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A b s t r a c t .  Structural analysis and description depend on the topolog- 
ical structure of the shape, mad therefore, they are sensitive to discon- 
tinuous transformations which change the topology of the shape. In this 
paper, we give a complete analysis of the a p r io r i  effects of some com- 
monly occurring discontinuous transformations. Some systematic trans- 
formation laws have been obtained base(t on the shape description in 
terms of quasi-convexity/concavity and quantized directional features. 
We mention some applications of the analysis. 

1 I n t r o d u c t i o n  

Shape description has been an important  research subject in image analysis, 
computer  graphics, and pat tern recognition. The criteria and feature selection 
for shape description depend on the particular applications. In particular, hand- 
writing recognition has been a main theme in both theory and practice of pat tern  
recognition. A prime difficulty of handwriting recognition is the variety of shape 
deformations and it leads to some unique requirelnents for the shape description 
as follows: 

The shape deformations of handwrit ten characters are elastic, highly nonlin- 
ear, and therefore, difficult to analyze. For describing such complex objects, 
some global, qualitative, structural features are appropriate  rather  than lo- 
cal, quanti tat ive descriptions based on some analytical or statistical shape 
models. 

- Such discontinuous deformations as caused by stroke connections are unique 
to handwrit ten characters. The shape description must bc robust against 
and accommodate  such deformations so that  various deformed pat terns  (:an 
be represented by a small nmnber of classes. 

Throughout  more than a quarter of a century of researches, it has been found 
that  such features as quasi-topological features (convexity, concavity, and loop), 
quantized directional features, and singularities (branch points and crossings) 
are effective and powerful for the shape description of handwrit ten characters. 
Based on this observation, Nishida and Mori [5], Nishida [1], [2] presented a 
(:lear, rigorous method for structural description and feature extraction of thin- 
line pictures in terms of globM, qualitative features. Shapes can be described 
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by a few components along with lqch features and relations among conlponents, 
and the description is robust against certain types of continuous deformation. 

Exploring methods for shape description and recognition robust against such 
deformations as caused by stroke connections has been a challenging problem. 
In order to overcome the difficulties in handwriting recognition, there have been 
some works conducted for analyzing and nmdeling the shape deformation of 
unconstrained handwritten characters. The deformations can be generalized into 
the two types of transformations as follows: 

T I :  concatenating two end points of curve components by moving them slightly 
so that  the two points coincide (Fig. 2). 

T2:  connecting two end points of curve components with an additional curve 
(Fig. 3). 

These deformations are discontinuous and change the topological structure of 
the shape completely. Structural shape descriptions are, in general, based on 
the topological structure of the shape, and we need to address these types of 
shape transformations in order to explore methods for shape description and 
recognition robust against such deformations as caused by stroke connections. 
A first step for overcoming the difficulties is to c a n t  out a systematic, com- 
plete analysis of the a priori effects of these commonly occurring discontinuous 
transformations, leading to a small, tractable number of distinct cases. Once 
we have a complete, a priori  knowledge of all possible cases, we can analyze 
all instances satisfying certain realistic conditions in a unified, systematic way 
without resorting to heuristics. 

This paper is organized as follows: In Section 2, we mention the outline of 
the structural analysis of curves. In Section 3, we give a complete analysis of the 
a priori effects of commonly occurring discontinuous transformations T1 and 
T2. In Section 4, we describe some applications of the analysis. Section 5 is the 
conclusion. 

2 Structural  Analysis  of Curves 

In this section, we review the structural analysis and description of curves by 
2N-directional features (N is a natural number) and quasi-convexi ty~concavity .  
When the curve has singular points, whose order is three or more, the curve is 
transformed into components which are topologically equivalent to line segments 
or circles by singular point decomposition [5]. Therefore, we assume that  the 
CUl'Ce is a simple (open) arc or a simple closed curve without a loss of generality. 
For the details of the analysis and description, refer to Nishida and Mori [5], 
Nishida [1], [2]. 

