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Abstract  
In this paper w e  present a foundational basis for optimal and information 

theoretic syntactic pattern recognition. We do this by developing a rigorous model, 
M*, for channels which permit arbitrarily distributed substitution, deletion and 
insertion syntactic errors. More explicitly, if A is any finite alphabet and A* the set 
of words over A, we specify a stochastically consistent scheme by which a string U 
A* can be transformed into any Y ~ A* by means of arbitrarily distributed 
substitution, deletion and insertion operations. The scheme is shown to be 
Functionally Complete and stochastically consistent. Apart from the synthesis 
aspects, we also deal with the analysis of such a model and derive a technique by 
which Pr[Y[U], the probability of receiving Y given that U was transmitted, can be 
computed in cubic time using dynamic programming. Experimental results which 
involve dictionaries with strings of lengths between 7 and 14 with an overall average 
noise of 39.75 % demonstrate the superiority of our system over existing methods. 
The modcl also has applications in speech and uni-dimcnsional signal processing. 

1. Introduct ion 
In the field of statistical Pattern Recognition (PR), the patterns are rcprcscntcd 

using numerical features. As opposed to this, in syntactic and structural PR the 
classifiers are designed to be trained and tested by representing the patterns 
symbolically using primitive (elementary) symbols. Essentially, the system models 
the noisy variations of typical samples of the patterns symbolically, and these models 
are utilized in the training and testing phases. In statistical PR, the noisy samples 
from a class are modeled (either parametrically or non-parametrically) using the class 
conditional probability distributions. If  these distributions are known, information 
theoretic, minimum probability of error classification is possible [5,7]. 

In this paper we shall attempt to lay the foundation for information theoretic, 
minimum probability of error syntactic PR systems which permit arbitrarily 
distributed noise. In this paper we shall only deal with syntactic PR of patterns which 
are represented "linearly" as strings. The problem of developing similar classifiers for 
PR systems using two-dimensional structures such as trees and webs remains open. 
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Typically, syntactic PR systems work as follows. The system has a dictionary 
which is a collection of all the ideal representations of the objects in question. When 
a noisy sample has to be processed, the system compares it with every element in the 
dictionary. This comparison is done sequentially or using a grammatical parsing 
mechanism. The question of comparing patterns reduces to one of comparing their 
string representations, and this is typically achieved using three standard edit 
operations - substitution, insertion and deletion. To achieve this, one usually assigns 
a distance for the elementary symbol operations, and the inter-pattern distance is 
computed as a function of these distances. 

The elementary distances can be assigned weights in a variety of ways. If R § is 
the set of non-negative real numbers, the elementary distances are defined using three 
elementary functions ds(.,.), di(.) and de(.) : 

(i) ds(.,.) is a map from A X A ~ R + and is the Substitution Map. 
(ii) di(.) is a map from A --r R § and is called the Insertion Map. 
(iii) de(.) is a map from A ~ R § and is called the Deletion or Erasure Map. 

The inter-string distance is called the Levenshtein distance if for all a,b e A 
these distances are: ds(a, b) is 1 if a # b and is 0 if a = b, and di(a) = de(a) = 1 for all a. 

A more interesting and novel assignment of the distances is the parametric 
distances recently introduced by Bunke et al [2]. In this case, for all a, b e A the 
substitution distance is r if a ~ b and is 0 if a =b. The parametric string distance has 
some amazingly interesting properties derived in [2]. The assignment of 'r' and the 
application of the inter-string distance in PR has also been alluded to in [2]. 

If, however, the elementary symbol edit distances are symbol dependent, the 
distance is called the Generalized Levenshtein Distance. The question of how the 
elementary symbol edit distances can be assigned is relatively open; indeed, they can 
be parametrically assigned as in [2] or can be related to the inter-symbol confusion 
probabilities via their negative logarithms as recommended in [11,20]. The explicit 
form of the individual edit distances often takes the form : 

ds(a, b) = -In [ Pr(a--->b) / Pr(a--->a) ] 
de(a) = -In [ Pr(a is deleted) / Pr(a~a) ] 

di(a) = Ki" de(a), where K i is an empirically determined constant. 
The fundamental problem that arises from all the above three assignment 

strategies is that the final classified string obtained using such edit distances has no 
probabilistic significance except in some rather simple cases. Furthermore, if D(X, Y) 
is the edit distance associated with editing X to Y, the latter has no explicit 
relationship to Pr(X ~ Y) except in a few rather trivial cases. 

