurring discontinuous
transformations, leading to a small, tractable number of distinct cases. Once
we have a complete, ¢ priori knowledge of all possible cases, we can analyze
all instances satisfying certain realistic conditions in a unified, systematic way
without resorting to heuristics.

This paper is organized as follows: In Section 2, we mention the outline of
the structural analysis of curves. In Section 3, we give a complete analysis of the
a priori effects of commonly occurring discontinuous transformations T1 and
T2. In Section 4, we describe some applications of the analysis. Section 5 is the
conclusion.

2 Structural Analysis of Curves

In this section, we review the structural analysis and description of curves by
2N-directional features (IV is a natural number) and quasi-convexity/concavity.
When the curve has singular points, whose order is three or more, the curve is
transformed into components which are topologically equivalent to line segments
or circles by singular point decomposition [5]. Therefore, we assume that the
curve is a simple (open) arc or a simple closed curve without a loss of generality.
For the details of the analysis and description, refer to Nishida and Mori [5],
Nishida [1], [2].

On a two dimensional plane, we introduce N-axes together with 2NV direction
codes. For instance, when N = 4, eight directions are defined along with the four
axes as shown in Fig. 1(a). Based on these N-axes together with 2N direction
codes, the analysis is performed hierarchically in the following way: First, the
curve is decomposed inte primitives and adjacent primitives are concatenated.
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Fig. 1. Structural analysis of a curve.

The concatenation is classified according to the direction of convexity. Primitive
sequences are generated by linking the concatenations of primitives. A label is
given to each primitive sequence according to the properties of the primitives
and their concatenations forming the sequence. Two types of connection are
introduced to primitive sequences. The structure of a curve is described by a
string of primitive sequences and connections.

A curve is decomposed into primitives at extremal points along each of the
N-axes. For deacent p11n11t1ves a and b, we write a concatenation of primitives

aand b as a 25 b The arrow “—” means that the primitive a is concatenated
to b so that we turn to right when traversing them from @ to b (see Fig. 1(b)),
and “j, k” denotes the direction codes of convexity formed by a and b.

By linking the concatenations of primitives, the primitive sequence is con-
structed:

F(1,0),5(1,1)  §(2,0),5(2,1)  §(n.0),5(nm1)
Qg —_— a1 — ene — Qap. (1)

The label of the primitive sequence, PS-label for short, (rot,idr) is given to the
sequence (1) composed of n + 1 primitives by the following formulae:

idr = j(1,0) (2)

rot = Z{ (4,1) — j(i, 0) %2N} Z{ (i +1,0) = (i, 1)) %(2N) | +2
(3)

rot and idr represent the rotation number and the initial direction of rotation
quantized in 2N directions. Furthermore, the two end points of the primitive
sequence are called h-point (on ag) and t-point (on a,).

Two primitive sequences are connected to one another by sharing the first
primitive (h-connection) or the last primitive (t-connection). For two adja-
cent primitive sequences ey and e, the connections are denoted by el ‘e and
eg teq respectively.
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Example 1: Fig. 1(d) illustrates the decomposition of a line-picture shown
in Fig. 1(c) into primitives when N = 4. We obtain the following concatenations
for these primitives.

A B e clip D22 E EXF
¢l p el 2133y 9%k

Then, the following primitive sequences are generated (see Fig. 1(e)):

2,2

PS AL B2 ¢ 2L p 22 g 33 e,

PS;:G 2L F(a,5), PS;:Gi5H 21372 K (51,

Since the primitive sequences PS;, PS;, and PS3 are connected as PS,tPSs,
PS,2PSs, the line-picture shown in Fig. 1(c) is described as (6,7) (4, 5)2(5,1).

3 Curve Deformation by Discontinuous Transformations

The structural descriptions based on the primitive sequences depend on the
topological structure of the curve, which is changed completely by discontinuous
transformation T1 and T2. In this section, we systematically analyze how the
features and structure of the curve are transformed by various types of defor-
mations belonging to T1 and T2. Because of the space limitation, we show only
some main results of the analysis in this paper. The result of a complete and
exhaustive analysis is given in Nishida [4]. Throughout this section, suppose that
there are two primitive sequences pg and p; with PS-labels (rg,dy) and (ry,d;)
(ro,71 > 2), respectively.