On a two dimensional plane, we introduce N-axes together with 2N direction 
codes. For instance, when N -- 4, eight directions are defined along with the four 
axes as shown in Fig. l(a). Based on these N-axes together with 2N direction 
codes, the analysis is performed hierarchically in the following way: First, the 
curve is decomposed into primitives and adjacent primitives are concatenated. 
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Fig. 1. Structural analysis of a curve. 

The concatenation is classified according to tile direction of convexity. Primitive 
sequences are generated by linking the concatenations of prilnitives. A label is 
given to each prilnitive sequence according to the properties of the t)rimitivcs 
and their concatenations fi)rming the sequence. Two types o f  connection are 
introduced to primitive sequences. The structure of a curve is described by a 
string of primitive sequences and connections. 

A curve is decomposed into primitives at extremal  points along each of the 
N-axes. For adjacent primitives a and b, we write a concatenation of t)rimitives 

j,k 
a and b as a - -+  b. The arrow "-+" means tha t  the primitive a is concatenated 
to b so that we turn to right when traversing them fl'om a to b (see Fig. l (b)) ,  
and "j, k" denotes the direction codes of convexity forlncd by a and b. 

By linking the concatenations of primitives, the primitive sequence is con- 
structed: 

/ (2 ,0 ) , j (2 ,1)  j(n,O),j(n,1) a0  J ( l ' ~  a l  ' - . -  ' an. (1) 

The label of the primitive sequence, PS-label for short, (rot, idr} is given to the 
sequence (1) composed of n + 1 primitives by the following formulae: 

idr = j (1 ,0 )  (2) 

n n--1  

rot= E { ( J ( i , 1 ) -  j(i,O))%(2N)} + E {(J(i + 1 , 0 ) - j ( i , 1 ) ) % ( 2 N ) }  + 2  
/=1 i=1  

(a) 
rot and idr represent the rotati(m mmlber  and the initial direction of rotation 
quantized in 2N directions. Furthermore,  the two end points of the primitive 
sequence are called h-point (on a0) and t-point (on an). 

Two prinlitive sequences are connected to one another by sharing the first 
primitive ( h - c o n n e c t i o n )  or the last primitive ( t - c o n n e c t i o n ) .  For two adja- 
cent primitive sequences e0 and el,  the connections are denoted by co he1 and 
eo *-el respectively. 
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Example 1: Fig. l (d)  illustrates the decomposition of a line-picture shown 
in Fig. 1(c) into primitives when N = 4. We obtain the following concatenations 
for these primitives. 

A-7'~ B, B 0,0 C, C 1,1 D, D 2,2 E, E-3'3-*F, 

G - ~ F ,  G 1,1 H, H - ~ I ,  I 3,3 j, j 4,4 K. 

Then, the following primitive sequences are generated (see Fig. l(e)): 

PS1 : A ~ B - ~  C 2 L  D 2,2 E - ~  F (6, 7), 

PS~. : G - ~  F (4, 5), PS3 : G ~ H - ~  I a,3) j 4,4) K (5, 1), 

Since the primitive sequences PS1, PS2, and PS3 are connected as PSI~-PS2, 
PS2 h-PSo, the line-picture shown in Fig. 1(c) is described as (6, 7)~-(4, 5)h (5, 1). 

3 Curve Deformation by Discontinuous Transformations 

The structural  descriptions based on the primitive sequences depend on the 
topological structure of the curve, which is changed completely by discontinuous 
transformation T1 and T2. In this section, we systematically analyze how the 
features and structure of the curve are transformed by various types of defor- 
mations belonging to T1 and T2. Because of the space limitation, we show only 
some main results of the analysis in this paper. The result of a complete and 
exhaustive analysis is given in Nishida [4]. Throughout  this section, suppose that  
there are two primitive sequences P0 and Pl with PS-labels (ro, do) and (rl ,  dl) 
(to, rl >_ 2), respectively. 

3.1 Structural Transformation by Concatenating End Points 

We analyze the structural  transformation caused by each operation of T1, i.e., 
concatenating two end points of primitive sequences so that  the two end points 
coincide. 