A little insight into the problem would reveal that the fundamental question 
which traditional strategies avoid is one of stochastically modeling the structural 
behaviour of the patterns. Viewed from a reverse engineering (black-box) perspective 
this question is one of specifying how the individual patterns from the various classes 
could have been generated, an understanding of which could lead to the designing of 
optimal classifiers. This is the central problem studied in this paper. 

In this paper we shall present a new model, M* for noisy channels which 
transfer (or rather, carry) symbolic data, garbling it with arbitrarily distributed 
substitution, deletion and insertion errors. To our knowledge, this is the first 
generalized model of its type. All of the results claimed in this paper are rigorously 
proved in the unabridged paper [19]. They are omitted here in the interest of brevity. 
The unabridged paper also contains a general survey of the various alphabet and 
dictionary representations useful in syntactic PR. 
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When the dictionary is prohibitively large, problem analysts tackle the problem 
by modeling the dictionary using a stochastic string generation mechanism. The most 
elementary model is the one in which only the unigram (single character) 
probabilities of the dictionary are required [3,9,16]. This model is also referred to as 
the Bernoulli Model. A generalization of this is the Markovian (bigram) Model 
[1,3,9,16,21-23] where the probability of a particular symbol occurring depends on 
the previous symbol. As opposed to the stochastic models given for dictionaries, in 
this paper we shall consider the channe l  as an excited random string generator. 
Explicitly, we shall consider the channel as a generator whose input is a string U and 
whose output is the random string Y. The model for the channel is that Y is obtained 
by mutating U with an arbitrary sequence of string deforming substitution, deletion 
and insertion operations. Viewed from the perspective of these edit operations, this is 
a "distant" relative of Viterbi-type algorithms [6,16,21,23]. 

Our paper is a generalization of the classic paper of Bahl et. al. [1]. In addition 
to the properties of the channel described in [1], ours is functionally complete even 
though the distribution for the number of insertions is not necessarily a mixture of 
geometric distributions. Also, our model is stochastically consistent even though the 
parameters of the garbling operations are completely arbitrary. Although not 
explicitly stated, it is easy to verify that the latter is tacitly assumed to be the 
distribution for the number of insertions for the hidden Markov models used in text, 
character and texture classification. Finally, and most importantly, if the input is 
itself an element of a dictionary, the technique for computing the probability Pr[YIU] 
can be utilized in a Bayesian way to compute the a posteriori  probabilities. Thus we 
can obtain an information theoretic, minimum probability of error pattern 
classification rule independent of the model used for the dictionary itself. 

2. Nota t ion  
Let A be a finite alphabet, and A* be the set of strings over A. ~, ~ A is the 

null symbol. A string Xe A* of the form X=XlX2...x N is said to be of length IXl = N. 
Its prefix of length i will be written as Xi, i < N. Upper case symbols represent 
strings, and lower case symbols, elements of the alphabet under consideration. 

Let Y' be any string in (A u {~,} )*, the set of strings over (A u {~,}). The 
string Y' is called an output edit sequence. The operation of transforming a symbol a 
E A to ~ will be used to represent the deletion of the symbol a. To differentiate 
between the deletion and insertion operation, the symbol ~ is introduced. Let X' be 
any string in (A t3 {~})*, the set of strings over (A u {~}). The string X' is called an 
input edit sequence. Observe that ~ is distinct from ~, the null symbol. Transforming 

to b ~ A will represent the insertion of b. 
The Output Compression Operator, C o, is a function from (A u {~,})* to A*. 

Co(Y' ) is Y' with all the occurrences of ~, removed. Note that Co preserves the order 
of the non-~, symbols in Y'. Thus, if Y'=f'Lo~,r, Co(Y')=for. Analogously, the Input 
Compression Operator, CI is a function from (A w {~})* to A*. CI(X') is X' removes 
all the occurrences of ~, and preserves the order of the non-~ symbols in X'. 

