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Abstract. The Stanford Temporal Prover, STEP, combines deductive 
methods with algorithmic techniques to verify linear-time temporal logic 
specifications of reactive and real-time systems. STeP uses verification 
rules, verification diagrams, automatically generated invariants, model 
checking, and a collection of decision procedures to verify finite- and 
infinite-state systems. 

Sys tem Descript ion:  The Stanford Temporal Prover, STEP, supports the 
computer-aided formal verification of reactive, real-time (and, in particular, con- 
current) systems based on temporal specifications. Reactive systems maintain 
an ongoing interaction with their environment; their specifications are typically 
expressed as constraints on their behavior over time. STeP is not restricted 
to finite-state systems, but combines algorithmic and deductive methods to al- 
low the verification of a broad class of systems, including parameterized (N- 
component) circuit designs, parameterized (N-process) programs, and programs 
with infinite data domains. 

The deductive methods of STeP verify temporal properties of systems by 
means of verification rules and verification diagrams. Verification rules are used 
to reduce temporal properties of systems to first-order verification conditions [8]. 
Verification diagrams [7, 3] provide a visual language for guiding, organizing, 
and displaying proofs. Verification diagrams allow the user to construct proofs 
hierarchically, starting from a high-level, intuitive proof sketch and proceeding 
incrementally, as necessary, through layers of greater detail. 

Deductive verification almost always relies on finding, for a given program 
and specification, suitably strong auxiliary invariants and intermediate asser- 
tions. STeP implements a variety of techniques for automatic invariant gener- 
ation. These methods include local, linear and polyhedral invariant generation, 
which perform an approximate, abstract propagation through the system [2]. 
Verification conditions can then be established using the automatically gener- 
ated auxiliary invariants as background properties. 
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S T e P  also provides an integrated suite of simplification and decision proce- 
dures for automatically checking the validity of a large class of first-order and 
temporal  formulas. This degree of automated deduction is intended to efficiently 
har/dle mostverification conditions that  arise in deductive verification. An inter- 
active Gentzen-style theorem prover and a resolution-based prover are available 
to establish the verification conditions that are not proved automatically. 
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Fig. 1. An overview of the STeP system 

S y s t e m  S t r u c t u r e :  Fig. 1 presents an overview of STEP. Dotted lines indicate 
work in progress. The basic inputs are a reactive system (which can be a hard- 
ware or software description), expressed as a transition system, and a system 
property to be proved~ represented by a temporal  logic formula. Verification can 
be performed by the model checker or by deductive means. User guidance can 
be provided as intermediate assertions or verification diagrams. In either case, 
the system is responsible for generating and proving all of the required verifica- 
tion conditions. Tactics are available to automate parts of the high-level proof 
search by encoding long or repetitive sequences of proof commands. For a more 
extensive description of S T e P  and examples of verified programs,see [1, 6]. 
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Interacting wi th  STEP: STeP has three main interface components: the Top- 
level Prover, from which verification sessions are managed and verification rules 
are invoked; the Interactive Prover, used to prove the validity of first-order and 
terriporal-logic formulas that are not proved automatically; and the Verification 
Diagram Editor, for the creation of Verification Diagrams. Fig. 2 shows these 
three interfaces, with a version of the Bakery algorithm loaded, together with a 
tree representing the ongoing proof process. 

STeP 
File properties Tactics Diagrams LoglcaiRIles Settings 
Im~-bak-a,spl: 13 goais-Equaiity-Auto OFF. , , , I I Un 

B 13a ~ Rh+^-, 
TrlmslUon B I  Just: 

I I  enable V2 - 0 ~  pD - 3 
assign pl0 := 4 E ~  
prelor B 
posUor 14 

{-(H ̂  m4)} 

Help 

~=xmuyk~ ,5... ==mvU,d to Ta UE 
&~cif~llg m... ~lT~lfld ts TRUE 
SmpNfy~ ~. . .  mt dmpl~  tO tree 

Simplify 

Diagram Editor 
Edit Node Edge Help 

~]li~ Proof lurch 

I WPC I "'~" Refresh Tactics Settings Vlewselreh 5electgoai Help Quit 

If Strengthen l = U n d o  'l ' R e d o ,  
Interlct l~ =r rent  ltoal: 1 Postpone I 

i -~ : 4 = 4. . i .  II u..Ide Model-check "2  pz l  = 4, 
= = = ~ = = = = = = = =  :: = o. Oup,=.t.lJ b.i.b." BDD-IpIR piO = 3 . 

===> Flatten i 
1 : pzO = 4 / \  p~l = 4 

"l Simplify I 

lyt, l(2 :Ira where y1-0,  y2 - 0  

~nlle (true) do [ 
I1 : noncfltlcai; 
12: yl :-y2+1; 
1:3: [ 

138: await Lv2 - 01 
or 

~b: ~ 0/1 ( -  y21 
1: 
H: crltic'l; 
15: "/1 :=0 

while (true) do [ 
rnl : nonerltieai; 
m2: y2 : - y l  § I :  
m3: [ 

m3a: await (yl - O) 
or 

m3b: mvait (y2 r y l }  
1: 
m4: r  
mS: y2: -0  

Skolemize = = ~ r  
Indand~ ===========~= 

Replace 
ReWrite 

Let-reduction 
Make-gilL-order 

NI0<t 

Cut 

Induction 

Free-Induction 
Presburger 

All-Propositional 

EDD-spllt 

Add-Axiom 

PTL-e~q~lmslon 

Fig. 2. Overview of STeP's interfaces 

Real - t ime systems: STeP was recently extended to support the verification 
of safety properties of real-time systems, based on the computational model of 
clocked transition systems [9]. Systems described by timed transition systems or 
timed automata can be readily translated into this formalism. The specification 
language of linear-time temporal logic was extended, in turn, with real-valued 
clocks measuring progress of time. 
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Appl i ca t ions :  STeP has been used to analyze a diverse number of systems, 
including: an infinite-state demarcation protocol used in distributed databases, 
a pipelined four-stage multiplication circuit, Ricart and Agrawala's mutual ex- 
clusion protocol, several (N-component) ring arbiters, Szymanski's N-process 
mutual-exclusion algorithm, and an industrial split-transaction bus protocol to 
coordinate access for six processors. Real-time systems analyzed include Fisher's 
mutual-exclusion protocol and a (parameterized) railroad gate controller [5]. 

STeP is being extended to support deductive model checking as described in 
[10], as well as modular verification diagrams [4]. 

E d u c a t i o n a l  Version:  An educational version of the system, which accompa- 
nies the textbook [8], is available. The distribution includes a comprehensive user 
manual [1] and a tutorial, as well as 40 example programs and their specifica- 
tions, from the textbook, ready to be loaded. For many programs, ready-to-load 
verification diagrams are included as well. 

STeP is implemented in Standard ML of New Jersey, using CML and eXene 
for its X-windows user interface. For information on obtaining the system, send 
e-mail to step-request�9 stanford, eduo 
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