Theorem 1: If t -point  of P0 and h-point of Pl are concatenated, then the 
local structure of the curve is transformed as follows: 

- If k -- (dl - r0 - d0)%(2N) = 2 N -  1 or 0 < k < N -  1, then the primitive 
sequences P0 and Pl can be merged into one primitive sequence P0 with PS- 
label (r0 + r l  - 2 + (k + 2)%(2N), d0}. (a%b is the residue when a is divided 
by b >  0.) 

- If  N - 1 < k < 2N - 2, then a new primitive sequence can be created and 
the local structure of the curve can be transformed to PD~-Plh-P~, where 
PS-labels of the primitive sequences are P0 : (r0,d0}, P1 : (2 + ( - k  - 
2 )%(2N) , (d l  + N)%(2N) ) ,  P2 : ( r l ,d l ) .  Tile primitive sequence P0 and 
P2 correspond to P0 and Pl respectively. 
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E x a m p l e  2: W h e n  k = N - 1, the curve s t ructure  can be t ransformed in 
two ways according to the configurat ion of two primitive sequences. For instance,  
when N = 4-(eight directions),  if PS-labels  of P0 (left of Fig. 2(a)) and Pl (right) 
are (5, 0) and (2, 0) (k = (0 - 5 - 0)%8 = ( - 5 ) % 8  = 3), then the local s t ructure  
of the curve can be either one primitive sequence P0 with PS-label (10, 0) (Fig. 
2(b)), or Po ~-P1 hP2 with PS-labels P0 : (5, 0), /)1 : (5, 4), and P2 : (2, 0) (Fig. 
2(c)). 

(a) (b) (c) 

Fig. 2. When we concatenate the two end points denoted by filled circles in (a), thcrc 
are two possible structures (b) and (e) according to the transformation rides. 

T h e o r e m  2: If  h-point  of P0 and h-point of Pl are concatenated,  then the 
locM structure of the curve is t ransformed as follows (k = (dl - d0)%(2N)):  

Condition M Structure PS-label 

N < k < 2 N - l o r k = O  2 PokP1 

0 < k < N  2 Poh-P~ 

Po : (,'o,do) 
P~ : (rl -F (k + N ) % ( 2 N ) ,  (do -F N ) % ( 2 N ) )  
Po : (to + (N - k)%(2N) , (d~  + N)%(2N)) 
/)1 : (ra, dl)  

M is tile number  of prinfitive sequences after the two primitive sequences are 
concatenated,  and P0 and PM-1  oil the new curve correspond to P0 and Pl on 
the original curve. When  M > 3, primitive sequences P1 through PM-2  do not 
exist on the original curve and they are introduced by the operat ion T1. 

T h e o r e m  3: If  t -point  of p0 and t -point  of pl are concatenated,  then the local 
s t ructnre  of the curve is t ransformed as follows (k = (rl  + d l  - T 0  - -d0)%(2N)) :  

Condition M Structure PS-label 

0 < k < N  2 PotP1 
N < k < 2 N - l o r k = O  2 PotPa 

Po : (to,do), 1~ : (rl + (N - k)%(2N),dl)  
To: (7"0 + (k + N)%(2N),do) ,  P~ : (r~,dl) 

3.2 S truc tura l  T r a n s f o r m a t i o n  b y  C o n n e c t i n g  E n d  P o i n t s  

We analyze the s t ructura l  t ransformat ion caused by each operat ion of T2, i.e., 
connecting two end points of prinfitive sequences with an addit ional  primitive. 

T h e o r e m  4: If  t -point  of P0 and h-point  of Pl are connected by an addit ional 
primitive, then the local s t ructure  of the curve is t ransformed as follows (k = 
(di - r0 - d0)%(2N)):  
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Condition M Structure PS-label 
k = 2 N - 2 , 2 N - 1  1 Po 
' 0 < k < 2 N - 1  1 Po 