For every pair (U,Y), U,Yc A*, the finite set F(U,Y) is defined by means of 
the compression operators C~ and Co, as a subset of (A u {~})* x (A u {k})* as : 
F(U,Y) = {(U', Y') [ (U', Y') E (A u {~})* x (A u {~,})*, and each (U',Y') obeys} 

(i) C~(U') = U ; Co(Y') = Y 
(ii) IU'I = IY'I 
(iii) For all 1 -< i < IU'I, it is not the case that u' i = ~ and Y'i = ~'. (1) 



14 

By definition, if (U', Y') E F(U,Y), then, Max[ IUI, IYI ] _< IU'I = IY'I ~ IUI + IYI. 
The meaning of the pair (U', Y') ~ F(U,Y) is that it corresponds to one way of 

editing U into Y, using the edit operations of substitution, deletion and insertion. The 
edit operations themselves are specified for 1 < i < IY'I, as (u'i,Y'i), which represents 
the transformation of u' i, to Y'i. F(U,Y) is an exhaustive enumeration of the set of all 
the ways by which U can be edited to Y using the edit operations of substitution, 
insertion and deletion without destroying the order of the occurrence of the symbols in 
U and Y. We do not permit the channel to delete an inserted or substituted symbol. 

L e m m a  O. 
The number of elements in the set F(U,Y) is given by : 

IYI 

(IUl+k)! 

k=Max(O,IYl-lUI) 

P r o o f  : The theorem is proved in the unabridged paper. [19] , . .  

3. Model ing/Synthesis  -- The String Generation Process 
We now describe M*, the model by which Y is generated from U e A*. 
First of all we assume that M* utilizes a probability distribution G over the set 

of positive integers. The random variable in this case is referred to as Z and is the 
number of insertions that are performed in the mutating process. G is called the 
Quantified Insertion Distribution, and in the most general case, can be conditioned on 
the input string U. The quantity G(zlU) is the probability that Z =z given that U is 
the input word. Thus, the sum of G(zlU) over all feasible values of z is unity. 

The second distribution that M* utilizes is the distribution Q over the alphabet 
under consideration. Q is called the Qualified Insertion Distribution. The quantity Q(a) 
is the probability that a ~ A will be the inserted symbol conditioned on the fact that 
an insertion operation is to be performed. The sum of Q(a) over all a ~ A is unity. 

Apart from G and Q, the final distribution which M* utilizes is a probability 
distribution S over A x (A u {%}). S is called the Substitution and Deletion 
Distribution. For b e (A u {%}), the quantity S(bla) is the conditional probability 
that the given symbol a ~ A in the input string is mutated by a stochastic 
substitution or deletion. S(cla) is the conditional probability of a~ A being substituted 
for by c ~ A, and analogously, s(%la) is the conditional probability of a e A being 
deleted. Observe that S has to satisfy the following constraint for all a ~ A : 

S(bla) = 1. (3) 

b~ (Au{~,}) 
Using the above distributions we now informally describe the model for the 

garbling mechanism (or equivalently, the string generation process). Let IUI = N. 
Using the distribution G, the generator randomly determines the number of symbols 
to be inserted. Let Z be random variable denoting the number of insertions that are to 
be inserted in the mutation. Based on the random choice let us assume that Z takes 
the value z. The algorithm then determines the position of the insertions among the 
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individual symbols of U. This is done by randomly generating an input edit sequence 
U'~ (A u {~})* with each of the ((N+k)!/(k! N!)) possible strings are equally likely. 

Note that CI(U') is U and that the positions of the symbol ~ in U' represents 
the positions where symbols will be inserted into U. The occurrences of ~ are now 
transformed independently into the individual symbols of the alphabet using Q. 
Finally, the non-inserted symbols in U' are substituted for or deleted using S. 

This defines the model M* completely. The above process is formalized below. 

Algorithm M*_GenerateString 
Input : The word U and the distributions G, Q and S. 
Output : A random string Y which garbles U with traditional mutations. 
Method: 

1. Using G randomly determine z, the number of symbols to be inserted in U. 
2. Randomly generate an input edit sequence U'e (A w {~})* by randomly 

determining the positions of the insertions among the symbols of U. 
3. Randomly independently transform the ~'s into symbols of A using Q. 
4. Randomly independently substitute or delete the non-inserted symbols in U' 

using S. 
END Algorithm M*_GenerateString 

A graphical display of the channel modeling and a detailed example of the 
garbling process is included in [19]. We shall now derive its analytic properties. 