3.1 Structural Transformation by Concatenating End Points

We analyze the structural transformation caused by each operation of T1, i.e.,
concatenating two end points of primitive sequences so that the two end points
coincide.

Theorem 1: If t-point of pg and h-point of p; are concatenated, then the
local structure of the curve is transformed as follows:

—Ifk=(d —70—do)%(2N)=2N —1o0r 0 < k < N —1, then the primitive
sequences pg and p; can be merged into one primitive sequence Py with PS-
label (rg +71 — 2+ (k+2)%(2N),dq). (a%D is the residue when a is divided
by b > 0.)

—IfN-1<k<2N -2, then a new primitive sequence can be created and
the local structure of the curve can be transformed to PyiP, Z'—Pz, where
PS-labels of the primitive sequences are Py : (ro,do), P, : (2 + (—k —
2)%(2N),(d1 + N)%(2N)), P, : (r1,d;). The primitive sequence Py and
P; correspond to pg and p; respectively.
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Example 2: When k£ = N — 1, the curve structure can be transformed in
two ways according to the configuration of two primitive sequences. For instance,
when N = 4 (eight directions), if PS-labels of py (left of Fig. 2(a)) and p; (right)
are (5,0) and (2,0) (£ = (0—5—0)%8 = (—5)%8 = 3), then the local structure
of the curve can be either one primitive sequence P with PS-label (10,0) (Fig.
2(b)), or PytP 2P, with PS-labels Py : (5,0), P; : (5,4), and P; : (2,0) (Fig.

2(c)).
PENPIPI
(@ (b (©

Fig.2. When we concatenate the two end points denoted by filled circles in (a), there
are two possible structures (b) and (c) according to the transformation rules.

Theorem 2: If h-point of py and h-point of p; are concatenated, then the
local structure of the curve is transformed as follows (& = (dy — do)%(2N)):

Condition M Structure PS-label
N<Ek<2N—-lork=02 P P Py:{(re.do)

P (7‘1 +( L+N)% 2N), (do + N)%(2N))
P] (’I],dl)

M is the number of primitive sequences after the two primitive sequences are
concatenated, and Py and Py on the new curve correspond to pg and p; on
the original curve. When M > 3, primitive sequences P; through Py 2 do not
exist on the original curve and they are introduced by the operation T1.

Theorem 3: If t-point of pg and t-point of p; are concatenated, then the local
structure of the curve is transformed as follows (k = (ry + dy — 79 — dg)%(2NV)):

Condition M Structure PS-label

ngSN 2 P()iP] Po:('l‘o,do), P1(7'1+(N—]\,)%(2N),dl>
NS’»SZN—lOI‘kIO 2 P()LPI Po(T()“l'(k‘l"N)%(zN),do), P1:<7‘1,(l1>

3.2 Structural Transformation by Connecting End Points

We analyze the structural transformation caused by each operation of T2, i.e.,
connecting two end points of primitive sequences with an additional primitive.

Theorem 4: If t-point of py and h-point of p; are connected by an additional
primitive, then the local structure of the curve is transformed as follows (k =

(dl — Ty — dg)%(zN))
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Condition M Structure PS-label
k=2N-22N-11PF Po:(r0+r1—2+(k+2)%(2N),d0)
0§k§2N-—1 1 Po P01(7'0+7'1+k,d0) g
0<k<2N -1 3 BlPEP, P : (ro,do)
Py {2+ (=k — 2)%(2N), (d: + N)%(2N)),
Pz:(ﬁ,(l])
0SI\7_<_2N—1 3 P()iP]th Po(T0+(’\,+l+2)%(2N),do>
P1 H <2+l,(d1 +N)%(2N)), Pz M (T],d])
(l=0,....,N—-1; (k+1+2)%(2N)=0,...,N)
0<k<2N-~—1 3 PiP%P, P : (ro,do),
P :(24+L(ro+do+ N ~1-2)%(2N))
Py {ri1 + (k+ 1+ 2)%(2N),
(ro + do — 1 —2)%(2N))
(=0,...,.N=-1; (k+14+2)%(2N)=0,...,N)

)
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Fig.3. When we connect the two end points denoted by filled circles in (a), with an
additional primitive, there are eleven possible structures (b) through (1) according to
the transformation rules.

