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Abs t r ac t .  In this paper, we define a metric of planar self-similar forms. 
Self-similarity is one of the fundamental geometric properties which de- 
fine configurations of geometric elements on the planes and in the space, 
such as line segments, parts of curves, and blocks. Thus, as the first step 
in the discrimination of complex objects, which are constructed from 
basic elements by their structures, we define a metric of self-similarity 
forms. The iterative function system, IFS, is a method for describing self- 
similar forms. Since a set of metrices defines an IFS, we define a metric 
among self-similar forms using the matrix norm of metrices which define 
IFS's. We also introduce a method for the estimation of parameters of 
IFS's from measured data of planar trees. 

K e y  w o r d s  Self-similar forms, Iterative function system, Botanical trees, 
Distance measure 

1 Introduction 

Syntactic pat tern  recognition is based on syntactic and symbolic representation 
of pat terns and recognition algorithms [1]. Syntactic and symbolic expression of 
pat terns is suitable for the expression of their topological properties. However, 
this method is sometimes insufficient for the description of geometric properties. 
Thus, a syntactic theory which expresses geometric properties is desired [2]. 

Objects are constructed from elements using a g rammar  which determines 
their configurations. Pa t te rn  recognition provides metrics for the discrimination 
of planar figures and t ime varying signals. These discrimination methods are 
based on the theory of Hilbert space. In the Hilbert space framework of pattern 
recognition, a pa t tern  is considered as a point in an abstract  space. However, 
this embedding is inadequate for the recognition of complex geometric shapes 
which are constructed from elements using a g rammar  which defines geometric 
and topological structures. For the definition of metrics among complex objects 
constructed from elements, a metric among grammars which describe geometric 
and topological structures of objects is desired. If an object is made up from 
parts  which are similar to whole, the object is self-similar. This is a fundamental  
proper ty  of botanical trees and grasses. Self-similarity is one of fundamental 
geometric properties which define configurations of elements. Thus, as the first 
step in the discrimination of complex objects, which are constructed from basic 
elements, by their structures, we define a metric among self-similar forms. 
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The iterative function system, IFS [3] defines a method for the description of 
self-similar forms in Euclidean space. In Euclidean space, a set of affine trans- 
forms defines an IFS. Thus, this set of transformations defines a g rammar  of the 
configurations of elements of an object. An affine transformation is defined by a 
matr ix  if we adopt homogeneous coordinates for the expression of positions of 
points in Euclidean space. In this paper, we define a metric among self-similar 
forms using the matr ix  norm of affine transformations which defines an IFS. 
The Housdorff metric directly compares shapes themselves. However, if shapes 
are expressed by several parameters,  the computat ion cost for the discrimina- 
tion becomes cheap and results of computat ion are stable. We also introduce a 
method for the estimation of parameters  of IFS from measured data  of planar 
trees, which is considered as the estimation of g rammar  for description of com- 
plex objects. 

2 M e t r i c  o f  A f f i n e  T r a n s f o r m a t i o n s  

Let R 2 be 2-dimensional Euclidean space. Furthermore, define orthogonal coor- 
dinate systems x-y in R 2. Vectors in R 2 are expressed by x = (x, y)T where .:r 
indicates the transpose of a vector. The inner product of vectors is defined by 
x T y  and the distances between x and y by 

I x - Yl = ~/(x  - y ) T ( x  _ y). (1) 

Furthermore,  we denote the determinant of an N x N real matrix A by IAI. 
For N x N matrices A and B ,  the matr ix  inner product is defined by 

N N 

(A, B) : ~ E amnbmn, (2) 
m = l  n = l  

where amn and bran are the m n-th elements of A and B ,  respectively. Further- 
more, the matr ix  norm is defined by 

I[AII = i f ( A ,  A). (3) 

Setting A and a to be a 2 x 2 matr ix  and a two-dimensional vector, respec- 
tively, an affine transformation on A is expressed by 

y = A x  + a, (4) 

where A is invertible. By setting ~ = (Xl, Yl, 1) T and r / =  (x2, Y2, 1) T to be the 
homogeneous coordinates of x = (Xl, yl)  T and y = (x2, y2) ~, respectively, eq. 
(4) is expressed as 