0 < k < 2 N - 1  3 Po~-P~&P2 

' 0 < k < 2 N - 1  3 Pot-P~P2 

0 < k < 2 N - 1  3 Pot-P~a-P2 

Po : (7"0 T rl - 2 + (k + 2)%(2N),d0) 
Po : (to + rl + k,do) 
P0 : (v0,d0> 
P~ : {2 + ( - k  - 2)%(2N), (dl + N)%(2N)),  
P2 : (r l ,  41) 
Po : (ro + (k T l + 2)%(2N),do) 
P~ : (2 + l,(d~ + N)%(2N)), / )2 : (r~,d~) 
(l ---- 0 , . . . , N  - 1; (k 4- 14- 2)%(2N) = 0 , . . . , N )  
Po: (r0, do), 
P1 : (2 -b l, (to + do + N - l - 2)%(2N)) 
P2 : (r~ + (k + l + 2)%(2N), 

(to + do - l - 2)%(2N)) 
(l=0,... ,N-l; (k+I-F2)%(2N)=0,...,N) 

(a) (b) (c) (d) (r (f) 

(u) fh) (i) fi) (k) r 

Fig. 3. When we connect the two end points denoted by filled circles in (a), with an 
additional primitive, there are eleven possible structures (b) through (1) according to 
the transformation rules. 

E x a m p l e  3: When  k = 2 N -  1 and N -- 4, the curve s tructure can be trans- 
formed in eleven ways according to the configuration of two primitive sequences. 
For instance, if PS-labels  of p0 (left of Fig. 3(a)) and Pl (right) are (4, 0) and (4, 3) 
(k = (a - 4 - 0)%4 = 7), then the local s t ructure  of the curve can be one of the 
following: (1) (7, 0) (Fig. 3(b)); (2)(15,  0) (Fig. 3(c)); (3) (4, 0)t-(9, 7)-h (4, 3) (Fig. 
3(d)); (4) (5, 0}*-(2, 7)-h (4, 3) (Fig. 3(e)); (5) <6, 0)*-(3, 7) h(4, 3) (Fig. 3(f)); (6) 
(7, 0) *-(4, 7)-h (4, 3) (Fig. 3(g)); (7) (8, 0) *-(5, 7) _h (4, 3) (Fig. 3(h)); (8) (4, 0)-* (2, 6) h 
(5, 2) (Fig. 3(i)); (9) (4,0)*-(3, 5)&(6, 1) (Fig .  3(j)); (10) (4,0)*-(4, 4)-h (7, 0) (Fig. 
3(k)); ( 11 ) (4 ,0 ) t ( 5 , 3 ) -h (8 ,7 ) (F ig .  3(1)). 

T h e o r e m  5: If h-point of p0 and h-point  o fp l  are connected by an addit ional 
primitive, then the local structure of the curve is tr&nsformed as follows (k -- 
(d~ - d0)%(2N)):  
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Condition M Structure PS-label 

N < k < 2 N - 1  2 Poh-P1 

0 < k < N  2 Poh-P~ 
0 < k < N  2 Poh-P~ 

N < k < 2 N - 1  2 Poh-P~ 
0 < k < 2 N - 1  2 Poh-P~ 

l < k < 2 N - 1  4 Pos 

Po : (~o, do), 
P1 : (rl + (k - N)%(2N) ,  (do + N)%(2N))  
Po : (to,do), P1 : (rl + k T N,(do T N)%(2N) )  
Po : (vo + ( g  - k)%(2N),  (d~ + N)%(2N)) ,  
P1 : (.1, dl) 
Po : (ro + 3N - k , ( d ~  + N)%(2N)) ,  P1 : (rl,d~) 
P0 : (r0 + l, (do - l )%(2N))  
P~ : (,'1 + (l + k - N)%(2N) ,  (do - 1 + 2)%(2N)) 
(t = 0 , . . . , N ;  ( t  + k - N ) % N  = O , . . . , N )  

Po : (vo,do), PI : (2 + l,(do + N)%(2N)), 
P2 : (2 + (l - k + N)%(2N) ,  (d, + N)%(2N)) ,  
P3 : (rl ,  41 ) 
(l = 0 , . . . , N -  1; 
( 1 -  k T g ) % ( 2 N )  = O , . . . , N  - 1) 