Example 3: When £k = 2N —1 and N = 4, the curve structure can be trans-
formed in eleven ways according to the configuration of two primitive sequences.
For instance, if PS-labels of py (left of Fig. 3(a)) and p; (right) are (4,0) and (4, 3)
(k= (3—4-0)%4 = T7), then the local structure of the curve can be one of the
following: (1) (7,0) (Fig. 3(b)); (2) (15,0) (Fig. 3(c)); (3) (4,0)£(9, T)%(4,3) (Fis.
3(d)); (4) (5,0)%(2,7)2(4,3) (Fig. 3(e)); (5) (6,0)(3,7)%(4,3) (Fig. 3(f)); (6)
(7,0)1(4,7)2(4,3) (Fig. 3(g)); (7) (8,0)(5, T):(4, 3) (Fig. 3()); (8) (4, 0)(2,6) 2
(5,2) (Fig. 3(1)); (9) (4,0)%(3,5)2(6,1) (Fig. 3(1)); (10) (4,0)%(4,4)2(7,0) (Fig.
3(k)); (11) (4,0)4(5,3)2(8,7) (Fig. 3(1))-

Theorem 5: If h-point of pg and h-point of p; are connected by an additional
primitive, then the local structure of the curve is transformed as follows (k =
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Condition M Structure PS-label

N<Ek<2N-12 Rip Py : (ro,do),
Py i (r+ (k= N)%B(2N), (do + N)%(2N))
OSI»SN 2 Pohpl Po:(T‘u,do),P1:(7‘1+k+N,(d0+N)%(2N))
0<k<N 2 RBEp Py : {ro + (N — k)%(2N), (d1 + N)%(2N)),
Py {r,dy)
N<k<2N-12 RBERP Py : (ro + 3N — k, (d1 + N)%(2N)Y, P; : {r1,d1)
OSkS2N—1 2P0 P1 P():(T'0+l(do—l)%(2N))
P (7'1 + (I 4k~ N)Y%(2N), (do — 1+ 2)%(2N))
(l ., N, (l+k-—N)%N:0,...,N)

1<k<2N-1 4 PoﬁPliPzﬁPs ( do}, Py« (24 1, (do + NYB(2N)),
: (2 + (- k + N)%(2N), (d + N)%(2N)),
P3 (T],d])
(l=0,...,N~1;
(I-k+N)%(2N)=0,...,N=1)

Theorem 6: If t-point of pg and t-point of p; are connected by an additional
primitive, then the local structure of the curve is transformed as follows (k =

(’I‘l + dl —-T9 — dg)%(ZN))

Condition M Structure PS-label

N<k<2N -1 2 Bip P(,:(u,,do) Pl:(11+3N k,da)
OSI\,SN 2 P0£P1 (10, ) :(71+(N L)%(?N) d])
0<k<N 2 Rip (ro+k+N do), P, (n,dl)
N§k§2N—1 2 P0£P1 (70—}- }., N)% ZN) do) :(Tl,dl)
OSkS2N—1 2 P()iPl (7‘0+ldo> P1<71+(I—L+N)%(2N),d1)

(1_0, SN, (I—k+ N)%(2N)=0,...,N)
1<k<2N-1 4 RiIPERIP P ;(1-0,610),
P1(2+l,(d0+7‘0+N—l—2)%(2N))
P 24 (I4+ %~ N)%(2N),
(do + 1o —1—2)%(2N)),
Ps : (ry,dy)
({=0,...,.N -1
(+k+N)%2N)=0,...,N—1)

4 Applications

We have analyzed how shape features (PS-labels) and global structures (h/t-
connections among primitive sequences) are trausformed by various types of op-
erations of T1 and T2. In this section, based on the transformation laws explored
in Section 3, we describe some applications of the analysis to (a) the automatic
induction of class descriptions from data, (b) the deduction of all the possible
structural descriptions from the class descriptions, and (c) the examination of
the status of conflicts among the class descriptions.
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4.1 Automatic Construction of Class Descriptions

The automatic construction of class descriptions from data can be considered
as a problem of creating inductively, from the given data set, some shape rep-
resentation that tolerates certain types of shape transformation. In particular,
the transformations T1 and T2 addressed in this paper represent some typical
shape deformations of handwritten characters. Therefore, we need to address the
problem of generalizing shape descriptions that can be transformed via trans-
formations T1 and T2.