~ / = T ( ,  T =  \ o  , ' ( 5 )  

where o = (0, 0) T. Thus, a transformation given by eq. (4) is defined by a 3 x 3 
matrix.  In this paper,  we also deal with the case tha t  matr ix  A is singular. We 
call t ransformations general a n n e  if we do not demand them to be invertible. 
Here, we define a distance metric among general a n n e  transformations. 
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D e f i n i t l o n l .  For two general a n n e  transformations T1 and T2, we define a 
distance among transformations as 

d(T1, T2) = IIT~ - T2II. (6) 

Element of a set of general affine transformations are separated into three 
categories, 

c + ,  = {:r~ I:r~l > 0},  (7) 
Co = {:r ,  I:r~l = 0},  (8) 

and 

such that  

and 

C-1 = {Ti ITd < 0}, 

W n _____ { , } , : ,  C+lUCoUc- , 

C,:, r ]  cb = o, a,b~T 

(9) 

(lO) 

(11) 
where T = {+1, 0, -1} .  From the definition of the 3 x 3 matrix T,  the sign of 
the determinant of T is equivalent to that of 2 x 2 matrix A. 

3 M e t r i c  o f  I t e r a t i v e  F u n c t i o n  S y s t e m s  

In the following, we deal with the case 

~C+1 = ~C0 = ~C_~ = 1, (12) 

where ~A is the number of elements of set A. Furthermore, we write the elements 
of C~ as T(~) for a E T. By setting 

s~(F) = {~? I~? = T~( ,  x e F} (13) 

for a shape F and general a n n e  transformations, we obtain the following propo- 
~sition o n  R 2. 

P r o p o s i t i o n  2. For vectors in a closed compact set on R 2, if each mapping sa 
satisfies the relation 

Is~( x ) -  s~(Y)l -< c ~ l x -  Yl, 0 < c~ < 1, (14) 

there exists a unique nonempty compact set F such that 

F = U s~(F) (15) 
nET 

Moreover, if we define a transformation s on nonempty compact set G as 

s(G) = U s~(G), (16) 
nET 
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the?~ 

F = N sk(G), (17) 
k=0 

where s~ = G and sk(G) = s ( sk - l (G) )  [from theorem 9.1 in ref. 5]. 

We call a fixed point of eq. (15) a self-similar form. Furthermore, eqs. (16) and 
(17) define an algorithm which generates a self-similar form. Thus, the propo- 
sition defines a self-similar form and an algorithm for the generation of them. 
We call G the generator of F. In applications, for an appropriate large n, we 
approximate F by 

F"  ---- [7  sk(G).  (18) 
k----0 

A set of general afline tra~lsformations {T}~eT defines a self-similar form. 
Here, we call a set of mappings {s~}~c T the IFS of F. The IFS's are not restricted 
to general affine transformations. This paper, however, deals only with a set of 
general affine transformations. 

By using the metric of general affine transformations, we define a metric of 
self-similar forms. 

D e f i n i t i o n  3. The metric of two self-similar forms F1 and F2 is defined by 

D(F1, F2) = E d(T(a) 1' T(a)2)~ (19) 
a c t  

where {T(a)i}aCT, is a set of general affine transformations which defines Fi for 
i = 1, 21 �9 

Since, for each a E T, d(T(~)l, T(~)2) satisfies the axioms of distance, we 
obtain the following theorem. 

T h e o r e m  4. Equation (19) defines a distance measure. 

4 P a r a m e t e r s  o f  Trees  

As pointed out in reference [5], binary branching on a plane approximates the 
branching geometry of botanical trees very well. Binary branching is defined by 
a segment and a pair of subsegments which branch off a segment. According to 
the biological observation of trees, the binary branching geometry of botanical 
trees is asymmetric. Asymmetry of the branching geometry of botanical trees 
is explained from viewpoints of biological functions and the laws of mechanics. 
If the diameter of one branch is larger than that  of the other at a branching 
point, we observe large amounts of flow of organic liquid and water in the larger 
branch. Furthermore, if the branching angle of one branch is smaller than that  of 
the other and its length is longer than that  of the other, this branch can support  
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more descendant branches and leaves than the other. We call the longer branch 
the leader segment, and we call the other segment the subtending segment. 