T h e o r e m  6: I f  t -po in t  of p0 and t -po in t  of p l  are connec ted  by  an add i t iona l  
pr imi t ive ,  then  the local s t ruc tu re  of the  curve is t r ans fo rmed  as follows (k = 
( r i  "[- dl  - ro - do )%(2N)) :  

Condition M Structure PS-label 

N < k < 2 N - 1  2 Po*-P~ 
0 < k < N  2 Po*-P1 
0 < k < N  2 Po *-P1 

N < k < 2 N - 1  2 Po~-P1 
0 < k < 2 N - 1  2 Po*-PI 

1 < k < 2 N -  1 4 Po*-Plh-P2*-Pa 

Po : (,.o, do), P1 : (,', + 32V - k ,  d l  > 
P0 : <r0,do), P1 : (7'1 + ( N - k ) % ( 2 N ) , d l >  
Po : (vo + k + N,  do), P1 : <rl,dl) 
Po : (to + (k - N)%(2N) ,do) ,  P1 : ( r l ,d l )  
Po : (to + l ,  do), P1 : (rl  + ( l -  k + N ) % ( 2 N ) , d l )  
(I = 0 . . . .  , g ,  ( l -  k + N)%(2N)  = 0 , . . . , N )  
P(, : (,'0, do>, 
Px : ( 2 + l , ( d o + r o + N - l - 2 ) % ( 2 N ) >  
P2 : (2 + (l + k - N)%(2N) ,  

(do + ro - 1 - 2)%(2N)), 
P3 : (r l ,d l )  
( / =  0 , . . . , N -  1; 
(l + k + N ) % ( 2 N )  = 0 , . . . , N - I )  

4 A p p l i c a t i o n s  

We have ana lyzed  how shape  features  (PS- labels )  and  global  s t ruc tu res  (h / t -  
connect ions  a m o n g  p r imi t ive  sequences) are  t r a n s f o r m e d  by var ious  t y p e s  of op- 
era t ions  of T1 and T2. In this  section, based  on the t r ans fo rma t ion  laws explored  
in Section 3, we descr ibe  some app l ica t ions  of the  ana lys i s  to (a) the  a u t o m a t i c  
induct ion  of class descr ip t ions  from da ta ,  (b) the  deduc t ion  of all the  possible  
s t ruc tu ra l  descr ip t ions  from the class descr ip t ions ,  a n d  (c) the  examina t i on  of 
the  s t a tus  of conflicts among  the class descr ip t ions .  
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4.1 A u t o m a t i c  C o n s t r u c t i o n  of  Class  D e s c r i p t i o n s  

The automatic construction of class descriptions from data can be considered 
as a problem of creating inductively, from the given data  set, some shape rep- 
resentation that tolerates certain types of shape transformation. In particular, 
the transformations T1 and T2 addressed in this paper represent some typical 
shape deformations of handwritten characters. Therefore, we need to address the 
problem of generalizing shape descriptions that  can be transformed via trans- 
formations T1 and T2. 

However, shape deformations caused by T1 and T2 change topology and 
global features, and therefore, it is difficult to design an algol-ithm for generaliz- 
ing structural descriptions into class descriptions. The solution to this problem is 
to explore complete a priori knowledge of the structural transformations caused 
by T1 and T2. Generalization is performed by comparing structural descriptions 
of two classes and finding out a relevant component correspondence by consis- 
tent labeling algorithms along with the high-level models of the transformations 
presented in Section 3 [3]. 

4.2 G e n e r a t i o n  of  S t r u c t u r a l  D e s c r i p t i o n s  f r o m  Classes  

For the character a, suppose that we are given the class description q = (M~, 
7r~, T~, F~), where M~ is the number of primitive sequences, 7r(i) (i = 1 , . . . ,  M~) 
is the set of eligible PS-labels for the primitive sequence i, Ta is a list of possible 
stroke connections representing T1 and T2, and Fa is the set of h/t-connections 
among primitive sequences. Let Sa = { ( / 1 , . . . , l M ~ ) l l i  e 7r(i),i = 1 , . . . , M ~ }  
be the set of all the possible combinations of PS-labels of primitive sequences. 
For each s E Sa, by applying the stroke connections in Ta recursively along 
with the transformation laws shown in the Theorems [4], we Call obtain all tile 
possible structural desclSptions from the class description q. For instance, in the 
class description of "3", Example 3 and Fig. 3 show all the possible structural 
descriptions (twelve, in total) for s = ((4,0), (4,3)) e $3 along with stroke 
connections T3. (The structural descriptions obtained by the transformation T1 
are included by the ones obtained by T2.) Table 1 shows the number of structural 
descriptions deduced from some class descriptions for digits [4]. 

