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Abstract. The Stanford Temporal Prover, STeP, combines deductive
methods with algorithmic techniques to verify linear-time temporal logic
specifications of reactive and real-time systems. STeP uses verification
rules, verification diagrams, automatically generated invariants, model
checking, and a collection of decision procedures to verify finite- and
infinite-state systems.

System Description: The Stanford Temporal Prover, STeP, supports the
computer-aided formal verification of reactive, real-time (and, in particular, con-
current) systems based on temporal specifications. Reactive systems maintain
an ongoing interaction with their environment; their specifications are typically
expressed as constraints on their behavior over time. STeP is not restricted
to finite-state systems, but combines algorithmic and deductive methods to al-
low the verification of a broad class of systems, including parameterized (N-
component) circuit designs, parameterized (N-process) programs, and programs
with infinite data domains.

The deductive methods of STeP verify temporal properties of systems by
means of verification rules and verification diagrams. Verification rules are used
to reduce temporal properties of systems to first-order verification conditions [8].
Verification diagrams [7, 3] provide a visual language for guiding, organizing,
and displaying proofs. Verification diagrams allow the user to construct proofs
hierarchically, starting from a high-level, intuitive proof sketch and proceeding
incrementally, as necessary, through layers of greater detail.

Deductive verification almost always relies on finding, for a given program
and specification, suitably strong auxiliary invariants and intermediate asser-
tions. STeP implements a variety of techniques for automatic invariant gener-
ation. These methods include local, linear and polyhedral invariant generation,
which perform an approximate, abstract propagation through the system [2].
Verification conditions can then be established using the automatically gener-
ated auxiliary invariants as background properties.
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STeP also provides an integrated suite of simplification and decision proce-
dures for automatically checking the validity of a large class of first-order and
temporal formulas. This degree of automated deduction is intended to efficiently
handle most verification conditions that arise in deductive verification. An inter-
active Gentzen-style theorem prover and a resolution-based prover are available
to establish the verification conditions that are not proved automatically.
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Fig. 1. An overview of the 3TeP system

System Structure: Fig. 1 presents an overview of STeP. Dotted lines indicate
work in progress. The basic inputs are a reactive system (which can be a hard-
ware or software description), expressed as a transition system, and a system
property to be proved, represented by a temporal logic formula. Verification can
be performed by the model checker or by deductive means. User guidance can
be provided as intermediate assertions or verification diagrams. In either case,
the system is responsible for generating and proving all of the required verifica-
tion conditions. Tactics are available to automate parts of the high-level proof
search by encoding long or repetitive sequences of proof commands. For a more
extensive description of 8TeP and examples of verified programs, see [1, 6].



Interacting with STeP: S'TeP has three main interface components: the Top-
level Prover, from which verification sessions are managed and verification rules
are invoked; the Interactive Prover, used to prove the validity of first-order and
temporal-logic formulas that are not proved automatically; and the Verification
Diagram Editor, for the creation of Verification Diagrams. Fig. 2 shows these
three interfaces, with a version of the Bakery algorithm loaded, together with a
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tree representing the ongoing proof process.
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Real-time systems: STeP was recently extended to support the verification
of safety properties of real-time systems, based on the computational model of
clocked transition systems [9]. Systems described by timed transition systems or
timed automata can be readily translated into this formalism. The specification
language of linear-time temporal logic was extended, in turn, with real-valued

clocks measuring progress of time.

Fig. 2. Overview of STeP’s interfaces
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Applications: STeP has been used to analyze a diverse number of systems,
including: an infinite-state demarcation protocol used in distributed databases,
a pipelined four-stage multiplication circuit, Ricart and Agrawala’s mutual ex-
clusion protocol, several (N-component) ring arbiters, Szymanski’s N-process
mutual-exclusion algorithm, and an industrial split-transaction bus protocol to
coordinate access for six processors. Real-time systems analyzed include Fisher’s
mutual-exclusion protocol and a (parameterized) railroad gate controller [5].

STeP is being extended to support deductive model checking as described in
[10], as well as modular verification diagrams [4].

Educational Version: An educational version of the system, which accompa-
nies the textbook [8], is available. The distribution includes a comprehensive user
manual [1] and a tutorial, as well as 40 example programs and their specifica-
tions, from the textbook, ready to be loaded. For many programs, ready-to-load
verification diagrams are included as well.

STeP is implemented in Standard ML of New Jersey, using CML and eXene
for its X-windows user interface. For information on obtaining the system, send
e-mail to step-request@cs.stanford.edu.
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