Let j be the generation of branching and k, m, and n be the addresses of 
segments such that  1 _< j ,  i < k < 2 j - l ,  and 1 < m, n _< 2 j. Then, by setting 
tj, k, 8j+l,m, and lj+l,n t o  be a segment, a subtending segment, and a leader 
segment, respectively, the binary branching geometry is locally determined by 
a triple of segments (tj, a, Sj+l,m,|j+l, n) which are connected at a branching 
point. 

We can assume that  the pair o f  branching angles of a tree, 

t j  T k / j+ l ,  m T 7tj'kSj+l'rn (20) 
c~ = cos -1 Itj,~ll/j+l,ml , /~ = c o s  - 1  It~,kllsj+l,ml' 

are constant [4,5]. We call c~ and fl the leader angle and the subtending an- 
gle, respectively. Furthermore, we can assume that  the branching ratio It = 
ISj, ml/llj, ml and r = Ilj, m,l/]lj+l,ml are constant [4,5]. Here, both It and r are 
positive values smaller the 1. 

There is a unique sequence of the leader segments: 

t = (l~,~, 1 2 , , , ' " ,  tm,n'),  s.t. ll,1 = tl ,~.  (21) 

If the left segment is the leader segment at one branching point, the right segment 
is the leader segment at the next branching point, and I~1 < Ifll, the sequence 
t forms a zigzag line in a space. This zigzag line makes the main axis of a tree 
[4,5]. 

The ratio It affects the global shape of a tree because it determines the 
total length of sequences of segments. Conversely, we can estimate It from the 
global shape of a tree. At each branching point the reader segments support 
more segments than the subtending segments. Thus, we can assume the relation 
It = S j /L j ,  where Sj and Lj are the total numbers of generations of segments 
supported by the subtending segment and by the leader segments, respectively. 
Moreover, by setting 

mj = E ~tj,p(S), nj = E ~tj, p(l), (22) 
for all sequences for all sequences 

where ~t is the total  number of elements of a sequence t, and 

t~',p(8) = (t~.,p, sj+l,p," "" , t . ,~),  t~,p(t) = (tj,p, t j+ l ,p , . . .  , t , ,q,) ,  (23) 

we obtain the relations Sj ~- log 2 mj and Lj -~ log 2 nj. Thus, to avoid the case 
of nj = 1, we redefine It as 

log2(m j + 1) 
# -  log2(n j + 1)" (24) 

If a segment has only one subsegment, we call the subsegment the null pair. 
If a tree has null pairs, we call it an incomplete tree. If a tree is incomplete, mj 
and nj depend on the positions of branching points. However, by assuming that  
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the ratio m : n is almost constant at any branching point, we can rewrite eq. 
(24) as 

log2(m + 1) (25) 
# =  log 2 ( n + l ) "  

5 Geometric  Properties  of the  Metric 

Here, we define an IFS which approximates appearances of binary trees using pa- 
rameters a, fl, #, and r, which were defined in the previous section. The following 
IFS approximates properties of Honda's model tree [4,5], which express the ge- 
ometry of botanical trees according to certain rules. The meaning of parameters 
of this system are shown in Table 1. We define 

( cos  sin  i)  
T - 1  = r s ina,  cosa,  1 r , (26) 

0, 0, (00 ) 
To = 0, I /h,  , (27) 

0, 0, 

['cos/3, - s i n f l ,  0 "~ 
T - 1  = #r | s i n 3 ,  cos/~, I /# r  ] , (28) 

\ o, o, 1/#r/ 

and C = {(0,1)T}, where h = (1 - r 2 ) / ( 1  + r cosa).  
We call the segments generated by T - 1  and the segments generated by T+I  

the leader branches and subtending branches. Since the determinant of T - 1  
is negative, segments generated by T - 1  change the sign of the tangent. Thus, 
the sequences of segments generated by T - 1  form a zigzag line with the ration 
r. Furthermore, To defines a line segment since the rank of To is one. These 
line segments determine the total length of branches. Moreover, the segments 
generated by T+I  grow more slowly than branches generated by T - 1  since # 
is smaller than 1. This means that the sequence of the leader segments forms a 
zigzag axis which npproximates the trunk of a tree. Furthermore, the subtending 
segments form bl ,nches of tree. 