Table 1. Number of structural descriptions deduced from the class descriptions for 
digits. 

Character 0 1 2 3 4 5 6 7 8 9 
~Descriptions 16 4 66 403 444 316 18 929 2292 191 
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4 . 3  C o n f l i c t s  a m o n g  C l a s s  D e s c r i p t i o n s  

From the  sets  of s t r uc tu r a l  descr ip t ions  deduced  fl 'om the  class descr ip t ions ,  
we can eas i ly  find in te rsec t ions  among these sets  by  some re la t iona l  ma tch ing  
p rocedures  such as cons is ten t  label ing a lgor i thms.  E lemen t s  in the  in tersec t ion  
of the  two sets represent  conflicts between the  two class descr ip t ions .  Table  2 
shows the  n u m b e r  of s t r u c t u r a l  descr ip t ions  in common  with  each pa i r  of class 
descr ip t ions .  In  pa r t i cu la r ,  we should note  t h a t  there  are  a n u m b e r  of conflicts 
be tween  the  class desc r ip t ions  for "4" and "7." The  s t r uc tu r a l  desc r ip t ions  ignore 
met r i c  in fo rmat ion ,  and  therefore,  there  are many  ins tances  of "4" and  "7" t ha t  
have the  same  desc r ip t ions  as shown in Fig.  4. Most  conflicts  can be resolved 
by i n c o r p o r a t i n g  some geomet r ica l  or s t a t i s t i ca l  in fo rmat ion  into  the  s t ruc tu ra l  
descr ip t ions .  

T a b l e  2. Number of conflicts between two classes. 

1 2 3 4 5 6  7 8 9 
0 0 5 0  0 0 8  2 0 1 
1 01 0 0 0  0 0 0 
2 0 1 2 2 8  12 0 11 
3 1 4 0 5  33 5 1 
4 0 1444 20 63 
5 0 0 2 0 
6 5 0 3 
7 20105 
8 12 

//= 

Fig .  4. Examt)les of the pat terns  of "4" and "7" that  have the identical structural  
descriptions. 

On the  o the r  hand,  the  analysis  of metamorphosis of cha rac t e r  shapes  ( t rans-  
fo rma t ion  of an ins tance  of a class into an ins tance  of the  o ther  class v ia  some 
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transformation) has been an open problem in pattern recognition. An essen- 
tial problem in handwriting recognition is how to cope with the complex shape 
deformation, and therefore, the modeling of the deformation and metamorpho-  
sis is a key to breaking through the difficulties in handwriting recognition. We 
have now a table of conflicts that  has been deduced from the class description 
based on the structural model of shape deformation and the table well represents 
metamorphosis of characters. A possible extension of this work is to analyze the 
nmtamorphosis of characters by incorporating more information into the struc- 
tural model presented in this paper. 

5 C o n c l u s i o n  

Structural deformation caused by discontinuous transformations is an intractable 
problem in shape analysis and description. Structural  descriptions depend on the 
topological structure of the shape, and therefore, they are sensitive to discon- 
tinuous transformations which change the topology of the shape. Because of the 
difficulties, there have been few systematic studies for analyzing and modeling 
structural deformations caused by discontinuous transformations. In this paper,  
as a first step for overcoming the difficulties, we have given an extensive analysis 
of structural deformations of curves due to some particular types of discontinu- 
ous transformations. Some systematic transformation laws have been obtained 
based oll the shape description by Nishida and Mori [5], Nishida [1], [2]. We have 
also mentioned some applications of the analysis. 
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