Let IUI = N and IYI = M. Then, the following results are true : 
Theorem I 

If the edit operations occur independently Pr[YIU], the probability of receiving 
Y from M* given that U is transmitted has the form : 

Pr[YIU] = -((N++z)!) . , = p(y'ilu'i), (4) 
z=Max(0,M-N) 

in which (a) Y'i and u' i are the symbols of Y' and U' respectively, (b) p(y'ilu'i) is 
interpreted as Q(Y'i) if u' i = ~, and, (c) p(y'ilu'i) is interpreted as S(Y'ilu' i) if u' i ~ ~. 
Furthermore, the framework is both functionally complete and consistent. 
Proof : The proof is quite intricate and is found in the unabridged paper [19]. * * * 

We shall now demonstrate the efficient computation of Pr[YIU]. 

4. Analys i s  : C o m p u t i n g  P[YIU] Eff ic ient ly  
Consider the problem of M* editing U to Y, where IUI--N and IYI--M. Suppose 

we edit a prefix of U into a prefix of Y, using exactly i insertions, e deletions and s 
substitutions. Since the number of edit operations are specified, this corresponds to 
editing Ue+ s = Ul...Ue+ s into Yi+s=Yl...Yi+s . Let Pr[Yi+slUe+ s ;Z=i] be the 
probability of obtaining Yi+s given that Ue+ s was the original string, and that 
exactly i insertions took place in garbling. Then, by definition, 

Pr[Yi+slUe+ s ;Z=i] = 1 if i=e=s=0 (5) 
To obtain an explicit expression for the above quantity for values of i, e and s 

which are non-zero, we have to consider all the possible ways by which Yi+s could 
have been obtained from Ue+ s using exactly i insertions. Let r=e+s and q=i+s. Let 
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Fi,e,s(U,Y) be the subset of the pairs in F(Ur,Yq) in which every pair corresponds to 
i insertions, e deletions and s substitutions. Since we shall consistently be using the 
strings U and Y, Fi,e,s(U,Y) will be referred to as Fi,e, s. Using (4), 

IU'rl 

Pr[Yi+slUe+ s ' z = i ]  - (s+e)! i! ~ I ' I  , ( s+e+i)  I p(y'qjlU'rj), (6) 
�9 (U'r,Y'q) j=l  

if  i, e or s > 0, and, (U'r,Y'q) is an arbitrary element of Fi,e, s, with U'rj and y'qj as the 
jth symbols of U' r and Y'q respectively. 

Let W( ..... ) be the array whose general element W(i,e,s) is the sum of the 
product of the probabilities associated with the general element of Fi,e, s defined as : 

W(i,e,s) = 0, if i,e or s <0 

(s+e+i)! 
- i ! ( s+e)  ! Pr[Yi+ s IUe+ s ; Z=i] otherwise (7) 

Using the expression for Pr[Yi+slUe+ s ; Z=i] we obtain the explicit form of W(i,e,s) 
for all i, e, s > 0 below. 

W(i,e,s) = 1, 
IU'rl 

if i =e =s =0 

= ~ l ' - [  p(y'qjlu'rj), if i, e o r s > 0  (8) 
(U'r,Y'q) j=l  

To obtain bounds on the magnitudes of the variables i, e and s, we observe that 
they are constrained by the lengths of the strings X and Y. Thus, if r=-e+s, q=i+s and 
R=Min [M, N], these variables will have to obey the following obvious constraints : 

Max[0,M-N] < i < q < M ; 0  < e < r < N ; 0  < s < Min[M,N] (9) 

Triples (i,e,s) which satisfy these constraints are termed as "feasible". Let, 

Hi= { j l Max[0,M-N] < j < M  }, He={j  I 0<j<N},and Hs={jl0<j<Min [M, N] }. H i, 
H e and H s are called the set of permissible values of i, e and s. A triple (i,e,s) is 
feasible if apart from i~ H i, e~ H e, and s~ H s, i + s < M, and e + s < N. 

The next result specifies the permitted forms of the triples for editing U r to Yq. 

Theo rem  II  
To edit U r, the prefix of U of length r, to Yq, the prefix of Y of length q, the 

set of feasible triples is given by { (i, r-q+i, q-i ) I Max [0, q-r] < i < q }. 
Proof  : The proof is included in the unabridged paper [19]. * * ,  

The following theorem (proved in [19]) states the recursive property of W( ..... ). 