However, shape deformations caused by T1 and T2 change topology and
global features, and therefore, it is difficult to design an algorithm for generaliz-
ing structural descriptions into class descriptions. The solution to this problem is
to explore complete a priori knowledge of the structural transformations caused
by T1 and T2. Generalization is performed by comparing structural descriptions
of two classes and finding out a relevant component correspondence by consis-
tent labeling algorithms along with the high-level models of the transformations
presented in Section 3 [3].

4.2 Generation of Structural Descriptions from Classes

For the character o, suppose that we are given the class description o = (M,,
Ty Ty I'y ), where M, is the number of primitive sequences, 7(3) (i = 1,..., M,)
is the set of eligible PS-labels for the primitive sequence 2, Ty is a list of possible
stroke connections representing T1 and T2, and I, is the set of h/t-connections
among primitive sequences. Let S, = {(l,...,lum,) | Len(),i=1,.., M}
be the set of all the possible combinations of PS-labels of primitive sequences.
For each s € S,, by applying the stroke connections in T, recursively along
with the transformation laws shown in the Theorems [4], we can obtain all the
possible structural descriptions from the class description o. For instance, in the
class description of “3”, Example 3 and Fig. 3 show all the possible structural
descriptions (twelve, in total) for s = ((4,0),(4,3)) € S3 along with stroke
connections T3. (The structural descriptions obtained by the transformation T1
are included by the ones obtained by T2.) Table 1 shows the number of structural
descriptions deduced from some class descriptions for digits [4].

Table 1. Number of structural descriptions deduced from the class descriptions for
digits.

Character 012 3 4 5 6 7 8 9
fDescriptions 16 4 66 403 444 316 18 929 2292 191
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4.3 Conflicts among Class Descriptions

From the sets of structural descriptions deduced from the class descriptions,
we can easily find intersections among these sets by some relational matching
procedures such as consistent labeling algorithms. Elements in the intersection
of the two sets represent conflicts between the two class descriptions. Table 2
shows the number of structural descriptions in common with each pair of class
descriptions. In particular, we should note that there are a number of conflicts
between the class descriptions for “4” and “7.” The structural descriptions ignore
metric information, and therefore, there are many instances of “4” and “7” that
have the same descriptions as shown in Fig. 4. Most conflicts can be resolved
by incorporating some geometrical or statistical information into the structural
descriptions.

Table 2. Number of conflicts between two classes.

123456 7 8 9
0050 008 2 0 1

1 01 000 00 O
2 01228 12 0 11
3 1405 33 5 1
4 0144420 63
5 0 02 0
6 5 0 3
7 20 105
8 12

T 7y -
e T G4

Fig. 4. Examples of the patterns of “4” and “7” that have the identical structural
descriptions.

On the other hand, the analysis of metamorphosis of character shapes (trans-
formation of an instance of a class into an instance of the other class via some
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transformation) has been an open problem in pattern recognition. An essen-
tial problem in handwriting recognition is how to cope with the complex shape
deformation, and therefore, the modeling of the deformation and metamorpho-
sis is a key to breaking through the difficulties in handwriting recognition. We
have now a table of conflicts that has been deduced from the class description
based on the structural model of shape deformation and the table well represents
metamorphosis of characters. A possible extension of this work is to analyze the
metamorphosis of characters by incorporating more information into the struc-
tural model presented in this paper.

5 Conclusion

Structural deformation caused by discontinuous transformations is an intractable
problem in shape analysis and description. Structural descriptions depend on the
topological structure of the shape, and therefore, they are sensitive to discon-
tinuous transformations which change the topology of the shape. Because of the
difficulties, there have been few systematic studies for analyzing and modeling
structural deformations caused by discontinuous transformations. In this paper,
as a first step for overcoming the difficulties, we have given an extensive analysis
of structural deformations of curves due to some particular types of discontinu-
ous transformations. Some systematic transformation laws have been obtained
based on the shape description by Nishida and Mori [5], Nishida [1], [2]. We have
also mentioned some applications of the analysis.
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