By normalizing the length of the first segment 1 to 1, for i = 1, 2, we find 
that  

l l , i  = (--ri sin ai, rl cos ai + 1) T (29) 

and 

s l , i  = ( - r i # i  sin/3/, - r i # i  cos/3/+ 1) T (30) 

are the ends of the first right branch and the first left branch, respectively. Thus, 
we obtain the following theorem. 



106 

T h e o r e m  5. I f  ozl ~ 0~2, /51 =" f12, and rl -~ r2, 

D ( F 1 ,  F 1 )  = V/2(l[11 - t l2l  + Is11 - s121)- (31) 

This theorem implies tha t  the distance measure of trees defined by eqs. (19)-(28) 
is approximated by the sum of Euclidean distance between the ends of the first 
branches of the normalized trees if the growth ratios and branch angles of two 
trees are similar. Figure 1 illustrates the branch geometry of binary trees and 
the relation of Theorem 5. 

! 
! 

/11~~ 811 

G 

F1 

! 

G G 

F2 d(F1, F2) 
Figure 1. Segments of trees and the distances between segments 

As shown in Figure 2, this IFS generates binary trees which approximate or- 
thographic views of botanical trees. For the graphical generation of binary trees, 
the roots of trees are located at the origin of the coordinate system, and the 
trees grow in the y direction since we set G = {(0, l)T}. The parameters  of our 
IFS are listed in Table 2. Table 3 shows how our metric discriminates these trees. 

T a b l e  i. 

m : number  of decendant segments 
of the leader branch of a node. 

n : number of decendant segments 
of the subtending branch of a node. 

/z : branching ratio. 
I : length of the trunk. 
r : growth ratio. 
c~ : leader angle. 

: subtending angle. 

Parameters  of an iterative function system wich generates binary trees. 
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T a b l e  2. 

tree m : n  c~ fl r 
1 0.2:1.0 10 - 6 0  0.9 
2 0.5:1.0 10 - 6 0  0.9 
3 0.3:1.0 20 - 4 0  0.9 
4 0.6:1.0 20 - 4 0  0.9 
5 1.0:1.0 20 - 4 0  0.9 

Parameters  of iterative function systems which generate the five trees of 
figure 2. The angles are expressed in degree. 

T a b l e  3. 

~ 
1 2 3 4 5 

1 0 0.03 0.94 1.19 1.74 
0 0.95 1.17 1.72 

0 0.56 1.20 
0 0.64 

0 

Distance matr ix  of trees in figure 2. Since the distance matric is sym- 
metric, only the entries of the upper  triangle are listed. 

6 C o n c l u s i o n s  

In this paper,  we discussed the identification, discrimination, description, and 
classification of patterns in the same context by focusing our at tention on self- 
similar forms. Furthermore, our method will provide possibility for studying 
recognition and representation in the same context, since self-similarity provides 
a fundamental  computat ional  method for the generation of complex pat terns  in 
computer  graphics. Moreover, the metric may anable us to quanti tat ively clas- 
sify the performance of algorithms of computer  graphics which generate artificial 
forms. 

The first author expresses his thanks to Professor H. Hirata of Chiba Univer- 
sity who introduced him to the book by N. MacDonald. Par t  of this research is 
based on the undergraduate project of Y. Fujiwara at Depar tment  of Information 
and Computer  Sciences, Chiba University. 
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Figure 2. Five trees which are generated using an iterative function system. 
The parameters for the generation of these trees are listed in Table 2. Distances 
among these five trees are listed in Table 3 in the form of the comparison matrix. 
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