T h e o r e m  I l l  
Let W(i,e,s) be defined as in (8) for any two strings U and Y. Then, for all non- 

negative i,e and s, 
W(i,e,s) = W(i-l,e,s).p(yi+sl~) + W(i,e-1,s).p(3,1Ue+s) + W(i,e,s-1).p(yi+slue+s) 
where p(bla) is interpreted as in (4). * * * 

We compute Pr[YIU] as a weighted combination of elements of W( ..... ) as below. 
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Theorem IV 

N ! i ! ,  Pr[YIu] can be evaluated from the array W(i,e,s) as: If h(i)-- G(i) - 
(N+i)! 

M 

Pr[Y[U] = L h(i).W(i, N-M+i, M-i). 
i=Max(0,M-N) 

Proof : The proof is included in [19]. * * *  

To evaluate Pr[YIU] we make use of the fact that although it has no known 
recursive properties, W( ..... ), which is closely related to it obeys Theorem III. The 
Algorithm EvaluateProbabilities which we now present, evaluates the array W( ..... ) 
for all permissible values of the variables i, e and s subject to the constraints of 
Theorem II. Using the array W(i,e,s) it evaluates Pr[YIU] by adding up the weighted 
contributions of the pertinent elements in W( ..... ). This is formalized below. 

A l g o r i t h m  Eva luateProhahi l i t i e s  
I n p u t :  The strings U=ulu2...UN, Y=YlY2"'YM, and distributions G, Q and S. 
Output:  W(i,e,s) for all permissible i, e and s and the probability Pr[YIU]. 
Method : 

R=Min [ M, N] ; W(0,0,0)=I 
Pr[YIU] = 0 
For i=l to M Do 

W(i,0,0) = W(i-l,0,0). Q(Yi) 
For e=l to N Do 

W(0,e,0) = W(0,e- 1,0).S()dUe) 
For s=l to R Do 

W(0,0,s) = W(0,0,s- 1).S(YslUs) 
For i=l to M Do 

For e=l to N Do 
W(i,e,0) = W(i-l,e,0).Q(yi) + W(i,e-l,0).S(Llu e) 

For i=l to M Do 
For s=l to M-i Do 

W(i,0,s) = W(i-l,0,s).Q(Yi+s) + w(i,0,s-1).S(yi+slUs) 
For e=l to N Do 

For s=l to N-e Do 
W(0,e,s) = W(0,e- l ,s).S()dUs+e) + W(0,e,s- 1).S (YslUs+e) 

For i=l to M Do 
For e=l to N Do 

For s=l to Min[(M-i), (N-e)] Do 
W(i,e,s)=W(i-l,e,s).Q(Yi+s)+W(i,e- 1,s).S()dUe+s)+W(i,e,s- 1).S(yi+slue+s) 

For i=Min[0, M-N] to M Do 

Pr[YIU] = Pr[YIU] + G(i) .((i! N!)/(N+i)!). W(i,N-M+i,M-i) 
END Algor i thm EvaluateProbabi l i t i es  

Obviously, the above process requires cubic time and space respectively. A 
more efficient but intricate algorithm to compute it is included in [19]. 
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4.1 A n  I n f o r m a t i o n  T h e o r e t i c  B o u n d  
Using the model M* it is easy to see how optimal syntactic pattern recognition 

can be obtained. Indeed, if the distributions G, Q and S are known (the inference 
(estimation) problem of these distributions remains open) PR can be achieved by 
evaluating the string U* which maximizes the probability Pr[YIU] over all U in the 
dictionary. Seen from a Bayesian perspective this would be equivalent to computing 
the a posteriori  probabilities if all the strings are equally likely a priori, and thus yield 
optimal, minimum probability of error pattern classification. In a non-Bayesian 
approach this represents a maximum likelihood pattern classification scheme. 

We now show that the PR obtained by utilizing M* is not only optimal - it 
also attains the information theoretic upper bound. This is done by using arguments 
analogous to those used in developing bounds for sorting and other computer science 
operations. Observe that this presupposes that we compare M* with all other channel 
models which have the same common underlying garbling philosophy. 

T h e o r e m  V 
If transmitted symbols can only be substituted for or deleted and received 

symbols are obtained as either a result of transmitted symbols being substituted for or 
as inserted symbols, then, for specific distributions G, Q and S, the garbling model 
M* attains the information theoretic bound for recognition accuracies. 
Proof  : The theorem is proved in the unabridged paper. [19] , , ,  

5. Experimental Results 
To investigate the power of our new model and to demonstrate the accuracy of 

our new scheme in the original PR problem various experiments were conducted. The 
results obtained were remarkable. The algorithm was compared with : 

(i) Algorithm_LD : A PR scheme which used any traditional editing 
[ 10,11,14,17,20,22,24] algorithm and unit inter-symbol costs. 

(ii) Algorithm_GLD : A PR scheme which used any traditional editing 
[ 10,11,14,17,20,22,24] algorithm using symbol-dependent costs. 

The dictionary consisted of 342 words obtained as a subset of the 1023 most 
common English words [4] augmented with words used in computer literature. The 
length of the words was greater than or equal to 7 and the average length of a word 
was approximately 8.3 characters. From these, two sets (SA and SB respectively) of 
1026 noisy strings were generated using the method described in Section 2. The 
conditional probability of inserting any character a ~ A given that an insertion 
occurred was assigned the value 1/26; and the probability of deletion was set to be 
1/20. The table of probabilities for substitution (typically called the confusion 
matrix) was based on the proximity of the character keys on a standard QWERTY 
keyboard and is given in [19]. The statistics associated with the sets SA and SB are 
given below in Table I. A subset of some of the words in SA is given Table II. 

Table  I: 

Number of insertions 
Number of deletions 
Number of substitutions 
Total number of errors 
Percentage error 

S A  
1872 (1.825) 
418 (,0.407) 
769 (0.750) 

3059 (2.981) 
36.00% 

S B  
2142 (2.088) 
414 (0.404) 
822 (0.801) 

3378 (3.292) 
39.75% 

Noise statistics of the sets SA and SB. The figures in brackets are the 
average number of errors per word. 
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Ori[r word (dictionary) 
administration 

I Noisy word 
sdmlnistratib 

Total number of errors 
5 

advance ewafawdvxsance 7 
taodbivawafxe 8 advantage 

affairs kafruvkfnixsrs 
vuae~rdtuilllordie~ artillery 

"beginning " ssbehsimKjninmm[ 
cooperation 
executive 
followed 
sitting 
strength 
striking 
victory 
without 

coeopew~aueipxn 
yslxvkreutivoe 
zdslfdxllwkedekuid 
psxruttoing 
mzeckieeotrenxsbth 
yvysatqrickinwet 
vbtctlavrdy 
xvwigobuhnout 

Table II: A subset of the 

9 
11 
10 
8 

14 

13 
10 

8 
dictionary, noisy strings and error characteristics. 

The three algorithms, Levenshtein Distance (Algorithm_LD), the Generalized 
Levenshtein Distance (Algorithm_GLD) and our algorithm (Algorithm_OPT_PR), 
were tested with the sets of 1026 noisy words, SA and SB. The results obtained in 
terms of the recognition accuracy for the two sets are tabulated below in Tables III. 
Note that our scheme far outperforms the traditional string correction and GLD 
algorithms. The reader should observe that, as in all PR problems, it is much harder 
to increase the recognition accuracy at the higher end of the spectrum. 

Algorithm Accuracy (SA) Accuracy, (SB) 
Algorithm_LD 94.93% 93.76% 
Algorithm_GLD 96.00% 94.35 % 
Algorithm_OPT_PR 97.66% 96.49% 

Table I Ih  The recognition results obtained from the noisy data sets SA and SB. 

6. Conclusions 
In this paper we have presented a formal foundation for designing optimal and 

information theoretic, minimum probability of error syntactic pattern recognizers. We 
have done this by presenting a new model for noisy channels which permit arbitrarily 
distributed substitution, deletion and insertion errors. The scheme has been shown to 
be functionally complete and stochastically consistent. Apart from presenting the 
model we have specified how Pr[YIU] can be efficiently computed to yield minimum 
probability of error syntactic PR. Experimental results which involve dictionaries 
with strings of lengths between 7 and 14 with an overall average noise of 39.75 % 
demonstrate the superiority of our system over existing methods. 
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